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Under the worsening climate change, the mountainous landslide active regions

are more likely to suffer severe disasters threatening residents. To predict the

occurrence of landslides, shallow soil moisture lying in the interface of the

hydrological processes has been found as one of the critical factors. However,

shallow soil moisture data are often scarce in the landslide active regions. To

overcome the severe measurement deficiencies and provide predictions of soil

moisture dynamics, we construct a physically-based shallow soil moisture

model based on the assumptions of ideal flow, homogeneous and isotropic

soil textures, and 1-dimensional water movement dominant by gravity forces. In

the model, the meteorological conditions and the physical soil properties are

taken into consideration. With limited field measurements, the model can

provide reasonably accurate soil moisture predictions. In recognition of the

seasonal weather characteristics, we perform a series of sensitivity analyses to

examine the response of shallow soil moisture and relate the hydrological

processes to air temperature, precipitation intensity, duration, and

combinations thereof. Complex interactions of hydrological processes are

found with variations in precipitation and air temperature, depending on the

interlinked boundary conditions of the soil and water. It demonstrates a strong

need for a decent forecast of the complex shallow soil moisture dynamics and

the associated hydrologic processes in mountain regions to cope with climate

change for landslide preparation and agricultural adaptation in the future.
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1 Introduction

The soil water accounts for merely 0.1% of the total water on the Earth (Strobbia and

Cassiani, 2007; Ma et al., 2021). Lying in the pathway of the surface- and subsurface-

hydrological processes, the soil water plays a decisive role in the transformation of water

and energy falling on the Earth’s surface to regulate the level of surface runoff and

groundwater recharge (Ma et al., 2021). The dynamics of the shallow soil moisture reflect

the changes in the rainfall intensity, infiltration and evapotranspiration potential, and

antecedent soil moisture status (Nyamgerel et al., 2022). As 50% of the plant roots are

distributed within the 200 mm beneath the ground (Fan et al., 2016), shallow soil moisture
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is also critical for plant growth and agricultural production

(Rossato et al., 2017). Moreover, the prompt response of

shallow soil moisture in the unsaturated zone to climatic

variations and land surface conditions (Jabbar and Grote,

2020) is a key factor to detect slope instability useful for

developing early warning signals for landslide-prone regions

(Lu and Godt, 2008). Under serious concerns about climate

change, multi-dimensional projections of the tendency and

frequency of extremes in temperature and precipitations

(IPCC, 2014; Deshmukh and Singh, 2016) all demonstrate

higher risks of storm-induced soil erosions or landslides

(Brocca et al., 2007; Strobbia and Cassiani, 2007; Zhou et al.,

2021) and drought-related issues. The increasing risks bring great

challenges to landslide hazard mitigation, water scarcity

preparation, and agriculture adaptations (Fan et al., 2022; Tan

et al., 2022), particularly in mountain regions that are highly

vulnerable to climate change.

To strengthen the understanding of shallow soil moisture for

landslide mitigation, agricultural practices, or water resources

management, various models have been conducted to assess the

governing mechanisms or the associated interactions and

interconnections of the external driving forces in the hydrological

system (Soares and Almeida, 2001; Panigrahi and Panda, 2003;

Brocca et al., 2017; Wang et al., 2019; Qiao et al., 2021; Tudose et al.,

2021). Distinguished by the spatial scales, some focused on using the

point-based characteristics of the environmental conditions, such as

the soil hydraulic properties to model the soil water movement,

while others considered the spatial variability of water resources to

obtain the soil water distribution (Tenreiro et al., 2020). These

approaches can be generally classified into data-driven and

physically-based models (Devia et al., 2015). The data-driven

models involve a derivation of empirical equations fitted from

the historical information or the existing data to estimate the

important hydrological processes. For example, the pedo-transfer

functions (PTFs) applied the regression analysis and data mining

approaches using data on the percentage of sand, silt, clay, bulk

density, and porosity from soil surveys, to derive PTFs for simulating

soil moisture contents.

In contrast, the physically-based models consider sources and

mechanisms of water between surface and subsurface based on the

governing physical laws and principles of the associated processes to

represent the mathematical idealized functions in a real

phenomenon (Ogden et al., 2015; Li and DeLiberty, 2021). Most

of these models emphasize identifying the driving forces of the water

movement from the surface to the vadose zone (Arnold et al., 2012;

Li and DeLiberty, 2021). Widely used physically-based soil moisture

models include UNSAT-H, HYDRUS-1D, and SWAT (Soil Water

Assessment Tool) (Fayer, 2000; Arnold et al., 2012; Šimunek et al.,

2012). Based onwater balance equations, thesemodels are capable of

simulating dynamic soil moisture contents in catchments at sub-

daily to multiple time scales. For example, UNSAT-H and Hydrus-

1D applied the advection-dispersion equations and Richards

equation to numerically simulate heat transfer processes and

variably-saturated water flow (Fayer, 2000; Šimunek et al., 2012;

Rassam et al., 2018). They require a considerable number of model

inputs, either from core drilling, laboratory tests, or detailed site

investigation (e.g., leaf area index (LAI), root depth, the wet

perimeter of the drain, etc.) (Li et al., 2015; Kanzari et al., 2018;

Tonkul et al., 2019). The model complexity/uncertainty is therefore

increased and creates a higher level for users to start (Schwartz et al.,

1990; Albright et al., 2002). The SWATmodel is a continuous, semi-

distributed, and processed-based river basin model for estimating

changes in water quantity and quality in a catchment. SWAT is

useful to evaluate the impacts of land use, land management

practices, and climate change (Arnold et al., 2012; Glavan and

Pintar, 2012). Nonetheless, the finest time scale of SWAT runs at the

daily time scale. It cannot catch a rapid process shorter than one day.

The model is designed for basin-scale simulations, which require

detailed parameterization in each sub-basin unit.

Most of the existing models require adequate observation or

monitoring data of the meteorological conditions, land use, and

soil moisture to better predict the water movement dynamics

(Pitman, 2003; Clark et al., 2015). The precipitation, air

temperature, and streamflow are monitored by governmentally

operated weather stations and gauges in many places and are

readily available. The data requirement of land-use changes can

be estimated by satellite imagery. Nonetheless, the in-situ soil

moisture data are generally less available (Soares and Almeida,

2001; Panigrahi and Panda, 2003; Wang et al., 2019), especially

for mountainous landslide-active areas. To accommodate the

need for shallow soil moisture information in mountain regions

for agricultural practices and the protection of tribe people from

landslide hazards, this study aims to develop a dynamic soil

moisture model that captures rapid water movement in the

shallow soil layer incorporating influences from weather and

the physical properties of land and soils. In this article, we

describe the construction of a physically- and process-based

shallow soil moisture model for advancing rapidly dynamic

interactions between soil-vegetation and rainfall-water cycling

feedbacks and replenish the in-situ soil moisture data in a

landslide active region and a traditional tribe settlement area

in the Yufeng Village, Taiwan. We implement the model with

specific parameterization and evaluate the model performance.

Based on the factor sensitivity analysis results, we provide general

perspectives on the responses of critical hydrological processes to

seasonal weather characteristics reflecting realistic variations in

air temperature, precipitation duration, and intensity. Lastly, we

compare our model to the existing approaches, discuss possible

sources of uncertainty, and provide potential applications of the

model.

2 Model description

We develop a shallow soil moisture model for mountainous

landslide active regions to capture rapid water movement in the
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shallow unsaturated zone. The information on shallow soil

moisture content is critical for plant growth and useful for

identifying slope instability or slope failure. Before

constructing the shallow soil moisture model, we assume that

(1) soil water is ideal flow, and (2) soils with the same textures are

homogeneous and isotropic. Because the landslide active region

in Yufeng contains high gravel contents, we further assume that

the downward water movement in the soil is dominated by

gravity forces as 1-dimensional without consideration of lateral

flow and capillary water to simplify the associated hydrological

processes of the water cycle beneath the ground.

2.1 Model procedure

2.1.1 Step 1: Estimation of the main model
components

The shallow soil moisture model is developed based on the

mass balance to estimate the main model components of the

hydrological processes, including precipitation (P, mm),

Hortonian overland flow (qH, mm), infiltration (I, mm), soil

moisture content (θ, mm), evapotranspiration (ET, mm),

percolation (qp, mm), and saturation flow (qs, mm) (Figure 1).

The precipitation is considered the major water source in the

model. The hourly observed precipitation data are used as the

values of P to model the infiltration (I) and the Hortonian

overland flow (qH) as:

P � I + qH . (1)

The soil moisture content (θ) can be calculated by:

θ � I − qp − qs − ET. (2)

The evapotranspiration (ET) can be modeled as the sum of the

soil evaporation (Ev, mm) and the plant transpiration (Ec, mm):

ET � Ev + Ec . (3)

2.1.2 Step 2: Model the soil moisture dynamics at
different soil layers

To model the soil moisture dynamics, we consider the soil

moisture content as a dynamic equilibrium between participated

inflow and outflow of water at different soil layers (Soares and

Almeida, 2001; Panigrahi and Panda, 2003). As such, the soil

moisture dynamics can be depicted by the infiltrated water minus

any kind of outflows at any position of the soil layer at a specific

time (Lane and Nearing, 1989):

θji � θ0i
j + Δθji � θ0i

j +∑(I − qpi
j − qsi

j − ETj
i), (4)

where i is the number of soil layers with different textures, j is the

number of sublayers, θji represents the soil moisture content at

time t (mm), θ0i
j is the initial soil moisture content (mm), Δθji is

the change of the soil moisture content (mm), I is the infiltration

(mm), qpi
j is the percolation into the deeper soil layer (mm), ETj

i

is the evapotranspiration on the soil surface (mm), and qsi
j is the

saturation flow (mm). When i = 1 and j = 1, qs1
1 is called the

saturation overland flow.

FIGURE 1
A schematic diagram showing the modeling procedures to estimate the shallow soil moisture content (θ) based on the mass balance, starting
from the water sources of precipitation (P), to the various hydrological processes of the Hortonian overland flow (qH), infiltration (I),
evapotranspiration (ET), saturation flow (qs), and percolation (qp).

Frontiers in Environmental Science frontiersin.org03

Dai and Cheng 10.3389/fenvs.2022.913059

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.913059


2.1.3 Step 3: Determine the dynamics of the
associated hydrological processes based on the
soil properties and the environmental settings

In step 3, we will estimate the dynamic value of I, qpi
j, qsi

j, and

ETj
i in each soil layer to determine the corresponding soil

moisture dynamics (Eq. 4). Below we describe the derivation

of the dynamics of each hydrological component.

2.1.3.1 Infiltration (I) and Hortonian overland flow (qH)

Darcy’s law (Darcy, 1856) and the Horton model

(Horton, 1940) are often used to describe the infiltration

process, which can be determined by the magnitude of

precipitation (P) and the infiltration capacity of the soil

(Ic, mm). Ic can be expressed by a combination of the

saturated hydraulic conductivity at the surface soil layer

(Ks1, mm h−1) and the hydraulic gradient (dhdZ + 1) between

the surface and the wetting front:

Ic � Ks1 · (dhdZ + 1) · Δt,

when Ic <P➜ I � Ic ,

when Ic ≥P➜I � P,

(5)

where h is the pressure head (mm), Z is the depth (mm), and Δt is
the time interval.

The saturated hydraulic conductivity (Ksi
) describes the soil

water behavior within the soil-gravels mixture in the soil layer i,

which can be determined by the percentage of gravel contents in

the soil layer i (bi, %), the saturated hydraulic conductivity of

gravel (Kg, mm h−1), and the saturated hydraulic conductivity of

the soil texture classes in the soil layer i (K0i,mm h−1) (Peck and

Watson, 1979):

Ksi �
Kg

K0i
(1 + 2bi) + 2(1 − bi)

(1 − bi) Kg

K0i
+ (2 + bi)

K0i. (6)

The value of K0i is determined by soil textures and can be

estimated by PTFs (Peck and Watson, 1979).

When P exceeds the infiltration capacity, qH occurs

horizontally across land and can be caculated by substituing

Eq. 5 for Eq. 1 as:

qH � P − I � P − Ks1 · (dhdZ + 1) · Δt. (7)

2.1.3.2 Percolation (qp) and saturation flow (qs)

When water infiltrates the soil, two types of percolation

(qp) can occur, including the saturated and unsaturated

water movements, which define the soil permeability

(Haverkamp et al., 2016). When combining Darcy’s law

with Richards equation, the saturated flow in the porous

media of soils can be seen as a steady flow. Consequently,

water movements at different depths can be captured by the

hydraulic conductivity (K, mm h−1) and the gradient of the

pressure head in a short time period (Richards, 1931;

Arampatzis et al., 2011). As such, in a very thin sublayer,

the percolation flux qpi
j can be depicted as:

qpi
j � Kj

i[(hj−1i − hji
Zj−1
i − Zj

i

) + 1] · Δt, (θsi − θf i)≥ qpij ≥ (θji − θf i),
(8)

where i is the number of soil layers with different textures, j is the

number of sublayers, Kj
i represents the hydraulic conductivity

for saturated and unsaturated conditions to capture the

movement of water in different soil textures, (hj−1i − hji )
represents the pressure head loss, and (Zj−1

i − Zj
i ) is the

depth difference between the sublayers of j and j-1. The

percolation (qp) deals with the gravitational water movements.

When qp occurs, θ
j
i will be greater than or at least equal to the

field water content (θfi, mm), and will eventually reach the

saturated water content (θsi, mm) as the upmost constraint

for qpi
j.

The hydraulic conductivity (Kj
i ) is used to represent the

associated hydraulic conductivity in specific soil textures under

the saturated or unsaturated conditions. The magnitude of Kj
i

has been found to fluctuate with the soil moisture content θji
(Mualem, 1976), and can be calculated by the following equations

(Mualem, 1976; Vereecken, 1995):

Kj
i � (S j

ei )12
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫θji
0

1
hji
dθji

∫θsi
0

1
hji
dθji

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

· Ksi, (9)

where Ksi
is the hydraulic conductivity under the saturated

condition, and S j
ei is the fraction of water in the pore space

(unitless). S j
ei is usually referred to the effective water saturation,

and can be calculated as (Lu et al., 2010):

Sei
j � (θji − θri)(θsi − θri), (10)

where θri is the residual water content (mm), and θsi is the

saturated water content (mm). When 1≥ S j
ei ≥ 0, θji will be

constrained between θri and θsi.

To delineate the relationship between pressure head (hji ) and

soil moisture content (θji ), the V-Gmodel (van Genuchten, 1980)

was used to describe the soil water-retention relationship at the

wet-end section (van Genuchten, 1980; Chen et al., 2017):

θji � θri +
θsi − θri[1 + ( − hj

i/aei)ni]mi
(11)

where hji is the pressure head in different soil layers (cm), ni
and mi are the shape parameters, which are defined as

mi � 1 − 1/ni, and aei is the air-entry value (cm). The air-
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entry value is used to quantify the influence of soil on water

retention or suction in the transition stage from which air

starts to penetrate the soil (Fredlund and Xing, 1994), and can

be estimated by PTFs. By rearranging Eq. 11, hji can be

rewritten as:

[1 + ( − hj
i/aei)ni]−mi � (θji − θri)(θsi − θri) � Sei

j

➜hji � −aei((Seij) −ni
ni−1 − 1)1

/ni .

(12)

In placing Eq. 12 back into Eq. 9, Kj
i can be rewritten as:

Kj
i � Ksi · (S j

ei )
1
2 · [1 − (1 − (Seij)

ni
ni−1)1–(1/ni)]2

. (13)

When water excesses the saturated water content (θsi), water

spills out the soil layer, and qsi
j occurs:

When θji > θsi➜qsi
j � θji − θsi, (14)

and when θji ≤ θsi➜ qsi
j � 0. (15)

2.1.3.3 Soil evaporation (Ev)

Soil evaporation (Ev, mm) is defined as the transportation

of thermal liquid water and water vapor within the sublayers

(Philip and De Vries, 1957; Saito et al., 2006; Sakai et al.,

2011):

Evi
j � ⎛⎝KLTi

jT
j−1
Si − TSi

j

Zj−1
i − Zj

i

+ Kvhi
j h

j−1
i − hj

i

Zj−1
i − Zj

i

+ KvTi
jT

j−1
Si − TSi

j

Zj−1
i − Zj

i

⎞⎠ · Δt,

(16)

where KLTi
j is the thermal liquid hydraulic conductivity

(mm2°C−1 h−1), Kvhi
j and KvTi

j are isothermal water vapor

hydraulic conductivity (mm2 h−1), and thermal water vapor

hydraulic conductivity (mm2 °C−1 h−1), respectively (Fick,

1855), and TSi
j is the soil temperature (°C), which can be

approximated by (Parton, 1984; Lei et al., 2011):

TSi
j � TS0i

j + Lt · (Tmax − Tmin)
2

e
−Zj

i

�������
π

−0.7∅i e
8.36Sei

j

√
, (17)

where TS0i
j is the initial soil temperature (°C), Lt is the time lag

between daily maximum air temperature (Tmax, °C) and daily

minimum air temperature (Tmin, °C),∅i is porosity, and Sei
j is the

fraction of water in the pore space.

The thermal liquid hydraulic conductivity (KLTi
j) can be

obtained by considering the gradient of surface tension at

different soil temperatures as (Noborio et al., 1996):

KLTi
j � Kj

i
⎛⎝hjiGwT

1
γ0

dγji
dTSi

j
⎞⎠, (18)

where GwT is the gain factor (unitless) setting as 7 in this

study (Noborio et al., 1996), γ0 is the surface tension at 25°C

(=71.89 gs−2), and γji is the surface tension of soil water

(gs−2), which can be given as (Saito et al., 2006):

γji � 75.6 − 0.1425TSi
j − 2.38 · 10−4(TSi

j)2 . (19)

By substituting γji for Eq. 18, it can be rewritten as:

KLTi
j � Kj

i[hjiGwT
1
γ0

( − 0.1425 − 4.76 · 10−4TSi
j)]. (20)

When the relative humidity of soil surface (HRi
j, unitless) is

steady (Philip and De Vries, 1957), Kvhi
j and KvTi

j can be

calculated as (Fayer, 2000):

Kvhi
j � Dj

iρsvi
jMg

ρwi
jR(TSi

j + 273.15)HRi
j, and (21)

KvTi
j � Dj

iη
j
iHRi

j

ρwi
j

· dρsvi
j

dTSi
j
, (22)

where Dj
i is the vapor diffusivity in soil (cm h−1), ρsvi

j is the

saturated vapor density (kg m−3), ρwi

j is the liquid water

density (kg m−3), M is the molecular weight of water

(=0.018 kg mol−1), g is the gravitation acceleration

(=9.81 m s−2), R is the universal gas constant (=8.31 J mol−1

K−1), TSi
j is the soil temperature (°C), and ηji is an enhancement

factor (unitless) that describes the increase in the thermal

vapor flux as a result of liquid islands and increased

temperature gradients in the air phase, ranging from 3 at

low water content to 8 at saturation, and can be estimated by

(Cass et al., 1984):

ηji � 9.5 + 3
θji
θsi

− 8.5 exp⎡⎢⎣ − (3.5 θji
θsi
)4⎤⎥⎦. (23)

Dj
i can be described by a tortuosity diffusion term as (Fayer,

2000):

Dj
i � τji(θs i

p − θ pj
i )Dai

j, (24)

where θs i
p is the volumetric saturated water content (mmmm−1),

θ pj
i is the volumetric soil water content (mmmm−1), (θs i

p − θ pj
i )

is the air-filled porosity, Dai
j is the diffusivity water vapor in air

(mm2), and τji is the tortuosity factor, and was defined by

Millington and Quirk (1961) as:

τji � (θs i
p − θ pj

i )7/3
(θspi)2

. (25)

The diffusivity water vapor in air (Dai
j) can be calculated as

(Sakai et al., 2011):

Dai
j � 2.12 · 10−5( TSi

j

273.15
)2

. (26)

The change of ρsvi
j with respect to TSi

j (i.e.,
dρsvi

j

dTSi
j) can be

estimated by (Saito et al., 2006):
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dρsvi
j

dTSi
j
� 0.001exp⎡⎣β0 − β1

TSi
j
− 0.001γji(TSi

j + 273.15)⎤⎦
[ β0
TSi

j − 0.001β2(TSi
j + 273.15) − 1]

(TSi
j)2, (27)

where the value of coefficients β0, β1, and β2 are 31.3716, 6014.79,

and 7.092495, respectively (Saito et al., 2006).

The liquid water density (ρwi

j) can be described as a function

of TSi
j as (Sakai et al., 2011):

ρwi

j � 1000 − 7.37 · 10−3(TSi
j − 4)2 + 3.79 · 10−5(TSi

j − 4)3. (28)

The relative humidity of the soil surface (HR) can be

acquired by an exponential function of the thermal dynamics

between liquid water and water vapor (Philip and De Vries,

1957):

HRi
j � exp⎛⎝hji ·Mg

R · TSi
j
⎞⎠. (29)

2.1.3.4 Plant transpiration (Ec)

Plant transpiration in different soil layers (Eci
j) can be

estimated by using the FAO-56 method as (Allen et al.,

1998):

whenZj
i ≤Zr ,Eci

j � [(Kst · Kcb · ET0) · (Zj−1
i − Zj

i

Zr
)] · Δt, (30)

whenZj
i >Zr ,Eci

j � 0, (31)

where Zr is the rooting depth (mm), Kst is a dimensionless

transpiration reduction factor dependent upon the available soil

water (0–1), Kcb is a basal plant coefficient (Allen et al., 1998),

and ET0 is a reference plant evapotranspiration (mm h−1). Kst is

affected by the condition of the available soil water in the root

zone, and can be estimated by the total available soil water (SwT,

mm), the readily available soil water (SwR, mm), and the zoot

depletion (Dr, mm) (Allen et al., 1998):

Kst � SwT − Dr

SwT − SwR

� SwT − Dr(1 − p)SwT

, (32)

SwT � (θf p − θw
p)Zr , (33)

SwR � p · SwT � p(θf p − θw
p)Zr , (34)

Dr � (θf p − θp)Zr , (35)

where θfp is the volumetricfieldwater content (mmmm−1), θwp is the

volumetric wilting point (mmmm−1), Zr is the rooting depth (mm),

and p is the average fraction of SwT ranging from 0 to 1 that can be

depleted from the root zone before the moisture stress occurs.

ET0 can be calculated as (Allen et al., 1998):

ET0 �
0.408Pv(Rn − G) + λ 37

Ta+273 u(es − ea)
Pv + λ(1 + 0.34u2) , (36)

where Rn is the net radiation at the surface (MJ m−2 h−1), G is the

soil heat flux (MJ m−2 h−1), λ is a psychrometric constant (kPa
°C−1), which can be approximated by the atmospheric pressure

(Pr, kPa) as λ � 0.665 × 10−3Pr, Ta is the mean air temperature

(°C), u is the wind speed at height of 2 m (m s−1), es and ea are the

saturation and the actual vapor pressure (kPa), respectively, and

Pv is the slope vapor pressure (kPa °C−1).

Rn can be estimated by the difference between the incoming

net shortwave radiation (Rns, MJ m−2 h−1) and the outgoing net

longwave radiation (Rnl, MJ m−2 h−1) as (Allen et al., 1998):

Rn � Rns − Rnl , (37)

where Rns can be estimated by considering the albedo (α,

unitless) of solar radiation Rs (MJ m−2 h−1) as (Allen et al., 1998):

Rns � (1 − α)Rs, (38)

α was set as 0.23 in this research (Allen et al., 1998). Rs is affected

by the duration of sunshine and can be modeled by the

extraterrestrial radiation (Ra, MJ m−2 h−1), which can be

calculated by regression relationships among latitude, solar

declination, and solar time angles as (Allen et al., 1998;

Hassan et al., 2016):

Rs � (0.00237T 0.38353
a Ra + 0.35394)Ra, (39)

Ra � 12(60)
π

Gscdr[(ω2 − ω1) sin(φ) sin(δ)
+ cos(φ) cos(δ)(sin(ω2) − sin(ω1))], (40)

where Gsc is a solar constant (=0.0820 MJ m−2 min−1), dr is

inverse relative Earth-Sun distance, ω1 is solar time angle at

beginning of period (rad), ω2 is solar time angle at end period

(rad), φ is latitude (rad), and δ is solar declination (rad).

Rnl is proportional to the absolute temperature of the surface,

which can be estimated by (Allen et al., 1998):

Rnl � σ[Tmax
4 + Tmin

4

2
](0.34 − 0.14

��
ea

√ )(1.35 Rs

Rso
− 0.35),

(41)
where σ is Stefan-Boltzmann constant (� 2.043 10−10 MJ m−2

h−1), Tmax and Tmin are the maximum and the minimum air

temperature, ea is the actual vapor pressure (kPa), which can be

estimated by air temperature, and Rso is the clear-sky solar

radiation (MJ m−2 h−1).

3 Model implementation

3.1 Site description & data assemblage

To measure the in-situ shallow soil moisture content in the

mountain area, we set up four study sites (A, B, C, and T) in a

traditional tribe settlement and a landslide-prone region in the

Yufeng Village, Hsinchu County in northern Taiwan. The
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Yufeng Village is bounded by 121° 15′ E to 121° 41′ E

longitudes and 24° 25′ N to 24° 41′ N latitudes, lying at an

average elevation of 1,227 m with an area of 140.57 km2

(Figure 2). We frequently observe the landslides at hills

with steep slopes along the river valley. The annual

temperature of Yufeng is about 18°C with typical weather

patterns of rainy summer and dry winter. The mean annual

precipitation is about 2,200 mm, and the humidity is normally

high throughout the year. The landscape is mainly filled with

natural forests, occupied by broad-leaf species. According to

the investigation report by Chen (1983), the predominated

soil in Yufeng is sandy shale lithosol (90.82%) and sandy shale

darkish colluvial soils (9.18%).

The study sites A, B, and C are selected at a reachable

hillslope adjacent to roads, so we can evaluate the landslide

risks to the residents by assessing the soil moisture condition to

the occurrence of landslide. These sites have had landslide

incidents in recent 10 years (Figure 2). These sites are all

situated at hills composed of hardly weathered lithosols with

the slopes larger than 20° (Chen et al., 2010). The site T, situated

in a flat grassland in the Yufeng Elementary School, is selected to

test the model’s applicability in different soil profiles and settings

(Figure 2). We sampled the in-situ soil moisture content at sites

A, B, C, and T once a month. The measurements were taken by

FieldScout® time-domain reflectometry (TDR) 350, a commonly

used volumetric water content device, at specific depths

FIGURE 2
A map displays the locations of the study sites in the Yufeng Village of Taiwan and the two nearby weather stations of Yufeng and Meihua. The
study sites A, B, and C are situated in landslide active areas, where site T is in a flat grassland in the Yufeng Elementary School.
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determined by the length of the rods. Due to the hardness of the

soils at sites, measurements could only be obtained at depths of

200 mm at site A, 76 mm at site B, 120 mm at site C, and 120 mm

at site T.

To implement the model, we assemble hourly meteorological

data provided by the Water Resources Agency and Central

Weather Bureau, including precipitation (P), mean air

temperature (Ta), daily minimum air temperature (Tmin), daily

maximum air temperature (Tmax), wind speed (u), and

atmospheric pressure (Pr) from the two nearby weather

stations of Yufeng and Meihua (Figure 2). To examine the

physical soil properties (i.e., the percentage of sand, silt, clay,

bulk density, and depth of soil horizons) at sites A, B, and C, we

employ the SoilGrids 2.0 system (https://soilgrids.org), a digital

soil mapping on soil properties and classes using global

covariates and globally fitted models at a spatial resolution of

250 m (Poggio et al., 2021). The physical soil properties at site T

was sampled using the Bouyoucos-hydrometer method.

Major hydrological fluxes, including I, qH, qp, qs, and ET, are

depicted by the differences between the saturated and

unsaturated conditions at layer ij. In this research, i was set to

the classification types determined by the SoilGrids 2.0 at sites A,

B, and C or by the lab experiment at site T, and j was set to 10, to

estimate the associated dynamic water movement within

different soil layers (Figure 1). The soil moisture content (θji )

was simulated from the land surface to the soil layer in

compliance with the rod length used at each site, and

transformed into the volumetric soil water content (θ pj
i ) by

the thickness of each layer. In order to compare our model

predictions with the field measurements, we further calculated θ*

by averaging the simulated θ pj
i , because the value provided by

TDR 350 measurements was the average of the soil moisture

content across the rod length. In addition, to catch the rapid

change of the shallow soil water content and the associated

hydrological processes, the simulation time interval was set to

1 h with a time step of 1/60, of which it executes 60 simulations

per time interval.

3.2 Model calibration/validation and
sensitivity analysis

We calibrate the model parameters of θsp, θfp, θrp, and θwp,

and the PTFs coefficients using the Monte-Carlo method ranging

from a lower bound of 10% to an upper bound of 10 times the

documented values from the literature. After calibration, we

validate the model performance by comparing model

predictions for a given set of conditions using input

parameters measured or determined during the calibration

process with the in-situ measurements of the soil moisture

content (Moriasi et al., 2007). Model performance is

quantified by indicators of mean error (ME), mean absolute

error (MAE), and root mean square error (RMSE).

To evaluate the meteorological effects on the related

hydrological processes under the hypothetical climate change

perturbations, we perform a sensitivity analysis at site B. The

local perturbation method (Haan, 2002; Cheng and Wiley, 2016)

is applied. We independently manipulated the magnitude of P

and Ta by changing one parameter at a time holding all others

constant with a fraction of fi from the baseline condition

(McCuen, 2002; Cheng and Wiley, 2016). The sensitivity (S)

was calculated using the following equations (van Griensven

et al., 2006):

SP � M(P · f i) −M(P)
M(P) , (42)

STa �
M(Ta + f i) −M(Ta)

M(Ta) , (43)

where SP and STa are the sensitivities to the variable of P or Ta,

M(P) and M(Ta) are the model simulations using the observed

hourly precipitation (P) or the hourly air temperature

measurements (Ta), and fi is the fraction being used to adjust

the model inputs. To produce the perturbation in precipitation,

we adjust the value of P bymultiplying the factor offi from 0.2 to

2, where the observed P is set as fi � 1. The perturbation in air

temperature (Ta) is produced by adding the factor of fi

independently from −4 to 5°C, where the observation Ta. is

set as fi � 0. The simulated results based on the observed

weather conditions (i.e., M (P) and M (Ta)) are used as

baselines. M(P · fi) and M(Ta + fi) refer to the model

predictions to the corresponding fractional changes in P, and

the magnitude change in Ta with the definedfi, respectively. The

range of the perturbations is determined according to the

predictions of precipitation and air temperature by Taiwan

Climate Change Projection Information and Adaption

Knowledge Platform (TCCIP) under the worst climate change

scenario of RCP 8.5 (IPCC, 2017). The analyses are classified into

four periods, namely January to March, April to June, July to

September, and October to December.

4 Results

4.1 Simulated results and model
performance

Based on the soil property information (Table 1), we

parameterized the associated soil hydraulic parameters used in

the PTFs and the saturated hydraulic conductivity (Table 2) to

simulate hourly soil moisture dynamics in 2019. To evaluatemodel

performance, we compared the simulated volumetric soil water

content (θ*) to the in-situmeasurements by TDR 350 at sites A, B,

C, and T. In Figure 3, we present the simulation results used for

model calibration from 2019/1/1 to 2019/7/31 and the model

performance determined by a model validation test from 2019/8/
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1 to 2019/12/31. The simulated results of the volumetric soil water

content showed wide ranges at sites A, B, C, and T, from 4.0 to

23.5%, 4.2–17.3%, 2.8– 34.0%, and 2.7–45.3%, respectively. These

values were generally followed the in-situ measurements at the

same sites ranged from 2.3 to 10.6%, 1.6–14.9%, 2.9–20.3%, and

10.9–35.4%, respectively. However, larger discrepancies were

noticed at sites C and T. During severe rainfall events and dry

periods, the model underestimated the volumetric soil water

contents (Figure 3). Based on the statistical error indices, model

performance at sites A, B, C, and T was evaluated as ME: −0.67,

0.53, −5.46, and −5.39; MAE: 1.40, 1.25, 5.46, and 6.47; and RMSE:

1.92, 1.44, 7.27, and 7.98, respectively.

TABLE 1 The soil properties at sites A, B, C, and T from methods of SoilGrids 2.0 and lab experiment.

SoilGrids 2.0

Z (mm) 0–50 50–150 150–300 300–600 600–1000 1000–2000

Bulk density (g cm−3)

Site A 1.12 1.18 1.22 1.30 1.32 1.32

Site B 1.12 1.14 1.20 1.27 1.30 1.30

Site C 1.12 1.15 1.20 1.25 1.27 1.27

Site T 1.10 1.14 1.17 1.24 1.25 1.25

Gravel content (%)

Site A 15.7 15.0 14.7 17.2 18.7 20.3

Site B 8.6 9.8 9.7 11.5 13.6 14.5

Site C 10.0 9.9 10.9 12.8 15.3 17.8

Site T 13.7 13.1 13.1 15.0 16.0 16.0

Sand (%)

Site A 36.0 36.0 34.3 32.6 33.3 32.9

Site B 35.6 35.5 35.8 34.8 35.3 34.5

Site C 35.8 37.9 35.9 33.0 34.0 33.4

Silt (%)

Site A 36.1 37.0 37.2 37.1 34.6 31.2

Site B 36.8 37.9 37.7 37.1 34.6 31.7

Site C 36.1 35.8 36.6 36.5 34.1 30.9

Clay (%)

Site A 27.9 27.0 28.5 34.8 32.1 35.9

Site B 27.6 26.6 26.5 33.0 30.1 33.8

Site C 28.1 26.3 27.5 30.5 31.9 35.7

Lab experiment (soil samples from site T)

Z (mm) 0–150 NA

Sand (%) 68.2 NA

Silt (%) 24.3

Clay (%) 7.5

TABLE 2 Parameterization results at sites A, B, C, and T, were
calculated by PTFs based on their specific soil properties.

Parameter Unit Site A Site B Site C Site T

Ks mm h−1 6.41 6.42 6.42 6.49

ae cm 1.72 1.72 1.72 0.54

n unitless 4.68 4.29 1.44 1.04

θs * % 63.16 44.25 63.30 90.60

θr * % 8.35 4.82 0.45 6.07

θf * % 11.81 11.36 5.60 18.67

θw * % 4.02 4.04 2.78 2.65
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4.2 The monthly hydrological variations

The hourly simulation results were accumulated into a monthly

time scheme from 2019/01-2019/12 to present the monthly

hydrological variations (Figure 4). We found that the patterns of

infiltration (I) and percolation (qp) at sites A, B, and C followed the

pattern of monthly precipitation closely. Since the infiltration capacity

of soil (Ic) was greater than the precipitation at these sites, the

magnitude of the infiltration was set to the value of precipitation

(i.e., I = P). In 2019, the highest infiltration (I) occurred in August due

to typhoons. The percolation (qp) at sites A, B, and C had the highest

value of 376, 368, and 254mm in August, respectively, and the lowest

nearly 0mm in February and November. The infiltration and

percolation were generally high during the wet seasons, such as the

monsoon season inMay and June, and the typhoon season in August.

During the dry season in the winter time, the infiltration and

percolation were relatively low. Comparatively, the percolation (qp)

at site T was at a very low magnitude around 0mm in most of the

months, except in March, August, and October. The highest monthly

evapotranspiration (ET) was around 220mm at site C in May, while

the lowest ET was around 2mm in November. Comparing to site C,

ET at sites A and B ranged from 2mm in November to 150mm in

May. In contrast, site T had the lowest ET, spanning from 2mm in

November to 91mm in May. The changes in soil moisture content

(Δθ) reflected the net changes from the associated hydrological

components of P, I, qp, and ET with seasonal characteristics. The

accumulative soil moisture content in a month (θ, mm) was lower at

sites A and C than at sites B and T. When we transformed the soil

moisture content (θ, mm) into the volumetric soil water content (θ*,

%), sites A, B, and C, had similar magnitude of θ*. At sites A, B, and C,

θ*was around 2.8–11.6% and varied slightly throughout the year, while

θ* appeared greater variations at site T from the lowest around 2.7% in

November to the highest around 32.7% in May.

4.3 Sensitivity to precipitation and air
temperature

The sensitivity results demonstrated that seasonal responses

of hydrological processes were complex resulting in nonlinear

responses of θ* and ET, and a more linear influence on qp with

regard to the baseline characteristics of P. In contrast, changes in

the hydrological processes of θ*, qp, and ET to Ta were more

linear in comparison to P (Figures 5, 6).

FIGURE 3
The in-situmeasurements and the simulation results of the volumetric soil water content (θ*) at (A) site A, (B) site B, (C) site C, and (D) site T in the
Yufeng watershed.
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To better depict the trend, we compared the rate of change

among different seasons. With prolonged rainfall events from

April to September, the fractional change in precipitation (P)

with fi > 1 was found to result in a slight increase of θ*. Yet,

from October to December the response of θ* to the fractional

change of P (fi > 1) was minimal due to very little precipitation

occurring in the period. In contrast, the fractional change in

precipitation with fi < 1 was found to cause a greater drop of θ*

from January to September than that from October to

December, which may be attributed to the differences in the

frequency and intensity of the baseline precipitation condition

(Figures 5A,B).

The sensitivity of qp to changes in P was much larger than

that of θ* among seasons. We observed that SP reached about

150% with a fractional change in P at fi � 2 (Figure 5C). An

interestingly divergent behavior was found in ET that it

displayed nonlinear responses to changes in P. With

changes in P at fi < 1, reactions of ET appeared as a

hyperbolic curve that the direction turned from a positive

sensitivity to a negative one at different fractions among

seasons. Nonetheless, with changes in P at fi > 1, increases
in P caused different reactions of ET. From January to June,

the rate of change was negative, while from July to December,

it was positive (Figure 5D).

In terms of the change in Ta, the sensitivity results

showed that θ* and qp both reacted negatively to changes

in Ta (Figure 6). The sensitivity (STa) was about 3–4% with a

5°C increase, or a 4°C drop in Ta (Figures 6B,C). In addition, a

larger sensitivity was depicted on qp from January to June,

than that from October to December (Figure 6C). ET was

found to be the most sensitive hydrological process to

temperature (Figure 6D). Nonlinear reactions were seen

from January to March, and from April to June, while

more linear reactions were found from October to

December. Besides, larger positive sensitivity was also

found from January to March, and from April to June.

Yet, it was less sensitive to changes in Ta from October to

December (Figure 6D). In sum, we concluded that qp was the

most sensitive hydrological process to the variation of P

(Figure 5C), while ET possessed the highest sensitivities to

changes in Ta (Figure 6D). According to these results, the

influence of precipitation or temperature on different

hydrological processes vary depending on the seasonal

meteorological patterns.

5 Discussion

The shallow soil moisture determines the onset of

landslide occurrence and is critical for agricultural

production in mountainous landslide-active regions.

However, predicting the rapid change of the shallow soil

moisture content and the associated hydrological processes is

challenging due to the severe lack of in-situ measurements of

soil moisture content. Our model coupled classic continuity

equations to estimate various processes in the soil column.

FIGURE 4
Simulation results of the main hydrological processes were summarized into monthly averages of I, qp, ET, Δθ, θ, and θ* at sites A, B, C, and T.
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Based on the well-known physics equations and the

associated processes, the model was designed particularly

for sites lacking sufficient monitoring data. To overcome the

shortage of field data, we simplified several complex

parameterizations seen in most distributed models without

sacrificing the ability for short-time predictions. The model

was proved to provide reasonably well predictions of the

vertical soil moisture content and the associated hydrological

processes of infiltration, evapotranspiration, percolation,

and surface runoff in a short time scheme. Given the

FIGURE 5
Based on (A) the observed daily accumulated precipitation as fi= 1, we present the sensitivity analysis results of (B) soil moisture content (θ*), (C)
percolation (qp), and (D) evapotranspiration (ET) in four periods-- January to March, April to June, July to September, and October to December. In
Figures 5B–D, the lower x-axis denotes the fractional change (fi), and the upper x-axis represents the range of P in the sensitivity analysis. The left
y-axis represents the sensitivity to precipitation (Sp), while the right y-axis indicates the simulated results of themagnitude of the correspondent
hydrological process.
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spatial information of the physical soil properties provided

by SoilGrids 2.0, the model can be used to predict the spatial

distribution of soil moisture content in different

meteorological conditions. The comprehensive

information can be linked with the mapping of landslide-

prone areas to support the detection of the early warning

FIGURE 6
Based on (A) the observed daily mean air temperature as fi = 0, we present the sensitivity analysis results of (B) soil moisture content (θ*), (C)
percolation (qp), and (D) evapotranspiration (ET) in four periods-- January to March, April to June, July to September, and October to December. In
Figures 6B–D, the lower x-axis denotes the fractional change (fi), and the upper x-axis represents the range of Ta in the sensitivity analysis. The left
y-axis represents the sensitivity to air temperature (STa), while the right y-axis indicates the simulated results of the magnitude of the
correspondent hydrological process.
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signals in landslide-active regions and examine the effects of

climate change.

5.1 General perspective from themodeling
results

Results showed that the model provides reasonably good

predictions of the soil moisture contents and gives insights into

how the vertical soil properties and climatic variations influence the

dynamics of water movement. Given the interlinkage of each

hydrological process by mathematical equations in the model, the

hydrological changes can be partitioned. Different soil properties,

particularly the soil texture and the formation structure, have been

used to determine the porosity affecting the interrelated soil

moisture content of θs, θf, θw, and θr. Based on SoilGrids 2.0, the

soil moisture content was found to be influenced majorly by the

formation of the soil structure (Poggio et al., 2021), with the

marginal differences contributed to the correspondent soil texture

and the coarse fragments (Domínguez-Niño et al., 2020). This is

especially evident at site T, where the simulation results showed a

generally higher soil moisture content than the other three sites

across the one-year simulation period. The topsoil in site T was

designed and made for grassland that supports higher field water

content (θf) and lower percolation (qp). This was very dissimilar

from the soils in the landslide active areas that were naturally

composed of poorly developed and hardly weathered lithosols

(Chen et al., 2010). The presence of these coarse particles and

the hardly weathered soil were found to induce appreciable

variabilities to higher permeability, and in turn, result in lower

soil water content (Chow et al., 2007; García-Gamero et al., 2021).

Besides the soil properties, seasonal variations in the

meteorological conditions were found to cause great hydrological

variations across a year. Under heavy rainfall conditions in

geologically unstable areas such as sites A, B, and C, the effects

of soil suction due to the fast response of θ to a rapid increase in

precipitation, are closely related to the probability of landslide

occurrence (Ray et al., 2010). This information is particularly

important in the development of landslide early warning system

for the security of the tribe community in Yufeng to avoid dreadful

disasters. Model predictions on qp and ET are additional supporting

information for environmental planning and watershed

management. This information provides critical scientific

foundation on the strength of the natural hydrological processes

in reducing the susceptibility to sliding and slope failure. For

example, the magnitude of ET is highly related to soil suction

levels or slope angles exceeding friction angles, whereas qp is in

charge of regulating and removing water underground, which can

help stabilize hillslopes (Reder et al., 2018; Sidle et al., 2019).

During droughts, on the other hand, predictions of shallow

soil moisture content are critical for agricultural production (Fan

et al., 2022). In Yufeng, dry seasons account for about 6 months

in a year. With this shallow soil moisture model cooperating with

no or little precipitation weather forecasts, it can help provide

predictions on where and for how long situations of water

shortage will occur and assist tribe people to adapt in advance

for crop types and agricultural operations.

5.2 Comparison to the existing
approaches

Given the quick response of water movements in the landslide

areas, the landslide research often requires detection of the land

surface process in a short time scheme (Matsuura et al., 2008). Our

model provides dynamic predictions on water movements in soils

accounting for the influence of the meteorological forcing and the

vertical soil heterogeneity (Lu et al., 2020). They are vital

supporting information in detecting the early warning signals

in the landslide-active regions when linking with the mapping of

the landslide-prone areas. In searching of the existing models,

such as SWAT (Soil Water Assessment Tool; Arnold et al., 2012),

SpaFHy (Spatial Forest Hydrologymodel; Launiainen et al., 2019),

GIPL2 (Geophysical Institute Permafrost Lab version 2, Qin et al.,

2017), their simulation time scales are often limited at a daily time

scheme not able to capture the rapid variations of the soil moisture

in the landslide areas. To estimate the rapid vertical hydrological

processes in the soil column, our model was designed particularly

for sites lacking sufficient monitoring data to accomplish the

complex parameterizations. We made simplifying assumptions to

overcome the shortage of field data, and applied the well-known

physics equations coupling the heterogeneous vertical soil

physical properties obtained from the SoilGrids 2.0 to produce

relatively accurate estimates of the vertical soil moisture dynamics

and the associated hydrological processes. Moreover, with the

advances of the satellite-based approaches in extracting multiple

FIGURE 7
Detailed θ-P feedback loop built from the sensitivity results.
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spatial information, it facillitates progress in modeling and

landslide research. In recent years, many distributed models

have benefited from the satellited-based approaches to derive

coarse-scale spatial attributes of land use types, soil profiles,

and water fluxes (Li et al., 2019; Fisher and Koven, 2020;

Senent-Aparicio et al., 2020; Rouf et al., 2021). For example,

Rouf et al. (2021) took the hyper-resolution forcing data from the

satellite-based observations into land surface models to estimate

the soil moisture contents at the resolution of 500 m. The soil

profile data used in our model were provided by SoilGrid 2.0,

which assembled the satellite-derived information in climatic,

global landform, and lithology with the machine-learning

techniques by a big database of the global soil profiles to

produce the global digital soil map at a resolution of 250 m

(Hengl et al., 2017; Poggio et al., 2021). Therefore, if spatially-

distributed information is available, such as the meteorological

conditions and the vertical soil profiles, our model has the

potential to expend into a spatially distributed model in

predicting the vertical soil moisture content as well as the

associated hydrological processes.

5.3 Implications from sensitivity analyses

Facing great threats from the increasing air temperature and

changes in the frequency and intensity of precipitation, more

attention has been focused on monitoring the soil moisture

content and the associated hydrological processes for their critical

characteristics to the incidence of many severe damages, such as

debris flow, landslide, soil erosion, and agricultural loss. Based on the

sensitivity analysis results, we clarified the influence of P and Ta on

shallow soil moisture content and other associated hydrological

processes. In general, θ* and qp both increase with P, and decrease

with Ta. In contrast, ET increases with Ta, but responses of ET to P

are very nonlinear, depending upon the magnitude and pattern of P

(Bao et al., 2012). Insights from the sensitivity results suggest higher

impacts on qp, followed by ET and θ*, when changes in P are higher

than Ta. On the contrary, if a larger change of Ta is happening,

greater variations will be found in ET, followed by θ* and qp. The

hydrological processes are frequently associated with disasters. For

example, soil erosion is often related to the aggregation of soil

moisture (Cotler and Ortega-Larrocea, 2006), and percolation is one

of the processes that trigger shallow landslides no more than 1–2 m.

In addition to the influence of meteorological factors, the

interactions between different hydrological processes also play

parts of the governing role in the physical mechanisms of

hydrological cycling. To better clarify the interactions, we

sketch the contours of the water balance by a feedback loop

(Koster et al., 2003), that outlines the interactions between P, θ,

and ET. In the loop, precipitation will increase the soil moisture,

and in turn, the wet soil will contribute to higher ET, which will

provide abundant vapor as positive feedback to the formation of

precipitation. This is the so-called θ-P feedback loop (Yang et al.,

2018). Built upon the viewpoints gained from the sensitivity

results, a more detailed θ-P feedback loop can be sketched for

different states of each element to outline the land-atmosphere

causal relationship under various environmental and

meteorological conditions (Figure 7). Starting from the

element of precipitation, no matter small or large P will boost

up θ. Nonetheless, the condition of the ground will give a

different path to ET. If the ground is very dry, the increase of

θ will cause ET to increase. In contrast, when the ground is wet to

the maximum field capacity, ET decreases when θ increases. The

status of ET will determine the enhancement or breakdown of P

(Figure 7).

5.4 Possible sources of uncertainty

The inability of this modeling approach in detecting the targeted

hydrological processes may come from possible sources of

observation uncertainty, process uncertainty, and model

uncertainty (Francis and Shotton, 1997). The aware uncertainties

are the tradeoffs we made between the model accuracy, cost, and

time. The first possible uncertainty may arise from the observation

uncertainty used to run the model due to inconsistencies in the

measurement technique (precision) and/or the measurement bias

(accuracy) of the soil moisture data andmeteorological information.

As the in-situmeasurements of the soil moisture content were taken

by FieldScout® TDR 350, the setup of this volumetric device would

unavoidably cause a certain loss of the measurements to the true

value of the soil moisture content, and producemeasurement errors.

Moreover, lacking a continuous monitoring device, the

measurements of the soil moisture content were limited to once

a month, and due to safety concerns for conducting field surveys in

landslide-active areas, most measurements of the soil moisture

content were taken on non-raining days. Consequently, the

limited data on soil moisture content may constrain the extent

for calibration. The other possible observation uncertainty may

come from the meteorological data. Although we took the

information from most nearby weather stations, in mountainous

areas, topography could cause variations in the micro-climates even

within a short distance, especially the precipitation. The other

possible influence of topography on the model accuracy can

result from the ignorance of the lateral flow in uneven terrains.

According to the in-situ slopemeasurements, the slopes of sites A, B,

C, and T were 36.7°, 40.7°, 20.3°, and 0°, respectively. Based on the

model performance, we found that model simulations had smaller

errors at sites A and B than at sites C and T. However, sites A and B

were situated at hills with steeper slopes than sites C and T. This also

demonstrated that predicting soil moisture based on the simplified

assumption considering only one-dimensional movements

dominant by gravity forces, the potential errors were minor for

high-slope landslide terrains. In addition, the soil properties are the

inherent factor to define the boundary of matric potential and the

hydraulic conductivity that regulates the variations of the soil
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moisture content (Qi et al., 2018). The physical properties of the soil

were described by PTFs from the SoilGrids 2.0 without validation.

As the precipitation and soil properties are major input variables to

define the source of water and boundary of the variations in soil

moisture content, under the theory of water balance, uncertainties

from these discrepancies to the reality are expected.

Second, the association of the inherent stochasticity and natural

variability of system components may cause extrinsic process

uncertainty to be modeled (Hilborn and Mangel, 2013). The

process uncertainty in this research could have arisen from the

setup of the time step of the simulation. For example, since soil

moisture content can be highly variable within shallow soil depth in

space and time, saturation during rainfall events or soil moisture

content reaching wilting point during droughts may occur in a very

short time (Qi et al., 2018). Currently, the finest simulation time step

was set to 1 minute to compute the prompt responses to heavy rain

or drought conditions. Nonetheless, the simulation requires high

computing equipment and is very time-consuming. If a process

uncertainty exists for this setup, over- or under-estimating the

shallow soil moisture content is unavoidable.

The third source of the uncertainty may be related to the

selection of mathematical equations that can accurately describe

the water movement as the numerical solution in the model. In

the water cycling system, the associated hydrological processes

are highly complicated both above and beneath the soil surface.

Most processes involve nonlinearities and hysteresis in space

and time, so model uncertainty may present in any estimation

of the water fluxes (van Dam and Feddes, 2000), such as the

percolation flux using the Richards equation, the spatial

variability of plant interception, and the coarse fragments

accounted for surface or subsurface water dynamics (He et al.,

2014; Ogden et al., 2015).

Lastly, the model uncertainty may come from the

simplified assumption of the underground movement of the

soil water going downward without lateral flow. This

simplification was made based on the geological

environment in Yufeng, consisting of sandy shale lithosol

(90.82%) and sandy shale darkish colluvial soils (9.18%). It

gives high water conductivity in the study sites so that the

gravitational flow can be considered the dominant process to

ignore the lateral flow. However, we cannot deny that the

multifaceted topographical surface will redistribute some

lateral water movements, which was not considered in the

model (Chen et al., 2014). As a result, the unknown pores may

increase the curvature of water flow and result in preferential

flow and infiltration redistribution.

5.5 Potential applications

Climate change has created challenges for decision-makers

(Abbaspour et al., 2015). The Food and Agriculture Organization

(FAO) forecasted problems in agriculture (FAO, 1983). The

flooding issues bring excessive surface runoff that will damage

the crops, while severe droughts create water deficit problems

that will impede crop growth. The fundamental scientific basis of

the soil moisture dynamics and the critical hydrological processes

is in pressing need for decision-makers to prepare for the

potential impacts of climate change (Nyamgerel et al., 2022;

Tan et al., 2022).

The simulation results from this research provide valuable

indications in hourly, daily, monthly, and seasonally for use in

different purposes of natural resources management. For

example, modeling the strength of ET, θ, and qp, can be

used to detect water stress as water scarcity indicators or

drought indices (Sohrabi et al., 2015), because they are linked

to capturing variations of precipitation, temperature, and

water cycling over time to characterize the availability of

water. The interlinkage of the hydrological processes, as we

have shown in the detailed θ-P feedback loop, can help

monitor drought evolution (Teuling et al., 2013). The

model predictions of soil moisture content under different

weather conditions and soil types can be used for agricultural

planning, erosion control, or hazard management.

Furthermore, this dynamic modeling approach can account

for the continuity of month-to-month transitions to obtain

various predictions of θ, θf, θw, qH, qs, and ET, and helps

characterize droughts/flooding for crop health management

and determine impacts under dry/wet conditions. For

disaster-related applications, infiltration and surface runoff

predictions can be used to understand the extent of erosion

on hillslopes (Nearing et al., 1989). For example, a lot of evidence

worldwide suggest that areas previously occurred landslides

would have a higher probability to reoccur in the future

(Temme et al., 2020). The variations of soil moisture in the

unsaturated zone of the landslide-prone areas have been applied

to determine the wetness index and the safety factor of the slope

instability in the landslide instability models (Ray et al., 2010).

Based on the simulation results, it showed that in the landslide

active regions, soil moisture may be relatively low compared to

sites with different soil properties, but the response to

precipitation was rapid due to relatively high slopes and

unique soil properties and the fragile geological structures in

landslide active regions. These effects were modeled in this

study to help detect the changes in the hydrological processes

underneath the ground. This is why soil hydrology has become

a weight-bearing point providing designing emphasis on

structure safety to prevent shallow landslides and control

slope stability (Ray et al., 2010; Bittelli et al., 2012).

Possible mitigation and adaptation strategies for land

governance should be planned in response to future climate

situations (Tan et al., 2022), such as early actions on

constructing drainage tunnels, gutters, or ditches to reduce

the risks of landslides (Lahmer, 2003; Sun et al., 2010), and

preparation on backup planning for irrigation or domestic

purposes.
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6 Conclusion

The shallow soil moisture dynamics play a crucial role in

regulating water balance and are critical information for

disaster management and agricultural practices. In this

paper, we present a newly constructed system dynamics soil

moisture model based on the law of water balance and the

physical mechanisms of the interlinked hydrological processes.

We calibrated and validated simulation results of the shallow

soil moisture content in the Yufeng Village, a landslide-prone

region and a traditional tribe settlement area. Our simulated

results showed good fits with the in-situ measurements. The

model can be applied to predict the associated hydrological

processes and provide information for agricultural planning

and disaster prevention. In addition, results from the sensitivity

analyses revealed the potential impacts of climate change. We

sketched a detailed feedback loop of the water cycling associated

with precipitation, soil moisture, and evapotranspiration. With

the general structure of this physically-based model, we believe

this modeling approach can be applicable and transferable to

other regions to deliver useful predictions for agricultural

applications or disaster management coping with climate

change.
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