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Monthly runoff forecasting plays a vital role in reservoir ecological operation, which can
reduce the negative impact of dam construction and operation on the river ecosystem.
Numerous studies have been conducted to improve monthly runoff forecast accuracy, of
which machine learning methods have been paid much attention due to their unique
advantages. In this study, a conjunction model, EEMD-SSA-LSTM for short, which
comprises ensemble empirical mode decomposition (EEMD) and sparrow search
algorithm (SSA)–based long short-term neural networks (LSTM), has been proposed to
improve monthly runoff forecasting. The EEMD-SSA-LSTM model is mainly carried out in
three steps. First, the original time series data is decomposed into several sub-sequences.
Second, each sub-sequence is simulated by LSTM, of which the hyperparameters are
optimized by SSA. Finally, the simulated results for each sub-sequence are summarized as
the final results. The data obtained from two reservoirs located in China are used to validate
the proposed model performance. Meanwhile, four commonly used statistical evaluation
indexes are utilized to evaluate model performance. The results demonstrate that
compared to several benchmark models, the proposed model can yield satisfactory
forecast results and can be conducive to improving monthly runoff forecast accuracy.

Keywords: monthly runoff forecasting, machine learning, ensemble empirical mode decomposition, sparrow
optimization algorithm, long short-term neural networks

INTRODUCTION

Water resource quantity is an extremely important restriction factor in ecological environmental
protection and construction. As a fundamental work, monthly runoff forecasting plays a vital role in
taking full advantage of water resources, including reservoir ecological operation. With
characteristics of nonlinearity and randomness, the monthly runoff process is always affected by
a variety of factors, such as precipitation, climate change, and human activities. Generally, it is a
challenging task to forecast monthly runoff with reliable and applicable forecast accuracy.
Hydrological models can be approximately divided into two categories: physical-driven (Liao

Edited by:
Shiping Wen,

University of Technology Sydney,
Australia

Reviewed by:
Abinash Sahoo,

National Institute of Technology,
Silchar, India

Sarita Gajbhiye Meshram,
Rani Durgavati University, India

Hongyan Li,
Jilin University, China

*Correspondence:
Bao-Jian Li

libaojian@ncwu.edu.cn
Wen-Chuan Wang

wangwen1621@163.com

Specialty section:
This article was submitted to

Environmental Informatics and Remote
Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 31 March 2022
Accepted: 13 June 2022
Published: 19 July 2022

Citation:
Li B-J, Yang J-X, Luo Q-Y, Wang W-C,

Zhang T-H, Zhong L and Sun G-L
(2022) A Hybrid Model of Ensemble
Empirical Mode Decomposition and
Sparrow Search Algorithm-Based
Long Short-Term Memory Neural

Networks for Monthly
Runoff Forecasting.

Front. Environ. Sci. 10:909682.
doi: 10.3389/fenvs.2022.909682

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 9096821

ORIGINAL RESEARCH
published: 19 July 2022

doi: 10.3389/fenvs.2022.909682

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.909682&domain=pdf&date_stamp=2022-07-19
https://www.frontiersin.org/articles/10.3389/fenvs.2022.909682/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.909682/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.909682/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.909682/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.909682/full
http://creativecommons.org/licenses/by/4.0/
mailto:libaojian@ncwu.edu.cn
mailto:wangwen1621@163.com
https://doi.org/10.3389/fenvs.2022.909682
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.909682


et al., 2016; Solakian et al., 2020; Zhang et al., 2020; Dunkerley,
2021; Nonki et al., 2021; Xu et al., 2022) and data-driven models
(Quilty et al., 2019; Feng et al., 2020; Liao et al., 2020; Darabi et al.,
2021; Niu et al., 2021; Feng et al., 2022; Nguyen et al., 2022).
Physical-driven models usually consider the physical genesis and
mechanism of the runoff yield process and require a large amount
of data for modeling. As a contrast, data-driven models only focus
on the optimal functional relationship between input and output
data, do not consider the physical mechanism of hydrological
processes, and call for much less data. Due to the merit of ease of
implementation, many studies have demonstrated the feasibility
and reliability of data-driven models in monthly runoff
forecasting (Huang et al., 2019; Feng et al., 2020; He et al.,
2020; Feng et al., 2021).

With the development of machine learning, many kinds of
data-driven models have been used in monthly runoff prediction,
such as artificial neural networks (Jhong et al., 2018; Sibtain et al.,
2021), support vector machine (Adnan et al., 2020), and random
forest (Pandhiani et al., 2020). As a type of ANN, long short-term
memory neural networks (LSTMs) have been successfully applied
in monthly runoff forecasting (Chen et al., 2020; Mao et al., 2021;
Wang et al., 2021). Although LSTM performs well, further
improvement is still needed to enhance the forecast accuracy.
In previous studies, there have been generally two strategies to
improve the prediction accuracy. One is the data preprocessing
technique that can reduce the nonstationary characteristics of the
time series data and extract effective information hidden in data
(Apaydin and Sibtain, 2021). The other is to adopt optimization
algorithms to optimize the hyperparameters of the models (Feng
et al., 2022).

As a data preprocessing technique, empirical mode
decomposition (EMD) has been applied extensively in
hydrological forecasting (Meng et al., 2019; Song et al., 2021).
However, with the significant drawback of mode mixing of EMD,
data with similar scales may appear in different intrinsic mode
functions (IMFs) (Zhang and Hong, 2019). To overcome this
defect, ensemble empirical mode decomposition (EEMD) is
proposed by adapting the Gaussian white noise and widely
used in many fields, such as hydrological forecasting and
mechanical fault diagnosis (Zhang et al., 2018; Ali et al., 2020;
Faysal et al., 2021; Wang et al., 2021). For example, Ali et al.
(2020) investigated the EEMD combined with RF and kernel
ridge regression model for monthly rainfall forecasts and verified
that the hybrid model could attain better rainfall forecast
accuracy. Yuan et al. (2021) used a combination of EEMD and
LSTM to forecast daily runoff and significantly improved the
forecast accuracy compared to the LSTM model. Many studies
have reported optimized hyperparameters of LSTM in
application, and several optimization algorithms were used.
For instance, Yuan et al. (2018) investigated the accuracy of
hybrid LSTM and ant lion optimizer model (LSTM-ALO) in
monthly runoff forecasting and confirmed the effectiveness of the
hybrid model. As an emerging optimization algorithm with the
merits of robustness and strong global searching ability, the
sparrow search algorithm (SSA) has become popular in
solving optimization problems (Xue and Shen, 2020; Zhang
and Ding, 2021; Li et al., 2022). At present, several studies

have been conducted by utilizing both data preprocessing
techniques and parameter optimization for models in
hydrological forecasting. For example, Niu et al. (2019)
utilized a combination of EEMD and an optimized extreme
learning machine (ELM) to forecast reservoir monthly runoff,
where the parameters of ELM were optimized by an improved
gravitational search algorithm. Wang et al. (2021) used VMD-
LSTM-PSO in daily runoff forecasting and verified its high
forecast accuracy and stability. To the best of our knowledge,
there are few studies that reported that EEMD and SSA-based
LSTM (EEMD-SSA-LSTM) have been conducted in monthly
runoff forecasting.

In this study, a hybrid of EEMD-SSA-LSTM is proposed for
monthly runoff forecasting. The novel contribution can be
conducted in three steps. First, EEMD is used to decompose the
original sequence into several subsequences. Second, each
subsequence is modeled and forecasted by LSTM, of which the
hyperparameters are optimized by the SSA. Finally, the results for
each subsequence are summarized as the final forecast result. The
proposedmodel has been verifiedwithmonthly runoff data obtained
from two reservoirs located in China, and the result shows that the
proposed EEMD-SSA-LSTM model can afford satisfactory forecast
accuracy and is reliable and applicable in practice.

METHODOLOGY

Ensemble Empirical Mode Decomposition
The conventional EMD is prone to mode aliasing when used to
analyze time series data. To solve this problem, as an
improvement, EEMD can effectively reduce mode aliasing by
adding white noise. The specific EEMD steps can be stated as
follows:
Step 1. Given a signal, the parameters of EEMD are set, including
the maximum number of iterations, noise standard deviation, and
number of realizations (NR).
Step 2. White noise wi(t) is added with standard normal
distribution to generate a new signal:

xi(t) � x(t) + wi(t). (1)
Step 3. EMD is used to decompose the signal xi(t) into n IMFs
and a trend item.

xi(t) � ∑n
j�1
cij(t) + ri(t). (2)

Step 4. Repeat steps 2 and 3 for NR times.

Step 5. Eq. 3 is used to calculate the IMFs and Eq. 4 is used to gain
the final results.

cj(t) � 1
NR

∑NR

i�1
cij(t), (3)

x(t) � ∑n
j�1
cj(t) + r(t), (4)
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where cj(t) represents the jth IMF and r(t) denotes the
trend item.

Sparrow Search Algorithm
The SSA, proposed by Xue and Shen (2020), is a novel swarm
intelligent optimization algorithm, which has the advantages of
less control parameters, strong local search ability, and fast
convergence speed. In the SSA, sparrow swarms are divided
into two categories: the producers and the scroungers. The
producers can search for abundant food, while the scroungers
follow the producers to find food. The main steps of the SSA are
as follows:

1) The location of the producers is updated by using Eq. 5:

Xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Xt
i,j · exp( − i

α · itermax
) if R2 < ST

Xt
i,j + Q · L ifR2 ≥ ST

, (5)

where t is the current iteration number; j = 1, 2,. . .,d; itermax is the
maximum number of iterations; Xi,j is the position of the ith
sparrow in the jth dimension; α ∈ (0, 1] is a random number.
R2 ∈ [0, 1] and ST ∈ [0.5, 1] denote the warning value and the
safe value, respectively; Q is a random number obeying normal
distribution; and L denotes a matrix of 1 × d.

2) The location of the scroungers is updated by using Eq. 6:

Xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q · exp(Xworst −Xt

i,j

i2
) if i> n/2

Xt+1
p +

∣∣∣∣∣Xt
i,j −Xt+1

p

∣∣∣∣∣ · A+ · L otherwise

. (6)

When i> n/2, it indicates that the ith scrounger with worse
fitness is most probable to fly to other places to find food and get
more energy.

Supposing 10–20% of of sparrows are aware of danger, being
aware of danger, a sparrow will quickly move to the safe area,
which can be mathematically expressed as

Xt+1
i,j �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Xt

best + β ·
∣∣∣∣∣Xt

i,j −Xt
best

∣∣∣∣∣ if fi >fg

Xt
i,j + K · (∣∣∣∣∣Xt

i,j −Xt
worst

∣∣∣∣∣(fi − fw) + ε
) if fi � fg

, (7)

where Xbest is the current global optimal position; β is a random
number of the step size control parameter, which obeys normal
distribution with mean of 0 and variance of 1; K ∈ [−1, 1] is a
random number; fi is the fitness value of the current sparrow
individual; fg is the current global optimal fitness value; fw is the
current global worst fitness value; and ε is a constant.

Long Short-Term Neural Networks
LSTM is a type of recurrent neural network model (RNN) in
essence and can solve the problem of gradient disappearance
during backpropagation, which is faced by the conventional
RNN. The LSTM model consists of an input layer, a hidden
layer, and an output layer. In the hidden layer, three control units

are established, which are input gate, forget gate, and output gate.
The function of the input gate is to selectively record new
information into the cell state; the forget gate is to selectively
forget the information in the cell; and the output gate is to bring
the stored information to the next neuron. The LSTM model is
updated as follows:

Forget gate : ft � σ(Wf · [ht−1, xt] + bf), (8)
Input gate : it � σ(Wi · [ht−1, xt] + bi), (9)

Output gate : ot � σ(Wo · [ht−1, xt] + bo), (10)
Input units : ~ct � tanh(Wc · [ht−1, xt] + bc), (11)

Memory cells : ct � ft · ct−1 + it · ~ct, (12)
Output units : ht � ot · tanh(ct), (13)

whereft, it, ~ct, ct, ot, and ht denote forget gate, input gate, current cell
state, final cell state, output gate, and the output of LSTM, respectively;
wf,wi,wc, andwo are the weights of forget gate, input gate, cell state,
and output gate, respectively; ht−1 is the output of the previous
generation; xt is the input at time t; and σ is the sigmoid function.

Hybrid Model for Monthly Runoff
Forecasting
To forecast monthly runoff, a hybrid model of EEMD-SSA-LSTM
was proposed. The specific flow chart of the proposed model is
shown in Figure 1, and the main processes can be stated as
follows:
Step 1Data processing. The original monthly runoff sequence is
decomposed by the EEMD method, and several subsequences
with different frequencies are obtained. The input variables for
each subsequence are selected by partial autocorrelation function
(PACF).
Step 2Parameter optimization. The SSA algorithm is used to
optimize the hyperparameters of the LSTM model for each
subsequence, including number of neurons, number of
iterations, and learning rate.
Step 3Forecast and aggregation. Forecast results for each
subsequence can be obtained by conducting the LSTM model
for each subsequence, and the final forecast results can be obtained
by simply aggregating the forecast results for each subsequence.

Evaluation Index
To evaluate the predictive ability of the proposed model, four
frequently used evaluation indexes, that are root mean squared
error (RMSE), mean absolute percentage error (MAPE),
coefficient of correlation (R), and Nash coefficient (CE), are
used to evaluate the model performance. For these four
indexes, the closer the values of RMSE and MAPE are to
0 and the values of R and CE are to 1, the better the
performance of the model. The specific formulas are as follows.

RMSE �

1
n
∑n
i�1
(Qi − Q̂i)2√

, (14)

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣Qi − Q̂i

Qi

∣∣∣∣∣∣∣∣∣ × 100, (15)
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R �
∑n
i�1
(Qi − �Qi)(Q̂i − Q̂i)∑n

i�1
(Qi − �Qi)2∑n

i�1
(Q̂i − Q̂)2√ , (16)

CE � 1 −
∑n
i�1
(Qi − Q̂i)2

∑n
i�1
(Qi − �Q)2 , (17)

whereQi and Q̂i are the measured and forecasted values at the ith
month, respectively; and �Qi and Q̂i are the average of the
measured and forecasted values, respectively.

CASE STUDY

Study Area and Data
The Guangzhao and Xinfengjiang Reservoirs, located in
southwestern and southern China, were selected as case
studies, respectively. Located in Guizhou province, the Beipan
River basin has a subtropical monsoon climate. The Guangzhao

Reservoir is located in the middle reach of the Beipan River basin,
in which the drainage area is 13548 km2, the annual average
rainfall is 1178 mm, and the annual average runoff is 257 m3/s.
With 745 m of normal water level, 3.245 × 109 m3 of storage
volume as well as 1040 MW of installed capacity, the Guangzhao
Reservoir is a leading reservoir with the main purpose of power
generation and takes into account shipping, irrigation, and water
supply. Located in Guangdong province, the Dongjiang River
basin has a subtropical monsoon climate. The Xinfengjiang
Reservoir is located in the Dongjiang River basin, of which the
drainage area is 5740 km2, the annual average rainfall is
1795 mm, and the annual average runoff is 192 m3/s. With
116 m of normal water level, 13.896 × 109 m3 of storage
volume as well as 336.1 MW of installed capacity, the
Xinfengjiang Reservoir is a leading reservoir with the main
purpose of power generation and takes into account irrigation,
shipping, flood control, and water supply.

In this study, monthly runoff data covering from 1956 to
2017 were selected from the Guangzhao Reservoir, of which the
data from 1956 to 2002 were chosen for calibration, and the
remaining data were used for validation. Monthly runoff data
covering from 1943 to 2015 were selected from the Xinfengjiang

FIGURE 1 | Flowchart of EEMD-SSA-LSTM for monthly runoff forecasting.
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Reservoir, of which the data from 1943 to 1997 were chosen for
calibration, and the remaining data were used for validation.

Data Decomposition
Via EEMD, monthly runoff data of the two reservoirs were
decomposed into several subsequences. There are three
important parameters of EEMD that affect the decomposition
results, of which the white noise amplitude was set to 0.2 times the
standard deviation of the sample data, NR was set to 100, and the
maximum number of filtering iterations was set to 500. Once the
parameters of EEMD are set, decomposition can be carried out.

Input Determination
Selecting appropriate input variables has an important influence on
the forecast result. In previous studies, several methods have been

tried to determine input variables, and PACF has been frequently
used as an efficient tool (Feng et al., 2020; Kumar et al., 2021). In
PACF, input variables are determined when all PACF values fall
within the confidence interval, and the previous values are selected
as inputs. The PACF values of the original data and decomposed
subsequences of the Guangzhao and Xinfengjiang reservoirs are
shown in Figures 2, 3. According to Figures 2, 3, the input
variables of the original data and subsequences are determined,
and the selected input variables are shown in Tables 1, 2.

Model Development
In order to evaluate the performance of the proposed EEMD-
SSA-LSTM model, five models are used for comparison, namely,
backpropagation neural networks (BPNN), LSTM, EMD-BPNN,
EMD-LSTM, and EMD-SSA-LSTM.

FIGURE 2 | PACF values of each series for the Guangzhao Reservoir.
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FIGURE 3 | PACF values of each series for the Xinfengjiang Reservoir.

TABLE 1 | Selected input values of each series for the Guangzhao Reservoir.

No. Series Input variables Numbers of input

1 Original xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7,xt−8 8
2 IMF1 xt−1,xt−2,xt−3,xt−4 4
3 IMF2 xt−1,xt−2,xt−3,xt−4 4
4 IMF3 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6 6
5 IMF4 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6 6
6 IMF5 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6 6
7 IMF6 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7,xt−8 8
8 IMF7 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7 7
9 IMF8 xt−1,xt−2,xt−3,xt−4,xt−5 5
10 IMF9 xt−1,xt−2,xt−3,xt−4,xt−5 5
11 IMF10 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6 6
12 IMF11 xt−1,xt−2 2

TABLE 2 | Selected input values of each series for the Xinfengjiang Reservoir.

No. Series Input variables Numbers of input

1 Original xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7,xt−8 8
2 IMF1 xt−1,xt−2 2
3 IMF2 xt−1,xt−2,xt−3,xt−4 4
4 IMF3 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6 6
5 IMF4 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7 7
6 IMF5 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7,xt−8 8
7 IMF6 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7 7
8 IMF7 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7 7
9 IMF8 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7 7
10 IMF9 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7,xt−8 8
11 IMF10 xt−1,xt−2,xt−3,xt−4,xt−5,xt−6,xt−7 7
12 IMF11 xt−1,xt−2 2
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For the BPNN and LSTM models, input variables were
determined by the PACF method, and the original monthly
runoff data were inputted into the model for forecasting. For
the EMD-BPNN and EMD-LSTM models, first, the original data
were inputted into EMD and several subsequences were obtained;
second, the PACF method was used to determine input variables
of each subsequence, and thus the BPNN and LSTMmodels were
built by simulating each subsequence; and finally forecasted
values of each subsequence were summarized as the final
forecast result. For the EMD-SSA-LSTM model, the
decomposition of the original monthly runoff data,
determination of input variables, and aggregation of forecast
results of each subsequence were similar to those of the EMD-
BPNN and EMD-LSTM models. The difference between them
lies in that the hyperparameters of the LSTM for each
subsequence are optimized by the SSA. For the EEMD-SSA-
LSTM model, the procedures that need to be conducted are
similar to the EMD-SSA-LSTM model, except for the
decomposition method.

RESULTS AND DISCUSSION

Forecast Results
The comparison results of different models for the Guangzhao and
Xinfengjiang reservoirs are shown in Tables 3, 4, respectively.

For the Guangzhao Reservoir, it can be intuitively found that
adopting data preprocessing methods can enhance model
performance to some extent. For example, compared with the
BPmodel in the validation, the LSTMmodel improves the forecast
accuracy with decreases of 9.84% and 17.21% in the aspect of
RMSE andMAPE and increases of 3.71% and 28.96% in the aspect
of R and CE, respectively, and the EMD-BP model improves the

forecast accuracy with decreases of 19.29% and 23.15% in the
aspect of RMSE andMAPE and increases of 18.10% and 53.97% in
the aspect of R and CE, respectively. Compared with the LSTM
model, the EMD-LSTMmodel improves the forecast accuracy with
decreases of 25.70% and 22.00% in the aspect of RMSE and MAPE
and increases of 18.37% and 43.72% in the aspect of R and CE,
respectively. Compared with the EMD-SSA-LSTM model, the
EEMD-SSA-LSTM model improves the forecast accuracy with
decreases of 31.70% and 39.62% in the aspect of RMSE and
MAPE and increases of 5.71% and 14.96% in the aspect of R
and CE, respectively.

For the Xinfengjiang Reservoir, the statistical results further
confirm that different data preprocessing methods have different
impacts on model forecast accuracy, and adopting optimization
algorithms to optimize model parameters can effectively enhance
model performance. For example, compared with the LSTM
model in the validation, the EMD-LSTM model improves the
forecast accuracy with decreases of 17.26% and 18.35% in the
aspect of RMSE and MAPE and increases of 31.85% and 54.64%
in the aspect of R and CE, respectively. Meanwhile, compared
with the EMD-SSA-LSTM model, the EEMD-SSA-LSTM model
improves the forecast accuracy with decreases of 23.17% and
13.83% in the aspect of RMSE and MAPE and increases of
6.99% and 16.41% in the aspect of R and CE, respectively.

To show the dynamic changes of runoff more intuitively, the
runoff prediction diagrams of Guangzhao and Xinfengjiang
reservoirs are depicted in Figures 4, 5, in which the trend of
the predicted values by the EEMD-SSA-LSTMmodel is generally
consistent with that of the observed values, and the fitting degree
is better than others. The results show that the method of
decomposing first and then assembling is feasible and proves
that the EEMD-SSA-LSTM model can effectively improve the
accuracy of monthly runoff prediction.

TABLE 3 | Comparison of evaluation indexes of different models for the Guangzhao Reservoir.

Models Calibration Validation

RMSE MAPE (%) R CE RMSE MAPE (%) R CE

BPNN 140.900 50.179 0.828 0.674 136.723 65.968 0.722 0.392
LSTM 128.235 32.152 0.856 0.730 123.275 54.615 0.749 0.506
EMD-BPNN 122.162 55.908 0.887 0.754 110.353 50.698 0.853 0.604
EMD-LSTM 115.773 51.811 0.889 0.779 91.597 42.600 0.887 0.727
EMD-SSA-LSTM 104.298 50.085 0.914 0.821 82.082 36.318 0.899 0.781
EEMD-SSA-LSTM 74.087 33.644 0.955 0.910 56.060 21.929 0.950 0.898

TABLE 4 | Comparison of evaluation indexes of different models for the Xinfengjiang Reservoir.

Models Calibration Validation

RMSE MAPE (%) R CE RMSE MAPE (%) R CE

BPNN 142.925 85.947 0.715 0.502 172.722 121.021 0.545 0.234
LSTM 145.229 80.721 0.700 0.485 157.167 93.074 0.628 0.366
EMD-BPNN 100.523 70.006 0.877 0.754 140.605 85.013 0.761 0.492
EMD-LSTM 85.480 58.421 0.918 0.822 130.038 75.995 0.828 0.566
EMD-SSA-LSTM 81.046 48.844 0.919 0.840 105.528 58.450 0.858 0.714
EEMD-SSA-LSTM 68.222 40.344 0.943 0.886 81.080 50.369 0.918 0.831
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In order to further compare the performance of the six models,
Figures 6, 7 are the scatter plots of different models for the
Guangzhao and Xinfengjiang reservoirs. Compared with the
other five models, the scatter points of the EEMD-SSA-LSTM
model are mainly distributed on the 45° line, which shows that the
decomposition method can extract the implicit complex and
effective information, reduce the difficulty of model prediction,
and improve the accuracy of runoff prediction.

To evaluate the performance of the EEMD-SSA-LSTM model
for peak flow prediction, the peak flow estimation statistics for the
six models are demonstrated in Tables 5, 6. For the Guangzhao
Reservoir, the results are shown inTable 5, and the absolute mean
values of the relative errors by using the BPNN, LSTM, EMD-
BPNN, EMD-LSTM, EMD-SSA-LSTM, and EEMD-SSA-LSTM
models are 24.87%, 32.49%, 23.33%, 15.74%, 11.83%, and 9.80%,
respectively. For the Xinfengjiang Reservoir, it can be seen from
Table 6 that the absolute average values of relative errors by
BPNN, LSTM, EMD-BPNN, EMD-LSTM, EMD-SSA-LSTM,

and EEMD-SSA-LSTM models are 44.87%, 44.71%, 26.01%,
22.50%, 24.25%, and 12.89%, respectively. The results
demonstrate that, in terms of peak flow prediction, the
EEMD-SSA-LSTM model has higher prediction accuracy than
the other five models. Hence, the EEMD-SSA-LSTM model is
more reliable in monthly runoff prediction.

Discussion
According to the comparison results of the BPNN and LSTM
models, the four statistical indexes of the LSTM model are better
than those of the BPNN model, which indicates that the LSTM
model has higher prediction accuracy than the BP model. The
statistical results of BPNN, LSTM, EMD-BPNN, and EMD-
LSTM indicate that adopting a data preprocessing technique
can effectively improve the model performance. The
comparison results of statistical indexes between the EMD-
SSA-LSTM model and the EMD-LSTM model show that
choosing the appropriate parameters has a great impact on the

FIGURE 4 | Comparison of the forecast results for the Guangzhao Reservoir during the validation period.

FIGURE 5 | Comparison of the forecast results for the Xinfengjiang Reservoir during the validation period.

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 9096828

Li et al. EEMD-SSA-LSTM for Monthly Runoff Forecasting

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


prediction accuracy of the model. The SSA optimization
algorithm can select suitable parameters within a certain
range, which improves the efficiency of model parameter
selection and the accuracy of model prediction. The EEMD-
SSA-LSTM model is better than the other five models in the four

statistical indexes, which shows that the EEMD method can
eliminate the data noise better than the EMD method to a
certain extent. Via EEMD, the main features of the original
sequence are further excavated, the complexity of the sequence
is reduced, and the prediction accuracy is improved.

FIGURE 6 | Comparison of scatter diagrams of forecast results for the Guangzhao Reservoir during the validation period.

FIGURE 7 | Comparison of scatter diagrams of forecast results for the Xinfengjiang Reservoir during the validation period.
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The reliability and feasibility of the proposed EEMD-SSA-
LSTM model has been confirmed, but the model can be further
studied in the future. It is still necessary to adopt a new
decomposition algorithm to reduce the complexity of the
sequence further. Although the SSA has stronger
performance than traditional swarm optimization
algorithms, the drawbacks of too fast convergence speed and
easy to fall into local optimum should be overcome. Hence, it is

necessary to optimize the SSA algorithm to improve the quality
of model parameters.

CONCLUSION

In this study, a hybrid model, namely, EEMD-SSA-LSTM, for short, is
proposed for monthly runoff forecasting. The innovation can be

TABLE 5 | Peak flow estimates of different models for the Guangzhao Reservoir during the validation period.

Original BPNN LSTM EMD-
BP

EMD-
LSTM

EMD-SSA-
LSTM

EEMD-SSA-
LSTM

Relative error (%)

BPNN LSTM EMD-
BP

EMD-
LSTM

EMD-SSA-
LSTM

EEMD-SSA-
LSTM

544.76 540.86 343.77 536.79 491.28 367.09 496.00 −0.72 −36.89 −1.46 −9.82 −32.61 −8.95
546.45 544.89 323.77 413.44 498.25 458.25 491.32 −0.29 −40.75 −24.34 −8.82 −16.14 −10.09
580.18 449.48 509.96 278.38 424.49 475.68 481.47 −22.53 −12.10 −52.02 −26.83 −18.01 −17.01
580.51 320.58 500.08 366.87 369.19 531.41 444.30 −44.78 −13.86 −36.80 −36.40 −8.46 −23.46
656.24 741.90 552.49 529.72 621.74 595.07 615.64 13.05 −15.81 −19.28 −5.26 −9.32 −6.19
526.04 689.67 542.78 523.84 626.68 601.89 533.67 31.11 3.18 −0.42 19.13 14.42 1.45
500.19 484.87 587.90 390.00 454.78 503.11 456.61 −3.06 17.54 −22.03 −9.08 0.58 −8.71
552.69 673.65 496.37 499.14 582.53 567.79 495.30 21.89 −10.19 −9.69 5.40 2.73 −10.38
320.45 448.48 488.33 219.60 354.69 322.03 311.49 39.96 52.39 −31.47 10.69 0.49 −2.79
534.98 565.80 430.46 394.10 543.63 487.93 492.83 5.76 −19.54 −26.33 1.62 −8.79 −7.88
219.93 423.04 465.74 162.80 281.38 208.82 216.60 92.35 111.77 −25.98 27.94 −5.05 −1.51
614.08 627.54 425.65 506.22 598.25 579.54 556.15 2.19 −30.68 −17.56 −2.58 −5.62 −9.43
547.96 465.60 309.74 466.72 480.74 448.33 469.62 −15.03 −43.47 −14.83 −12.27 −18.18 −14.30
423.92 292.52 548.14 205.32 294.87 334.19 373.53 −31.00 29.30 −51.57 −30.44 −21.17 −11.89
1199.60 607.90 601.33 1005.09 842.35 1009.64 1043.79 −49.33 −49.87 −16.21 −29.78 −15.84 −12.99
Average
(absolute)

24.87 32.49 23.33 15.74 11.83 9.80

TABLE 6 | Peak flow estimates of different models for the Xinfengjiang Reservoir during the validation period.

Peak
NO.

Original BPNN LSTM EMD-
BP

EMD-
LSTM

EMD-
SSA-
LSTM

EEMD-
SSA-LSTM

Relative error (%)

BPNN LSTM EMD-
BP

EMD-
LSTM

EMD-
SSA-
LSTM

EEMD-
SSA-
LSTM

1 645.00 516.10 446.11 519.66 559.83 512.62 615.51 −19.98 −30.84 −19.43 −13.21 −20.52 −4.57
2 362.00 477.41 152.11 256.28 241.89 250.49 307.11 31.88 −57.98 −29.21 −33.18 −30.80 −15.16
3 498.00 135.31 561.09 336.90 333.68 235.72 312.94 −72.83 12.67 −32.35 −33.00 −52.67 −37.16
4 618.00 449.28 421.61 476.48 504.31 510.21 515.77 −27.30 −31.78 −22.90 −18.40 −17.44 −16.54
5 353.00 407.47 234.48 324.23 357.07 292.47 273.40 15.43 −33.57 −8.15 1.15 −17.15 −22.55
6 336.00 373.64 458.48 221.99 264.12 253.47 240.52 11.20 36.45 −33.93 −21.39 −24.56 −28.42
7 203.00 377.20 460.70 217.30 223.51 191.65 158.14 85.81 126.95 7.05 10.10 −5.59 −22.10
8 1496.00 411.66 396.42 986.89 1621.85 1259.86 1399.76 −72.48 −73.50 −34.03 8.41 −15.78 −6.43
9 783.82 384.66 411.61 623.83 638.78 576.91 783.97 −50.93 −47.49 −20.41 −18.50 −26.40 0.02
10 687.50 357.30 415.62 483.34 480.68 498.28 551.16 −48.03 −39.55 −29.70 −30.08 −27.52 −19.83
11 1066.00 364.41 448.93 802.92 807.66 1050.18 935.71 −65.81 −57.89 −24.68 −24.23 −1.48 −12.22
12 228.20 303.18 441.94 158.87 117.49 106.26 214.36 32.86 93.67 −30.38 −48.51 −53.43 −6.06
13 867.50 482.43 404.40 781.69 850.07 958.82 875.72 −44.39 −53.38 −9.89 −2.01 10.53 0.95
14 369.60 163.73 391.19 222.95 273.06 221.79 353.52 −55.70 5.84 −39.68 −26.12 −39.99 −4.35
15 442.30 494.57 402.44 352.88 394.37 368.49 393.25 11.82 −9.01 −20.22 −10.84 −16.69 −11.09
16 860.90 430.51 490.12 534.06 1131.06 792.05 887.67 −49.99 −43.07 −37.96 31.38 −8.00 3.11
17 616.20 301.35 405.49 425.92 477.52 522.57 578.49 −51.10 −34.19 −30.88 −22.51 −15.20 −6.12
18 493.63 197.04 410.08 309.01 237.44 233.01 418.26 −60.08 −16.93 −37.40 −51.90 −52.80 −15.27
Average
(absolute)

44.87 44.71 26.01 22.50 24.25 12.89
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generally implemented in three steps. First, the EEMD method was
used to decompose the original monthly runoff sequence into several
subsequences. Then, the SSA algorithm was introduced to find the
optimal hyperparameters of the LSTMmodel, and themodels for each
subsequencewere built. Finally, the forecast results of each subsequence
were summarized as the final forecast results. Monthly runoff data
from China’s Guangzhao and Xinfengjiang reservoirs were adopted,
and four standard statistical indexes were used to evaluate the model
performance. The results demonstrate that, compared with the BP,
LSTM, EMD-BP, EMD-LSTM, and EMD-SSA-LSTM models, the
proposed EEMD-SSA-LSTMmodel has the highest forecast accuracy.
Hence, the proposed hybrid model can yield satisfactory forecast
precision and is an efficient tool for monthly runoff forecasting.
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