
The Effect of Sloping Land Conversion
Program on Soil Erosion in Shaanxi
Province, China: A Spatial Panel
Approach
Yifan Xie1, Liye Wang1, Rui An1, Xuan Luo1, Yanchi Lu1, Yaolin Liu1,2*, Shunbo Yao3 and
Yanfang Liu1,2

1School of Resource and Environmental Sciences, Wuhan University, Wuhan, China, 2Collaborative Innovation Center of
Geospatial Information Technology, Wuhan University, Wuhan, China, 3College of Economics and Management, Northwest A&F
University, Xianyang, China

Soil erosion is a land degradation process that may threaten the sustainability of
ecosystem as well as cause severe social and economic problems. The studies on the
effect of ecological restoration policies on soil erosion have been well documented, while
the spatial relationships and spillover effects of the policies on soil erosion have been rarely
scrutinized, though it is of great policy implications in soil erosion control. Based on the
analysis of the spatio-temporal evolution of soil erosion in 107 counties of Shaanxi Province
with Revised Universal Soil Loss Equation, this study employs a panel spatial Durbin model
(SDM) with multi-source data for 107 counties from 2000 to 2015 to investigate the spatial
effects of the Sloping Land Conversion Program (SLCP) on soil erosion control with
investment data of SLCP. The results show that during 2000–2015, the average amount of
soil erosion exhibited a significant downtrend contributed by the continuous investment of
SLCP. The spatial economic results demonstrate that the own effect, as well as the
spillover effect of investment on soil erosion control, is significant and positive. A 0.1 billion
CNY increase in investment in a county will result in a reduction of the total soil erosion by
288.69 thousand t/a, of which 63% is contributed to the own direct effect on local soil
erosion control and the 37% of it is contributed to the spillover effect on the neighbors.
Moreover, rainfall has a significant and positive moderating effect on the mitigation effect of
SLCP on soil erosion at county scale; the marginal contribution of investment of SLCP on
soil erosion control in the county with less rainfall is greater than that with more rainfall.
These findings contribute to further our understanding of the long-term effects of
ecological restoration policies and transboundary ecological governance.
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INTRODUCTION

Soil erosion is a widespread form of land degradation that severely threatens the ecosystem services,
especially the terrestrial ecosystems globally (Pimentel, 2006; Amundson et al., 2015). The total
amount of soil erosion caused by land use changes in the world increased by 2.5% from 2001 to 2012
(Borrelli et al., 2017). Similarly, soil erosion has been one of the most urgent environmental problems
in China, with an estimated 2–4 billion tons of silt released into the Yangtze River and the Yellow
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River annually, of which 65% came from the sloping cropland
(Bennett, 2008). This phenomenon was particularly obvious in
the Loess Plateau, which was once regarded as the most heavily
eroded area in the world (Wen and Deng, 2020). Therefore, there
are many different forms of strategies including soil management
(Cerdà et al., 2017), nature-based solutions (Keesstra et al., 2018),
and landscape restoration programs (Kong et al., 2018)
conducted to mitigate regional soil erosion around the world.
Among them, the Sloping Land Conversion Program (SLCP) is a
typical ecological restoration program initiated by the Chinese
central government in 1999 with the stated environmental goals
of reducing water and soil erosion (Bennett, 2008), also known as
the Grain for Green Project in the form of payments for
ecosystem services (PES). SLCP had encompassed more than
2000 counties in 25 provinces, benefiting over 41 million rural
households and invested $55 billion to increase the forest cover,
converting sloping cropland and degraded rangeland back to
forest and grassland in the past 20 years (NFGA (National
Forestry and Grassland Administration, 2018). Hence, it is
significant to evaluate the effect of SLCP on soil erosion with
such a huge investment for formulating scientific and reasonable
soil erosion management policies and the sustainable
development of regional ecosystems.

Revised Universal Soil Loss Equation (RUSLE) is by far one of
the most widely applied soil erosion prediction models at a large
regional scale around the world due to its simple form and
parsimonious parameterization (Renard et al., 1997; Farhan
and Nawaiseh, 2015). Besides, a variety of long-term satellite-
derived remote sensing data and the development of the
integrated geographic information system (GIS) have made it
possible to assess the spatio-temporal characteristics of soil
erosion with RUSLE at a regional scale more effectively and
accurately (Vrieling, 2006; Poesen, 2018; Alewell et al., 2019).
Some of the studies evaluated the dynamic spatio-temporal
changes of soil erosion and indicated that the policies
improved the ecosystem services by increasing vegetation
cover and land use conversion (Xu et al., 2018). Although
there are several environmental factors including topography,
mean annual rainfall, land use and cover, and the soil
conservation methods that have significant effects on soil
erosion (Nearing, 1997; Zhao et al., 2022), land use still
dominates the variation of soil loss and runoff, especially at
the large regional scale (Zhao et al., 2022). Wen and Deng
indicated that the change in land use and land cover induced
by SLCP is the most critical factor that affects the soil erosion in
the Loess Plateau after a literature review (Wen and Deng, 2020).
The study in southern China’s red soil hilly region indicated that
the soil loss was largest for cropland, while grassland and natural
shrub have less soil loss and lower sediment values (Chen et al.,
2021). Satellite-derived observations used in the studies
mentioned above can capture the objective changes of soil
erosion at the regional scale, but it is difficult to demonstrate
that these changes are only caused by SLCP due to the
contributions from the other ecological projects such as
National Forest Conservation Program and Soil and Water
Conservation Program (Li et al., 2020). While this problem
could be solved partly in technic with econometric methods in

which the missing variables are represented by the random error
term, the research exploring the effect of ecological restoration
policies on soil erosion as well as the impact of socio-economic
factors with econometric methods is well documented (Rao et al.,
2016; Li et al., 2020; Zhou et al., 2021). For instance, the
increasing grain yield could mitigate soil erosion by
diminishing the substantial demand for farmland and the
excessive deprivation of ecological lands (Zhou et al., 2021);
however, the area of forest and grassland converted from
cropland or the vegetation cover (Kong et al., 2018; Zhou
et al., 2021) was used to characterize the SCLP in many
studies, which would lead to biases in the evaluation of policy
effectiveness. To compensate for this deficiency, the investment of
SLCP is used in this study to examine the effect of SLCP on soil
erosion from the perspective of cost-effectiveness of investment,
which is important for the sustainability and efficiency of the
policy (Börner et al., 2017).

Soil erosion has a strong geographical dimension in the
formation process whether at the watershed scale or at the
regional scale (Ganasri and Ramesh, 2016; Rao et al., 2016);
so, it tends to fall into dilemmas when evaluating the impact of
the ecological restoration policy on soil erosion with
administrative divisions. One of the dilemmas is that the
ecological effects of SLCP such as mitigating soil erosion may
not only remain in the implementation area but also diffuse into
the neighboring area (Lin et al., 2020). Hence, we propose a
hypothesis: the marginal effects of SLCP on soil erosion control
may be the combination of mitigation effects of the local region
with specific characteristics and spatial spillover effects of
neighboring regions. However, regional policy and practice
often completely ignore external beneficiaries like the adjacent
administrative districts, which leave afforestation and
management burdens on the local area when the spatial effects
exist (Wolch et al., 2014). The classical econometric models are
used in the studies mentioned above (Rao et al., 2016; Kong et al.,
2018; Li et al., 2020) to examine the influencing factors of soil
erosion in China with the omission of the spatial spillover effects
of the afforestation, which could result in biased estimations and
even undermine the scientific foundations (Jiang et al., 2020).
Hence, it is necessary to examine the spillover effects of SLCP on
soil erosion and separate the own and spatial spillover effects of
afforestation at the regional scale with spatial econometric models
for the effective transboundary ecological governance, which
improves the cost-effectiveness of ecological governance and
the sustainability of green development. Besides, the effect of
rainfall on soil erosion is significant for all land use types (Zhao
et al., 2022), and the rainfall has a significant threshold effect on
the fiscal efficiency of SLCP (Liu and Yao, 2021). However,
detailed mechanisms of the interaction role of rainfall and
SLCP in soil erosion control are still unclear at the county scale.

Shaanxi Province, in inland northwest China, a pilot and
demonstration province for SLCP since 1999 due to serious
soil erosion problems in the 20th century, is selected as the
study area. Due to the rapid economic development and the
large-scale implementation of SCLP, it provides an ideal sample
to examine the effect of SLCP on soil erosion. In this study, we
employed RUSLE to evaluate the spatio-temporal variations of
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soil erosion over Shaanxi Province from 2000 to 2015 and then we
construct a panel data set that spans yearly data on soil erosion
estimated by RUSLE and investment data on SLCP as well as a
range of natural and socio-economic variables for 107 counties in
Shaanxi Province from 2000 to 2015. Different from most related
studies, data that characterize SLCP are the investment of SLCP
instead of the area of forest converted from cropland or other
satellite-derived observations of vegetation cover. This shift from
satellite-derived observations to investment data benefits
improves the validity and reliability of the estimation of the
marginal contribution of SLCP to soil erosion control. To fill up

the knowledge gap mentioned above, the study manages to make
two major contributions to the literature with a spatial panel
model framework proposed by us with both socio-economic and
natural factors concerned. Based on the spatial panel models, we
first derive the possibly unbiased estimates for the marginal
contribution of SLCP to soil erosion control with the
investment variable after accounting for the existence of
spatially autocorrelated disturbances. Secondly, we construct
first-time empirical evidence regarding the own and spillover
effects of SLCP on soil erosion and the direct and indirect paths of
how SLCP has a spillover effect on neighboring counties.

FIGURE 1 | Location of the study area.
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MATERIALS AND METHODS

Study Area
Shaanxi Province is located in the inland northwest of China
(Figure 1), which spans 105° 29′–111° 15′ E and 31° 42′ –39°35′N
with a total area of 20.58 × 104 km2. There are obvious differences
in climate and topography across this area, which divides this
region into three sub-regions (Shaanbei, Guanzhong, Shannan).
Shaanbei is the typical ecologically fragile area of the Loess
Plateau. Guanzhong is a plain with a concentrated population
and developed agriculture. Shannan is a mountain area with
sufficient rainfall and dense vegetation.

SLCP started in Shaanxi Province as a pilot in 1999 to
especially mitigate severe soil erosion in the 20th century,
since 1999 the project has invested over 400 billion CNY for
afforestation in this area, which improved the ecological
environment—the statistical data from Shaanxi Forestry
Bureau showed that the forest coverage increased from 30.92%
in 1999 to 43.06% in 2015 and the sediment transport in the Loess
Plateau decreased from 800 million tons in 2000 to nearly 400
million tons at present. Meanwhile, Shaanxi has experienced
rapid urbanization and booming socio-economic development.
During the period 2000–2015, Shaanxi’s GDP and proportion of
the urban population had increased from 180.40 billion CNY to
1789.88 billion CNY and 27.80–53.92%, respectively. Therefore,
it is an ideal region to explore the effect of SLCP on soil erosion
under the interaction of socio-economic factors, policy, and
natural factors.

As shown in Figure 2, we present the analysis procedure of the
study for readers’ better understanding.

Revised Universal Soil Loss Equation
RUSLE is used to estimate the potential annual average soil
erosion loss. In this study, all the input factors of RUSLE
including rainfall, soil, topography, and land use and cover are
transformed and calculated on ArcGIS10.5 software in GIS raster

form (30 m resolution), with the annual soil erosion loss raster
map produced by the tool of raster calculator on the GIS platform.
The formula of RUSLE is as follows (Renard et al., 1997):

A � RpKpLSpCpP (1)
where A is the estimated average annual soil loss (t·ha−1·a−1), R is
the rainfall erosivity factor (MJ·mm·ha−1 h−1·a−1), K is the soil
erodibility factor (t·h·MJ−1·mm−1), LS is the terrain (slope length
and steepness) factor (dimensionless), C is the cover and
management factor (dimensionless), and p is the conservation
practice factor (dimensionless).

The Rainfall Erosivity (R) Factor
The R reflects the power of soil separation and transportation
caused by rainfall, which is the main driving force of soil erosion
(Wischmeier and Smith, 1978). Based on the availability of data
and the actual situation in the study area, this study calculates
the R factor from Eq. 2, which is verified and applied by many
similar studies in China (Yu and Rosewell, 1996; Zhang and Fu,
2003):

R � α1P
β1 (2)

where p is the average annual rainfall (mm), R is the average
rainfall erosivity (MJ·mm·hm−2·h−1·a−1) in many years, and α1 (α1 =
0.0668) and β1 (β1 = 1.6266) are model parameters.

The Soil Erodibility (K) Factor
The soil erodibility (K) factor is an index that represents the
sensitivity of soil texture to soil erosion, determined by the soil
physical properties like soil texture, soil structure, organic
content, and permeability (Wischmeier and Smith, 1978). The
most common equation is as follows:

K�[2.1p10−4m1.14(12−OM)+3.25(Sc−2)+2.5(Pc−3)]/100
(3)

M � N1(100 −N2) (4)
where K (t·h·MJ−1·mm−1) represents soil erodibility, N1

(0.002–0.100 mm) represents the percentage of silt
(0.002–0.050 mm) plus very fine sand (0.050–0.100 mm), N2

(<0.002 mm) is the percentage of clay fraction, OM is the soil
organic matter content (%), Sc and Pc are the codes of soil
structure and permeability. Provided by the National Earth
System Science Data Center of China, the K factor used in this
study is calculated by the above equations, which are modified by
the experimental observation data of the runoff plot.

The Slope Length and Steepness (LS) Factor
Numerous soil erosion studies on slopes or watershed scales show
that terrain factors are the direct factors that induce soil erosion,
and the LS factor reflects the impact of terrain factors on soil
erosion, and its value is between 0 and 1. The calculation of LS in
this study is based on the DEM data, using the modified soil
erosion model terrain factor calculation tool proposed by Fu et al.
(2015) to generate the LS factor map of the study area. The
formulas are as follows:

FIGURE 2 | Flowchart of the analysis procedure of this study.
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S �
⎧⎪⎨
⎪⎩

10.8sinθ + 0.03, θ < 5°
16.8sinθ − 0.5, 5°≤ θ < 10°
21.91sinθ − 0.96, θ ≥ 10°

(5)

Li � λm+1
out − λm+1

in

(λout − λin)22.13m (6)

m �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.2, θ < 0.5°
0.3, 0.5≤ θ < 1.5°
0.4, 1.5≤ θ < 3°

0.5, θ ≥ 3°

(7)

where S is the slope gradient factor, θ is the slope of the grid cell
(in degree), Li is the slope length factor of the grid cell i, λout and
λin are the slope lengths of the outlet and entrance of the grid, and
m is the slope length index determined by slope θ.

The Cover Management (C) factor
In RUSLE, the C factor reflects the impact of vegetation coverage
and management measures on soil erosion, considered to be the
most sensitive factor affecting soil erosion, ranging from 0 to 1.
Based on the related research (Zhou et al., 2006; Yan et al., 2020),
this study calculates the C factor with the Normalized Difference
Vegetation Index (NDVI) as follows:

C �
⎧⎪⎨
⎪⎩

1, f< 0.1
0.6508 − 0.3436lgf, 0.1≤f< 0.783

0, f> 0.783
(8)

f � NDVI −NDVIs
NDVIv −NDVIs

(9)

where C is the cover management factor, f is the vegetation
coverage determined by NDVI, and NDVIs and NDVIv are the
NDVI values for pure bare soil grid cell and pure vegetation grid
cell, respectively.

The Conservation Practice (P) Factor
The p factor reflects the impact of conservation practice in
different land types on reducing the erosion potential of the
runoff; the value of p ranges from 0 to 1.0 means areas where no
soil erosion occurs and one means areas where no conservation
practice has been taken. This study assigns p values to different
land use types according to land use maps and slope gradients
based on research in similar areas in China (Li and Zheng, 2012):
the p values of built-up land, water land, unused land, forest land,
and grassland are 0, 0, 1, 1, and 1, respectively. The value of
cultivated land is assigned according to different slope grades as
shown in Table 1.

In order to validate the model’s regional applicability, we
validated RUSLE with the soil erosion area in Shaanxi
gathered from the First China Census for Water (Ministry of
Water Resources of China (MWR), 2013). The validation results
showed that our estimation of soil erosion area in Shaanxi was

consistent with the results of the census (the consistency of results
reaches 85%). Besides, we further compared the total amount of
soil erosion in Shaanbei between our results and the study using
the high-precision terrace data (Liu et al., 2019), and the
simulations of RUSLE were significantly similar to the
corresponding results in the study (the consistency of results
reaches 78%). Therefore, we could confirm that RUSLE and its
parameters were reasonable for the simulation of soil erosion in
the study area based on the two validations above.

Spatial Econometric Methods
Spatial Autocorrelation
In this study, the spatial autocorrelation of soil erosion of counties
in Shaanxi is measured byMoran’s I statistics, and then the spatial
econometric analysis is employed to avoid biased and
inconsistent estimation rather than the traditional econometric
analysis (Anselin, 2013). Moran’s I can be expressed as:

I � n∑n
i�1
∑n
j�1
Wij(Yi − Y)(Yj − Y)

∑n
i�1
∑n
j�1
Wij∑

n

i�1
(Yi − Y)2

(10)

where I is the value of Moran’s I, which ranges from -1 to 1. A
positive value ofMoran’s I indicates a positive spatial autocorrelation,
a negative value implies a negative autocorrelation, and 0 means
random spatial distribution. Y represents the variable of interest (i≠j),
and Y denotes the arithmetic mean of the variable of interest in all
regions. Wij is an element in the spatial weight’s matrix W
corresponding to the adjacent relationship or distance between
samples. The most common rook spatial weight matrix is used to
calculate Moran’s I in this study.

Spatial Econometric Models
We specify a generic spatial panel model as follows:

TSEit � ρWTSEjt + αINVit + λkXit + ci(optional)
+ dt(optional) + uitWithuit � δWujt + vit, vit ~ (0, σ2i ) (11)

where TSEit denotes the total weight of soil erosion in county i in
year t, INVit is the investment of SLCP in county i in year t, Xit is a
vector of covariates, ci presents the unobserved county fixed
effects (FEs) accounting for all time-invariant space-fixed
variables whose omission in a typical cross-sectional analysis
could lead to biased estimation, dt presents the unobserved time
FEs accounting for all time-related effects whose omission could
bias the estimates in time-series analysis, uit is a composite error
term, and vit is an independently and identically distributed
disturbance with zero mean and heteroscedastic variance. The
(vectors of) parameters to be estimated in this model are ρ, α, λk,
and δ. W is the spatial weight matrix, which is composed of the
corresponding element Wij (the squared inverse geographic
distance between two counties i and j with row standardized
as suggested). Besides, to ensure the robustness of the estimation
results in this study, a queen contiguity spatial weight matrix is
used as an alternative spatial matrix in the model, in which the
elementsWij equal one if there are common boundaries or points
between county i and county j, 0 otherwise.

TABLE 1 | The p-value of cultivated land in different slope ranges.

Slope Range 0°~5° 5°~10° 10°~15° 15°~20° 20°~25° >25°

p value 0.100 0.221 0.305 0.575 0.705 0.800
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Besides, two interaction terms are added, respectively, to the
following new type of soil erosion model:

TSEit � ρWTSEjt + αINVit

+ (β1RAINitpINVit or β2NDVIitpINVit) + λkXit + uit

(12)
where (RAINit * INVit) and (RAINit * NDVIit) are the interaction
terms, while the coefficients β1 and β2 for the terms indicate how
rainfall moderates the effect of INV and NDVI on soil erosion.
The marginal effects of INV andNDVI on soil erosion control are
as follows:

d(TSEit)
d(INVit) � λ1 + β1RAINit

d(TSEit)
d(NDVIit) � λ1 + β2RAINit (13)

It is difficult to interpret the effect of investment of SLCP on soil
erosion by its coefficient estimates (α) when explained variable lag
exists. It is obvious that changes in investment in any county will
affect the soil erosion in the county as well as the soil erosion in
neighboring regions through the spatial lag effect. Therefore,
partial differentiation needs to be used to decompose the model
results to obtain direct and indirect effects if the coefficient ρ is
not 0 (Lesage and Pace, 2010). The direct effect (own effect) refers
to the average value of the explanatory variable’s influence on the
explained variable in the local county, and the indirect effect
refers to the average value of the explanatory variable’s influence
on the explained variable in the neighboring counties, that is, the
spatial spillover effect. The total effect is the sum of the two items.
Hence, the generic spatial panel model can be transformed as
follows to get the direct and indirect effects:

TSEit � (1 − ρW)−1(αINVit + λkXit + ci + dt + uit) (14)
Let Zit � αINVit + λkXit, Ai � (1 − ρW)−1, Ad be a matrix with
diagonal elements of Ai on its diagonal, and all other elements be
0. The own effects are:

AdZit (15)
and the spillover effects are:

(Ai − Ad)Zit (16)

Diagnostic Evaluations for Model Selection
Generally, there are several commonly used spatial econometric
models: (17) spatial lag mode (SLM), (18) spatial error model

(SEM), and (19) spatial Durbin model (SDM) (Hao & Liu, 2016).
Their basic form can be written as:

SLM: Y � α + ρWY +Xβ + ε (17)
SEM: Y � α +Xβ + ε ε � λWε + μ, μ ~ (0, σ2) (18)

SDM: Y � α + ρWY +Xβ +WXγ + ε (19)
where Y denotes the dependent variables, X is a matrix of
explanatory variables α is a constant term, ρ, β, λ, and ε are
the estimated parameters of variables,W is a random error term,
W is the spatial weight matrix, and μ is a normally distributed
error term.

In this study, we choose SDMwith spatial and time-period FEs
to conduct the spatial econometric analysis after conducting the
diagnostic evaluations like the likelihood ratio (LR), Lagrange
multiplier (LM) test, and Hausman test (Khezri et al., 2021).

As shown in Table 2, the LM test’s null hypothesis is
dismissed, and this can affirm the SLM and SEM. The
Hausman test is used to explore which effects to choose in the
model: FEs or random effects (REs), and the result indicates that
the presence of FEs is verified at a 1% significance level in the
SDM. In order to figure out whether the SDM can be simplified as
the SLM or SEM, LR tests are conducted. The results show that
the SDM cannot be simplified as the SLM; either the SEM or the
SDM is the basis model to explore the effects of SLCP on soil
erosion. Then, LR tests are conducted to examine the possibility
of the spatial FEs and the time-period FEs in the model, and the
results reject all the null hypothesis; the spatial and time-period
FEs are chosen to continue with the estimation process.

Data Definitions and Sources
Variable Design
Explained variables are the average soil erosion modulus (SE) and
the total soil erosion (TSE) in the county. The calculation result of
the integration of RUSLE and GIS is a raster map of the soil
erosion modulus, and SE is the average soil erosion modulus of
the county obtained by the regional statistical function of the
ArcGIS10.5 platform. The total soil erosion represents the total
weight of soil erosion in the county, with the area of the region
taken into consideration. What’s more, SE is used as the
alternative explained variable to enhance the robustness of
the model.

Explanatory variable is the total investment (INV) of SLCP.
The initial and fundamental goal of SLCP is to alleviate soil
erosion by afforestation; so, this study chooses the INV as the

TABLE 2 | Results of the LM test, Hausman test, and LR test.

Tests Statistic p-value

LM: no lag 14.209 0.000
Robust LM: no lag 20.319 0.000
LM: no error 128.161 0.000
Robust LM: no error 6.271 0.012
Hausman test with SDM: FE vs. RE 5685.610 0.000
LR test: SDM vs. SLM 38.020 0.000
LR test: SDM vs. SEM 2.980 0.084
LR test: Spatial and time-period fixed vs. Time-period fixed Spatial fixed 1653.160 0.000
LR test: Spatial and time-period fixed vs. Spatial fixed 39.670 0.000
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explanatory variable to verify the effects of SLCP on soil erosion,
especially with the spatial spillover effect of variables. Since
rainfall has an extremely important impact on soil erosion,
this study chooses rainfall (RAIN) as the natural factor to test
the regulating effects in the prevention and mitigation of soil
erosion by SLCP.

According to the previous studies (Kong et al., 2018), we
account for socio-economic factors on soil erosion by including
the following variables as control variables: the urbanization rate
(URBR) is the proportion of the built-up land of the total land, the
industrial structure (IS) is the ratio of the gross industrial product
to the gross domestic product as an indicator for
industrialization, the GDP per capita (PGDP) represents the
change of economic condition, grain production (CROP) is the
total production of wheat, corn, and rice, and the rural per capita
annual income (RPI) is the index reflecting the condition of the
rural economic development. In addition, reflecting the growth
status of vegetation with significant impact on soil erosion, the
Normalized Vegetation Index (NDVI) is selected as the natural
control variable accounting for regional natural resource
endowments.

Data Source
There are 107 counties in Shaanxi as samples on the cross-
sectional dimension of the panel data set used in the spatial
econometric analysis in this study, and the time period is from
2000 to 2015 with 5 years gap in its time dimension with multiple
sources of sample data. Soil erosion data are obtained from the
result of RUSLE. The investment data of counties in Shaanxi
come from the Central South Investigation and Planning Institute
of State Forestry and Grassland Administration; the detailed
calculation of these data is shown in the study of Liu et al.
(Liu and Yao, 2021). The raster data of rainfall with a resolution
of 1 km are from the Resources and Environmental Sciences Data
Center of the Chinese Academy of Sciences (http://www.resdc.cn/
). Land use and cover data with a resolution of 30 m are from the
Resources and Environmental Sciences Data Center of the
Chinese Academy of Sciences (http://www.resdc.cn/). The
accuracy of land use classification is 94.3% with field
verification and error correction (Liu et al., 2010). The soil
erodibility factor raster data with a resolution of 30 m are
from the National Earth System Science Data Center of China

(http://www.geodata.cn/). Administrative boundaries of the
counties are obtained from the national 1:1,000,000 database
of China Geographic Information Monitoring Platform (http://
www.dsac.cn/). The digital elevation model (DEM) data are
SRTM data with a resolution of 30 m (http://www.resdc.cn/).
The NDVI data are derived from the Chinese Geospatial Data
Cloud (http://www.gscloud.cn/) with a resolution of 500 m. The
socio-economic data such as GDP, population, and grain yield are
all from the “Shaanxi Regional Statistical Yearbook.” The spatial
data used in this study are uniformly resampled at a resolution of
30 m with the same spatial coordinate system (Krasovsky_1940_
Albers). The design of each variable and the descriptive statistical
analysis are reported in Table 3.

RESULTS

Spatio-Temporal Characteristics of Soil
Erosion
The temporal variations and the spatial distribution of soil
erosion over Shaanxi from 2000 to 2015 are shown in
Figure 3 and Figure 4. As shown in Figure 3, the total

TABLE 3 | Variable design and descriptive statistics (in 2015).

Name Design and
data description

Unit Mean Std Min Max

SE Annual average soil erosion modulus t/(ha·a) 264.119 268.768 0.000 1077.499
TSE Total weight of soil erosion 10 ^ 4t/a 12.538 9.748 0.000 40.620
INV Total investment in the county of SLCP CNY10 ^ 8 2.834 3.085 0.000 17.855
RAIN Annual average rainfall mm 638.946 178.748 332.181 1130.060
URBR The ratio of the built-up land to the total land % 9.000 19.000 0.100 100.000
IS The ratio of the gross industrial product to the gross domestic product % 42.700 17.000 7.300 91.700
PGDP Per capita GDP CNY10 ^ 4 4.348 2.879 1.491 16.747
CROP Total production of wheat, corn, and rice 10 ^ 4t 11.456 9.331 0.000 37.237
RPI Rural per capita annual income CNY 10 ^ 4 0.918 0.298 0.000 1.982
NDVI Annual average NDVI Dimensionless 0.831 0.124 0.451 0.958

FIGURE 3 | Total soil erosion in sub-regions of Shaanxi Province,
2000–2015.
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amount of the soil erosion in Shaanxi showed a downward trend
from 2000 to 2015. Specifically, the total amount of soil erosion in
2000 was 341.66 million t, of which the largest proportion in
Shaanbei was 54.21%, exceeding the sum of the proportions of
Guanzhong and Shannan. It decreased to 282.61million t in 2015,
indicating that 17.29% of the soil erosion (341.66 million t in
2000) was mitigated over the 15-year period. And Shaanbei
contributed 87.14% to this total mitigation (a reduction of
51.47 million t of soil erosion). Besides, we visualized the
spatial distribution of soil erosion changes over Shaanxi from
2000 to 2015, as shown in Figure 3. The soil erosion in Shaanbei
was more serious than in other sub-regions; however, the
decrease in soil erosion in Shaanbei was also the most
significant. Especially in Yan’an City, the soil erosion modulus
of most counties was basically reduced bymore than 5 t/ha/a. The
soil erosion modulus was even reduced by more than 10 t/(ha·a)
in some specific areas with a dark green color in Figure 3. It is
obvious that soil erosion had been effectively controlled during
the period of SLCP, which is also consistent with similar studies
(Liu, et al., 2019). At the same time, the soil erosion modulus of
Changwu County, Xunyi County, Chunhua County, and Long
County in the northern part of Guanzhong also decreased
significantly, while the soil erosion reductions in Shannan
were mainly scattered in some areas such as Langao County,
Mian County, and Shiquan County. Besides, the spatial
distribution of the total investment of SLCP in Shaanxi from

2000 to 2015 is visualized for a more intuitive understanding of
the relationship between the total investment of SLCP and soil
erosion changes at the county scale (Figure 5).

As shown in Figure 5, counties in Shaanbei like Ansai, Zhidan,
Wuqi, and Zichang were the key area of SLCP, which got more
investment than other counties, ranging from 0.87 to 1.79 billion
CNY. This also coincided with the good performance in
mitigating soil erosion in these counties. The investment of
Shannan counties like Zhenba, Ningqiang, and Ziyang also
reached a high level, more than 0.51 billion CNY, while most
counties in Guanzhong had less investment in SLCP than other
regions, and the decline of soil erosion modulus in these areas was
not obvious either.

To test whether the distributions of soil erosion in Shaanxi
counties exist, we conducted Moran’s I statistics on the ArcGIS
(Table 4). As shown in Table 4, Moran’s I values are all positive in
the study period and are basically greater than 0.6 at a 1%
significance level, indicating that there is a strong positive spatial
autocorrelation, whichmeans that soil erosion in counties appears to
be spatially dependent. Hence, it is necessary to use the spatial
econometric methods in the next analysis.

Results of Spatial Econometric Models
The main results of estimating the factors influencing soil erosion
with Eq. 11 are reported in Table 5. Besides, we also report results
on estimations of non-spatial economic models adapted from Eq.

FIGURE 4 | Spatial pattern of changes in soil erosion in Shaanxi: 2000–2015.
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11 with conventional panel FEs and pooled OLS. As shown in
Table 5, most of the model variables have a significant effect on
soil erosion except for RAIN and IS; these results confirm our
hypothesis that the heterogeneity in the investment of SLCP
(INV), socio-economic, and natural characteristics can
systematically explain differences in soil erosion. A highly
positive significant coefficient for the spatial lag parameter of
soil erosion (W*Y) indicates that a county’s total weight of soil
erosion (TSE) is systematically affected by its geographical
neighbors’ soil erosion status and the spatial spillover effect of
soil erosion is significant; hence, there is an indirect spillover
effect of INV in a county on TSE of its adjacent counties through
the transboundary spillover of soil erosion. The coefficient of the
investment of SLCP indicates a negative link between the
investment of SLCP and soil erosion at a 1% significance level,
which means that the increase of a county’s investment of SLCP
will significantly reduce the TSE in that area. While the coefficient

of INV (−23.256) in the panel fixed estimator is also significant
but the absolute value of it is larger than that in SDM, which
indicates the panel fixed model would overestimate the effect of
INV on TSE with spatial effects ignored. The coefficient of INV is
significantly negative in the pooled OLS, which contradicts our
hypothesis that SLCP has alleviated soil erosion, so the pooled
OLS is not suitable for carrying out the regression estimation in
this study. As shown in the table, we used SE as the alternative
explained variable to enhance the robustness of the SDM model
(column 3 of Table 5), and the estimation results show consistent
conclusion with the estimation in column 2 of Table 5.

The coefficient estimation for the spatial lag of INV is found to
have a significant but positive impact on TSE, but it is difficult to
interpret the effect of variables based on the coefficient estimate
when the dependent variable lag exists because the coefficient is
part of the recursive computation of marginal effects just as
Equation 14 shows. Hence, we report the own and spillover
effects as well as the average total impacts for the SDM in
Table 61.

FIGURE 5 | Spatial pattern of the total investment of SLCP in Shaanxi: 2000–2015.

TABLE 4 | Moran’s I test results for soil erosion in Shaanxi, 2000–2015.

Moran’s I Z-value p-value

2000 0.6912 11.0024 0.0000
2005 0.6221 10.6368 0.0000
2010 0.6142 9.7784 0.0000
2015 0.6313 10.0474 0.0000

1Due to the magnitude of spatial effects, it depends critically on the spatial weight
matrix W, which is defined a priori; we also report the estimation results of SDM
with a queen contiguity matrix (provided in Appendix Table A1 in the Appendix),
which did not lead to a qualitative change on the estimates for the own, spillover,
and total effects.
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The own effect of INV on TSE is significant and negative,
indicating that a county’s expected conditional mean of TSE
would be reduced by 183.15 thousand t/a if the investment of
SLCP in this county increases 0.1 billion CNY compared with
other conditions remaining unchanged. In addition, the coefficient
estimate for the spillover effects of INV is also negative and significant

at the 1% level, which means the reduction of TSE in a county can be
attributed to the afforestation of SLCP in its neighbors even if there is
no spatial spillover effect dependence in TSE. Specifically, the
conditional mean of TSE in a county would have depreciated by
105.54 thousand t/a less on average if the investment of SLCP in all
other counties each increases 0.1 billion CNY. The total effect of INV
in a county i represents the overall effect on TSE of county i from
changing TSE by the same amount across all 107 counties. Every 0.1
billion CNY increase in the investment of SLCP in every county
would, on average, imply a 288.69 thousand t/a lower in TSE.

In line with our expectations, the impact of NDVI on TSE is
found to be negative and significant, indicating that the increase
in vegetation coverage will slow down the soil erosion in the area.
Hence, SLCP can prevent soil erosion by increasing vegetation
coverage. Besides, the spillover effect of NDVI on TSE is also
significant at the 1% level, which implies that the ecological effects
of vegetation can benefit the neighboring areas through
transboundary ways. However, we find a negative but
insignificant effect of RAIN on TSE in all models mentioned
in Table 5, which is contrary to RUSLE (Eq. 1), in which the
rainfall has a positive and significant effect on soil erosion. This
difference could be explained by the fact that the changes in
rainfall are not significant for specific regions, especially in SDM
with county FEs (while a significant and positive effect of RAIN
on TSE is found in the pooled OLS specification).

The own effect of urbanization on TSE is negative and
significant, indicating that urbanization has a positive effect on
soil erosion prevention; indeed, other socio-economic factors like
RPI and PGDP also have negative and significant coefficient
estimates in the model, which means that the development of
the regional economy will benefit the ecological environment,
especially for the soil erosion. Besides, the coefficient of CROP
indicates a positive link between CROP and TSE, implying that
although high-intensity farming activities will increase food
production, the disturbance to soil will also aggravate soil
erosion. We argue that the estimation results of TSE are

TABLE 5 | Estimation results of the model specified in Eq. 11 with different
specifications: panel SDM, panel FE, and pooled OLS.

Panel SDM Panel FE Pooled OLS

(1) TSE (2) SE

INV −17.387*** −0.284*** −23.256*** 59.690***
(1.130) (0.031) (4.552) (5.376)

RAIN −0.010 −0.001 −0.055 0.425***
(0.019) (0.001) (0.039) (0.062)

CROP 1.222** 0.108*** −0.050 −0.845
(0.424) (0.030) (1.130) (0.891)

IS 5.250 0.452** 16.598 151.340**
(4.882) (0.187) (20.362) (69.259)

PGDP −1.548** 0.079*** −2.748 4.818
(0.669) (0.016) (3.284) (6.232)

RPI −14.489*** −0.576** 51.261** −80.860**
(2.919) (0.180) (17.128) (31.018)

NDVI −14.489*** −13.650*** −293.235** −1316.133***
(2.919) (2.573) (92.022) (121.170)

URBR −231.531*** -8.557*** −122.562 −611.960***
(30.286) (1.232) (176.032) (51.743)

Constant 573.155*** 958.545***
(58.140) (83.626)

W*Y 0.713*** 0.699***
(0.028) (0.042)

W*INV 9.072*** 0.013
(0.564) (0.017)

σ2 441.866*** 0.667***
(39.891) (0.119)

R-squared (within) 0.445 0.525 0.597 0.616

Robust estimators are reported for the SDM, FE, and pooled OLS. Standard errors in
parentheses. ***p < 0.01, **p < 0.05, and *p < 0.1.

TABLE 6 | Estimation results of different effects in the SDM.

Own effects Spillover effects Total effects

(1) TSE (2) SE (3) TSE (4) SE (5) TSE (6) SE

INV −18.315*** −0.336*** −10.554*** −0.578*** −28.869*** −0.913***
(1.185) (0.032) (0.756) (0.138) (1.609) (0.145)

RAIN −0.014 −0.002 −0.031 −0.005 −0.045 −0.007
(0.032) (0.021) (0.065) (0.039) (0.096) (0.060)

CROP 1.529*** 0.134*** 2.967** 0.242*** 4.496** 0.375***
(0.540) (0.034) (1.286) (0.079) (1.813) (0.107)

IS 5.846 0.554** 10.746 1.023* 16.592 1.577**
(5.533) (0.226) (10.337) (0.525) (15.822) (0.734)

PGDP −1.890** 0.097** −3.501*** 0.176** −5.391*** 0.273**
(0.753) (0.042) (1.301) (0.089) (2.032) (0.128)

RPI −17.783*** −0.708*** −33.870*** −1.254*** −51.653*** −1.962***
(3.567) (0.198) (8.673) (0.343) (11.932) (0.508)

NDVI −283.601*** −16.596*** −534.928*** −29.506*** −818.529*** −46.102***
(33.332) (2.514) (73.367) (4.440) (96.352) (5.511)

URBR −177.994*** −10.193*** −332.651*** −18.222*** −510.645*** −28.415***
(22.414) (1.302) (16.621) (2.988) (32.786) (3.445)

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.
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robust according to the estimation results of the alternative
explained variable (SE) [as shown in columns (2), (4), and (6)
of Table 6].

To check whether the RAIN moderates the effect of INV and
NDVI on soil erosion, we report the estimation results with two
interaction terms added in SDM in Table 7. The result of a
positive coefficient on the interaction term between rainfall and
investment of SLCP indicates that there is a negative moderating
effect of RAIN on the alleviating effect of SLCP on soil erosion. As
the RAIN increases, in magnitude, the marginal alleviating effect
of INV on soil erosion decreases. Specifically, the increase in
rainfall will increase the rainfall erosivity, thereby aggravating
regional soil erosion, and the mitigation effect of INV on soil
erosion will decrease. We also find that RAIN has a negative and
significant moderating effect on the alleviating effect of NDVI on
soil erosion, which means with the increase in rainfall, the role of
NDVI in preventing soil erosion will be weakened. To sum up, the
marginal contribution of the investment of SLCP is smaller in the
area with more rainfall, like counties in Shannan than those in
Shaanbei. The estimation results of the model with SE as the
alternative explained variable indicate the robustness of our
conclusion [as shown in columns (2) and (4) in Table 7].

DISCUSSION

Marginal Contribution of SLCP to Soil
Erosion Control and the Transboundary
Path
The crucial role of SLCP in mitigating soil erosion has been widely
recognized worldwide (Borrelli et al., 2017; Chen et al., 2021), but
what cannot be ignored is to explore how soil erosion is controlled by
SLCP from the perspective of marginal cost and income for the
sustainability of the policy. In this study, we use the data of
investment of SLCP to characterize the intensity of policy

implementation and some indirect observation indicators like
vegetation cover or the area of land use change (Rao et al., 2016;
Zhou et al., 2021), which can maximally strip out the marginal
contribution of the investment of SLCP to soil erosion with a specific
SDM. It is of critical relevance for policymakers to figure out the
cost-effectiveness of the investment on soil erosion control andmake
the next decision with reference to the result. Indeed, in research
design, we draw upon the study by Kong et al. (2018), who explored
the relationships among SLCP, the soil conservation service, and the
socio-economic factors using structural equation modeling (SEM)
with a cross section of 779 counties. However, their estimation result
biasmay arise from county heterogeneity. It is widely recognized that
soil erosion is local by nature, influenced by both geographical and
socio-economic factors (Ganasri and Ramesh, 2016; Rao et al., 2016),
which makes it difficult to properly capture by the analysis of cross-
sectional data. Hence, the spatial SDM with FEs proposed in this
study is conducted to derive possibly unbiased estimates of the
investment of SCLP in soil erosion control.

There aremany studies exploring the factors affecting soil erosion
at the regional scale (Alewell, et al., 2019; Zhou et al., 2021; Zhao
et al., 2022), but the results of this article demonstrate that the spatial
spillover effect of soil erosion is significant at the county scale, which
has so far been overlooked by the literature mentioned above. It is
significant to figure out how soil erosion in one region affects soil
erosion in the neighboring regions for the effective transboundary
ecological governance. According to the results of the panel SDM in
this study, the spillover effect, as well as the own effect of investment
in SLCP, is significant and positive on soil erosion control, which
means soil erosion control in a county benefits not only from SLCP
locally but also from the greening efforts of SLCP in its neighbors,
and a joint effort in all counties has a much larger marginal effect on
soil erosion control than unilateral ecological restoration effort in
one county. Obviously, the separation of own from spillover impacts
of SLCP on soil erosion provides solid evidence of the necessity of
promoting “beneficiary pay” taxes and afforestation subsidies
(Schomers and Matzdorf, 2013) in transboundary ecological
governance, especially when it comes to this case that the soil
erosion of a county has been mitigated by the green intervention
efforts of SLCP in its neighboring counties without investing in these
efforts by itself. Therefore, we argue that a well-functioning
transboundary soil conservation system with collaborative green
efforts from all stakeholders in the region is much more crucial and
effective than the efforts only focusing on the local interests.

Impact of Socio-Economic and Natural
Factors on Soil Erosion Control
Previous studies have highlighted the positive and significant link
between urbanization and soil erosion control (Wang et al., 2020;
Kong et al., 2018), which is consistent with our estimate results in
Table 5. Due to rural–urban migration and the land use change in
urbanization, the negative impacts of population on environmental
degradationwill bemitigated by alleviating the extent of disturbance
to soils from farming (Grau and Aide, 2007; Deshingkar 2012),
ultimately facilitating the mitigation of soil erosion. However,
urbanization might aggravate other ecological problems like
water pollution, carbon emission, and air pollution (Peng et al.,

TABLE 7 | The estimation results of model specified in Eq. 12.

(1) TSE (2) SE (3) TSE (4) SE

INV −27.417*** -0.604*** −17.598*** −0.290***
(3.461) (0.102) (1.256) (0.035)

RAIN 0.020*** 0.000 −0.271*** −0.008***
(0.006) (0.000) (0.052) (0.002)

CROP 1.862*** 0.132*** 1.763*** 0.124***
(0.380) (0.031) (0.453) (0.031)

IS 7.323 0.484* 4.787 0.428**
(4.548) (0.260) (5.195) (0.201)

PGDP −1.024** 0.112*** −0.937* 0.101***
(0.484) (0.029) (0.531) (0.021)

RPI −9.845*** −0.425** −9.768*** −0.450**
(3.057) (0.170) (3.575) (0.203)

NDVI −209.052*** −13.316*** −363.495*** −17.405***
(22.937) (2.442) (50.067) (3.107)

URBR −137.133*** −8.415*** −114.673*** −7.744***
(18.574) (1.107) (21.939) (1.210)

RAIN * INV 0.018*** 0.001***
(0.004) (0.000)

RAIN * NDVI 0.314*** 0.009***
(0.049) (0.002)
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2017; Ke et al., 2020); so, it is necessary to balance ecosystem
protection and urbanization. In addition, we also found that the
economic growth, as well as the growth of rural per capita income,
has a significant and positive effect on soil erosion control. The
underlying reason may be that the growth of the economy provides
enough funds for the government to take action on soil erosion
control (Wang et al., 2020), while the growth of the rural economy
will stimulate the farmers to depend less on the vulnerable
ecosystem and adopt environment friendly farming methods to
avoid damage to the environment. These results emphasized that
policymakers should attach importance to the social and economic
effects and the related interactions on ecosystem services and
functions besides the direct goal of the ecological restoration to
achieve a win–win situation for ecology and economy.

The rainfall has a significant impact on the cost-effectiveness of
the investment in SLCP; for instance, Liu and Yao (Liu and Yao,
2021) pointed out that there is a distinct threshold effect of rainfall
on the ecological effects (characterized by NDVI), while from the
perspective of soil erosion control, rainfall has a significant
moderating effect on the alleviating effect of investment of SLCP
on soil erosion. The complexity of the interactionmechanisms lies in
the different roles of rainfall in the process of soil erosion. On the one
hand, the rainfall benefits the growth of plants, and then the
increased vegetation cover will mitigate soil erosion (Chen et al.,
2019). On the other hand, the rainfall also increases the erosivity of
the soil, especially in Shaanbei and the typical arid and semi-arid
areas in the Loess Plateau (Zhou et al., 2006). The results in our
specific SDM indicate that the rainfall will weaken the effect of the
investment of SLCP on soil erosion control at the county scale.
Moreover, when the investment of SLCP is the same, the countywith
lower rainfall has a greater marginal contribution to soil erosion
control than that with higher rainfall. Indeed, the investment of
SLCP for soil erosion control should give priority to counties with
intense soil erosion and lower rainfall considering its non-negligible
direct spillover effects of soil erosion to neighbors and amuch greater
marginal effect of SLCP on soil erosion control. Therefore, it is
necessary to scientifically identify the complex impact mechanism of
climatic conditions on ecosystem services to improve the
effectiveness and sustainability of ecological restoration policies.

Limitations of This Research
Admittedly, the green interventions of SLCP have a considerable
contribution to soil erosion control, while the scale effect of the
distribution of soil erosion and its evolution over time may exist
due to the spatial heterogeneity within the region. In this study, to
ensure the consistency of all multi-source data, we have to use the
soil erosion data at the county scale in a spatial panel model
framework, which may neglect the scale effect. Indeed, the small
watersheds usually have the same physical–geographical features
like climatic type, rainfall pattern, soil type, and vegetation (Chen
et al., 2019); hence, further research could take our findings as a
basic point to investigate the possibilities of integrating county-
level statistics and watershed data. Besides, we only examined the
effectiveness of SLCP on soil erosion; a question open to further
investigation is how to comprehensively evaluate the efficiency of
investment in ecological restoration projects with the existence of
trade-offs and synergy among various ecosystem services.

CONCLUSION

In this study, we evaluated the effect of SLCP on soil erosion
based on the specific spatial panel approach after the
diagnostic evaluations in the selection process using the
data of investment of SLCP. The conclusions were as
follows: (1) the erosion intensity in Shaanxi province,
especially in Shaanbei, exhibited a significant decreasing
trend from 2000 to 2015 contributed by the continuous and
comprehensive investment of SLCP. (2) The spatial
econometric results demonstrate evidence of positive and
economically meaningful effects of the investment of SLCP
on soil erosion control, both locally and spatially in the study
area. On the one hand, the investment in a county has a
significant own effect on the soil erosion control locally. A
0.1 billion CNY increase in the investment in the county will
diminish the expected conditional mean of TSE of it by 183.15
thousand t/a, with other conditions remaining unchanged. On
the other hand, the soil erosion will be mitigated by the green
efforts of SLCP from the neighboring counties due to the
significant spillover effect of investment of SLCP on the soil
erosion control and the spatial lag of soil erosion. (3) We
confirm the moderating effect of rainfall on the mitigation
effect of SLCP on soil erosion empirically at the county scale.
The county with less rainfall performs better in soil erosion
control with the same investment than that with more rainfall.
These results indicate that it is necessary to establish a
transboundary collaborative ecological governance system
based on the long-term monitoring of both natural and
socio-economic factors for improving the effectiveness of
ecological restoration policy and the sustainability of the
ecosystem.
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APPENDIX A

TABLE A1 | Estimation results of an SDM with a contiguity matrix.

Own effects Spillover effects Total effects Main coef

INV −23.472*** −5.600* −29.072*** −23.087***
(1.849) (2.890) (3.125) (1.857)

RAIN 0.004 0.003 0.007 0.006
(0.043) (0.066) (0.108) (0.023)

CROP 0.596 0.954 1.550 0.505
(0.395) (0.690) (1.077) (0.333)

IS 1.062 1.711 2.774 0.799
(7.157) (11.254) (18.368) (6.417)

PGDP −3.291*** −5.063** −8.354*** −2.905***
(1.181) (1.984) (3.103) (1.063)

RPI −20.776*** −32.189*** −52.965*** −18.175***
(3.620) (8.208) (11.361) (3.018)

NDVI −275.111*** −423.278*** −698.389*** −242.171***
(29.786) (75.551) (95.443) (27.967)

URBR −187.773*** −286.892*** −474.665*** −165.857***
(24.272) (43.460) (58.867) (23.312)

W*TSE 0.651***
(0.023)

W*INV 12.987***
(1.227)

σ2 551.308***
(48.844)

R-squared (within) 0.443
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