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The intelligent transportation system (ITS) is one of the effective solutions to the problem of
urban traffic congestion, and it is also one of the important topics of smart city
construction. One particular application is the traffic monitoring and flow prediction.
However, there are still challenges regarding both aspects. On the one hand, the
current traffic monitoring relies heavily on the single object detection method that
cannot achieve accurate statistics of moving target counting and, meanwhile, has
limited speed advantage; on the other hand, the existing traffic flow prediction models
rarely consider different weather conditions. Therefore, the present article attempts to
propose a packaged solution, which combines a new target tracking and moving vehicle
counting method and an improved long short-term memory (LSTM) network for traffic flow
forecast with weather conditions. More specifically, the DCN V2 convolution kernel and
MultiNetV3 framework are used to replace YOLOv4’s conventional convolution kernel and
backbone network to realize multi-target tracking and counting, respectively.
Subsequently, combined with the temporal characteristics of historical traffic flow, this
article introduces weather conditions into the LSTM network and realizes the short-term
prediction of traffic flow at the road junction level. This study carries out a series of
experiments using the real traffic video data with a 2-month time span at a popular road
junction in the downtown of Shenzhen, China. The results suggest that the proposed
algorithms outperform the previous methods in terms of the 10% higher accuracy of target
detection tracking and about a half reduction of traffic prediction error, when considering
weather conditions.
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1 INTRODUCTION

Recent rapid urban development in China has led to increasing car ownership, which has led to more
severe traffic congestion and longer commuting times. According to a 2020 investigation on
commuting times for the 36 major Chinese cities, by the China Academy of Urban Planning
and Design, more than 10 million people (accounting for 13% of total population) have a daily
commute of more than 1 h each way. Among those cities, Shenzhen, one of the four “top-tier” cities
in Guangdong province, has a population of 17.56 million people (according to bureau statistics

Edited by:
Ying Jing,

Zhejiang University, China

Reviewed by:
Wen Xiao,

Newcastle University, United Kingdom
Ka Zhang,

Nanjing Normal University, China

*Correspondence:
Nu Wen

wennu1989@126.com

Specialty section:
This article was submitted to

Environmental Informatics and Remote
Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 27 March 2022
Accepted: 11 April 2022
Published: 11 May 2022

Citation:
Zheng Y, Li X, Xu L andWen N (2022) A
Deep Learning–Based Approach for
Moving Vehicle Counting and Short-

Term Traffic Prediction From
Video Images.

Front. Environ. Sci. 10:905443.
doi: 10.3389/fenvs.2022.905443

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 9054431

ORIGINAL RESEARCH
published: 11 May 2022

doi: 10.3389/fenvs.2022.905443

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.905443&domain=pdf&date_stamp=2022-05-11
https://www.frontiersin.org/articles/10.3389/fenvs.2022.905443/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.905443/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.905443/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.905443/full
http://creativecommons.org/licenses/by/4.0/
mailto:wennu1989@126.com
https://doi.org/10.3389/fenvs.2022.905443
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.905443


2020) and a GDP of 2.76 trillion yuan (ranking it third in
mainland China). As evidenced by the Shenzhen traffic police
office, the numbers of registered vehicles and drivers are around
3.36 and 4.39 million, respectively. The resulting traffic density is
estimated at more than 500 per km, which is the highest in the
country. In the era of information and communication
technology, urban transportation at such a large scale cannot
function well without the support of intelligent transportation
systems (ITSs) (Telang et al., 2021, Zear et al., 2016, Khatoun and
Zeadally, 2016, Mckenney and Frey-Spurlock, 2018). For
instance, one plausible measure for coordinating urban road
traffic could be monitoring the traffic volume using closed
circuit television (CCTV) images at each road junction and
implementing the prediction based on the historic traffic
volume data. In doing so, we could predict the future traffic
situation for better traffic management and optimization, thereby
partly alleviating traffic congestion. Numerous studies have
investigated traffic monitoring and prediction at the junction
level spanning a wide range of disciplines. For example, Khekare
and Sakhare (2013) introduced a new scheme consisting of a
smart city framework that transmits information about traffic
conditions to help drivers make appropriate decisions. Marais
et al. (2014) devised an approach to deal with the inaccuracy of
signal propagation conditions for urban users who demand
accurate localization by associating GNSS data and imaging
information. Raja et al. (2018) proposed a cognitive intelligent
transportation system (CITS) model that provides efficient
channel utilization, which is the key to make any application
successful in vehicular ad hoc networks. Zheng et al. (2020) used
an adaptation evolutionary strategy to control arterial traffic
coordination for a better passage rate along one single road
with several junctions. However, the existing literature may
still face challenges regarding the inaccuracy of both car object
detection and traffic volume prediction. To be more specific,
current detection methods from CCTV images mainly focus on
single car object detection and may suffer from the inaccuracy of
multiple moving object recognition and tracking (such as
omission or false detection) and have a limited speed
advantage. Also, the traffic volume prediction models that are
based merely on the detection results may be distant from reality
as they seldom consider environmental factors such as weather
conditions (for example, sunny or rainy days).

The present study is motivated to put forward a two-level
traffic flowmanagement system to cope with the abovementioned
challenges, which is supported by the deep learning technique
and is validated by a 2-month video image series at a popular road
junction located at downtown Shenzhen. Specifically, the system
is layered with YOLOv4 for car object detection and tracking and
is then layered with a modified long short-term memory (LSTM)
network embedded with the spatio-temporal characteristics of
historic traffic records, as well as corresponding weather
information, to build up a short-term traffic flow prediction
model. Therefore, the main contributions of this article are
twofold. First, regarding moving object detection, we proposed
a lightweight DCN-MultiNet-YOLO network for video-based
multi-target tracking for the collection of traffic volume
statistics at the urban road junction level. Second, for traffic

flow forecasts, we proposed an improved LSTM network that is
closer to realistic scenarios by considering various weather
conditions associated with real traffic flow changes.

The remainder of this article is organized as follows. After
introducing the overall structure of our approach, the
implementation details of object detection and traffic
prediction are described in detail in Section 2. Section 3
provides a case study of the junction level moving car
monitoring and traffic flow prediction. Finally, Section 4
concludes the study and points to potential applications of this
research.

2 METHODS

2.1 Overall Structure of the Algorithm
Figure 1 shows the overview of our approach, including two
parts. The first part is the vehicle detection and flow extraction
from multi-temporal traffic video data, where the core neural
network includes the Multi-Net of backbone, neck module for
enhancing feature extraction, and head module for detecting the

FIGURE.1 | Structure of the proposed algorithm.
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output. In the second part, after normalizing the traffic data, we
extracted the feature vector of environmental factors and
imported it into an improved LSTM network to predict the
traffic flow data under different weather conditions.

2.2 DCN-MultiNet-YOLO
According to the overall structure, target counting methods can
be divided into those based on traditional feature extraction
(Zhou et al., 2014; Denimal et al., 2017; Li et al., 2020) and
those based on the convolutional neural network (CNN) (Yoo
et al., 2016; He et al., 2017; Redmon and Farhadi, 2018).
Traditional feature extraction methods include the Haar-like
feature, the local binary pattern, and histogram of the oriented
gradient. The aforementioned algorithm usually focuses on edge
feature extraction to detect and count the individual targets, so it
requires a high accuracy of edge detection and is not suitable for
the counting of overlapping or dense targets. With the
development of deep learning, the mainstream object detection
and counting algorithms are realized by extracting target object
features based on the CNN. On the basis of the original YOLOv3
target detection architecture, YOLOv4 (Bochkovskiy et al., 2020)
is optimized in data processing and enhancement (Mosaic),
backbone network (Backbone), network training (self-
adversarial training), activation function (Mish), and loss
function (Focal Loss), which greatly improve the accuracy of
target detection and the training efficiency. In the data processing,
YOLOv4 obtains the anchor box by clustering the ground-truth
box and then uses the Mosaic data enhancement method to label
and train targets with different scales. The backbone of YOLOv4
draws on the advantages of extracting deep feature information

from deep residual learning [ResNet (He et al., 2016)]. It also
adopts the design idea of a spatial pyramid pooling network
[Spatial Pyramid Pooling Net (He et al., 2015) Atrous Spatial
Pyramid Pooling Net (Liu and Huang, 2019)] to splice arbitrary
size feature maps and convert them into fixed output size feature
vectors, which can be output at one time to realize multi-scale
object detection. The activation function YOLOv4 adopted is
mixed with smooth, non-monotonic, and lack of upper bound
characteristics. Although its computational complexity is higher
than that of ReLu in YOLOv3, its detection effect is improved. In
the final loss function training, YOLOv4 uses the idea of focal loss
for reference, that is, redistributing the training weights of easy
classification samples and difficult classification samples to
achieve the accuracy of the two-level detector without losing
the network training and prediction speed. Based on the original
YOLOv4 network, our approach modifies the framework of
backbone and applies the DCN V2 convolution to expand the
receptive field of the feature layer and enhance the accuracy of
object detection. As shown in Figure 2, the framework of the
DCN-MultiNet-YOLO model can be divided into three parts: the
backbone of DCN-MultiNet, bottleneck for enhanced feature,
and head for detecting output, of which the neck mainly includes
the SSP-Net and pyramid attention network. The network
parameters of each component are described in detail as
follows; the first two units of network parameters in the figure
are pixel, and the last is depth. For example, as shown in the
figure, the network 608 × 608 × 3 represents an image with a pixel
value of 608 × 608 and three channels.

DCN-MultiNet: DCN-MultiNet follows the darknet network
in YOLOv4. In order to reduce the parameters of the network

FIGURE 2 | Network architecture of DCN-MultiNet-YOLO.
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structure, multi-convolution layers are used as the core hidden
layer of the backbone network. All conventional convolutions in
the network framework are replaced by deformable convolutions,
which avert possible network accuracy degradation caused by
separable convolution. Moreover, we introduced the cross-stage
partial network to integrate the gradient changes into the feature
map. A smoother Mish is applied instead of the original ReLu as
the activation function, which obtains the three types of anchor
boxes closest to the real frame by clustering the data in the
ground-truth box. Finally, according to the input image with a
pixel of 608 × 608×3, the neural network outputs three scale
feature maps with shapes of 76 × 76, 38 × 38, and 19 × 19.

Neck: The bottleneck module is designed to enhance the
ability of network feature extraction. SSP-Net uses three
convolution layers with different shapes to expand the
perception threshold of the feature map to the front hidden
layer, which can enhance the target recognition ability of the
network. SSP-Net also introduces a differentiation pooling
strategy, which not only avoids the risk of network
overfitting but also outputs fixed size image features. Based
on the feature pyramid network (FPN), PANet uses
downsampling and upsampling methods to fuse different
scale feature maps at the same time so that the output layer
after mapping and fusion has richer features and improves the
expression ability of the network for shallow feature
information and deep semantic information.

Head: The output of the feature map corresponds to the last
three feature layers of the backbone network, with shapes of
76 × 76 × 75, 38 × 38 × 75, and 19 × 19 × 75, which has the
ability to perform multi-feature layer object detection. The
first two dimensions represent the size of the feature map grid,
which can extract targets of different shapes. The third
dimension is related to the dataset used in network
training. If the dataset has 20 categories and the
dimensions of location information and category
information are five, we should set the layer with a shape
of 3 × (20 + 5) to adapt to the anchor box.

To test the detection accuracy of the proposed architecture, we
compared the mean average precision between other neural
network structures. The formula of precision is as follows:

P � TP/(TP + FP), (1)
where P represents the algorithmic precision, TP indicates

that a positive sample is correctly retrieved as a positive sample,
and a false positive indicates that a negative sample is incorrectly
retrieved as a positive sample. The formula for recall is as
follows:

R � TP/(TP + FN), (2)
where R represents the recall rate of the algorithm, and FN

indicates the number of positive samples that were incorrectly
retrieved as negative samples. An excellent objection detection
model means that the accuracy increases as the recall rate
increases. The average precision is obtained by integrating the
P–R curves of a class. The formula for the average precision is as
follows:

AP � ∫1

0
p(r)dr. (3)

The mean average precision (mAP) is the average of the area
under the P–R curve for all categories. The formula for mAP is as
follows:

mAP � 1
n
∑ n

k�1APk. (4)

2.3 Conditional Long Short-Term Memory
The detected traffic flow from video images, as one of the basic
parameters of short-term traffic prediction parameters, can be
used as the key basis of traffic decision in the intelligent
transportation system (Chen and Chen, 2020). Short-term
prediction is to provide short-term (usually 5–10 min) or even
real-time traffic prediction based on the traffic data close or exact
to the current observation (Petkovics et al., 2015; Fu et al., 2016).
Short-term traffic flow prediction is very challenging due to the
stochastic and dynamic traffic condition. In recent years, scholars
from around the world have conducted widespread and thorough
research of LSTM or its variants in short-term traffic flow
forecasting with excellent achievements. Ma et al. (2015)
developed a long short-term memory (LSTM) neural network
to predict the travel speed prediction based on RTMS detection
data in Beijing city. The proposed model can capture the long-
term temporal dependency for time series and also automatically
determine the optimal time window. Zheng et al. (2017) put
forward a traffic forecast model based on the LSTM network that
considers temporal–spatial correlation in the traffic system via a
two-dimensional network composed of many memory units. Du
et al. (2020) proposed a deep irregular convolutional residual
LSTM network model called DST-ICRL for the urban traffic
passenger flow prediction. Little et al. (1981) proposed an end-to-
end deep learning architecture that consists of convolution and
LSTM to form a Conv-LSTM module to extract the
spatial–temporal information from the traffic flow
information. Moreover, Ma et al. (2021 and Zheng et al. (Dai
et al., 2019; Zheng et al., 2021) proposed an improved LSTM
model to improve the accuracy of short-term traffic flow
prediction. However, in addition to the traffic flow statistics
itself, weather conditions, emergencies, and other external
environmental conditions also have great changes on the flow
value, which have received less attention in the aforementioned
literature studies. The conditional long short-term memory
(CLSTM) proposed in this article inputs the aforementioned
environmental conditions and traffic flow to the LSTM
network and fully connected layer (FC layer), respectively.
Then, the output of them is fed into the feature fusion layer
(FF layer) and FC layer, which finally export the predicted
traffic flow.

Before introducing the structure of the CLSTM, we first
described the problem setting of our traffic scenario. The
problem of traffic flow prediction can be formulated as
follows. First, we divided the total traffic flow into multiple
time periods at every Δ time interval and summarized the
traffic flow at each period. Let Xc

i denote the traffic flow of the i
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th time period under environmental condition c, at current
time t (i =t); the task is to predict the traffic flow of this
moment by the historical traffic flow sequence with some
prediction domain σ and time interval Δ. The formal
expression is as follows:

Historical traffic flow : {Xc
i

∣∣∣∣∣∣ i � t − nΔ , t − (n − 1)Δ, . . . , t

− Δand c ∈ �C},
(5)

where C means a set containing different environmental
conditions.

Predicted traffic flow : {Xc
i

∣∣∣∣ i � t + Δ , t + 2Δ, . . . , t
+mΔ and mΔ< σ}. (6)

For example, when we consider Δ � 5 minutes, n � 12, and
σ � 3, it can be divided into 288 traffic flow values in 24 h of a
single day, and the objective is to predict three traffic flow
values in the future 15 min by using 12 traffic flow values in the
past 60 min. After the environmental condition expressed as a
feature vector �C, we can combine the historical traffic flow and
the environmental condition. Let c ∈ �C mean different
environmental conditions (for example, if c1 represents the
weather condition, then c1 = 0,1,2,3 . . . means rainy, sunny,
foggy, and so on); the traffic flow from time t–n to t can be
represented as Xc1

i � [ fc1
t−nΔ , f

c1
t−(n−1)Δ , . . . , f

c1
t−Δ ] , where fc

t
denotes the traffic flow value under environmental condition
c1. If we have k sets of environmental condition vectors, the
combined historical traffic flow and the environmental
condition can be represented by the matrix as follows:

Xc
i


→ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Xc

t− nΔ

..

.

Xc
t− Δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
fc1
t−nΔ / fck

t− nΔ

..

.
1 ..

.

fc1
t−Δ / fck

t− Δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

As shown in Figure 3, the proposed CLSTM consists of an
input feature transformation layer, a feature fusion layer, and a
fully connected layer (FC layer). The traffic flow input is the

time series vector �Xi , which contains the traffic flow value per
Δ time. The traffic flow input is a 1 × n vector, and it feeds into
a multilayer of a CNN layer and an LSTM network, which has
been proposed for a variety of applications such as network
fault prediction (Tan and Pan, 2019), gesture recognition
(Zhang et al., 2018), and speech emotion recognition
(Zhang et al., 2019) to obtain the short-term temporal
feature of the traffic flow. The second input is a 1 × m
vector �C of the environmental condition, and it feeds into
an m × 64 FC layer. The output shape of both components of
the input feature transformation layer is a 1 × 64 vector.
Finally, the feature fusion layer is followed by an FC layer,
both of which are regression layers, to perform forecasting.
The output shape of the predicted flow is 1 × m.

The loss function we selected as the RMSE is the square
root of the ratio of the square of the deviation between the
value and the actual value, divided by the number of
observations. The RMSE used to measure the deviation
between the observed value and the actual value is
calculated as follows:

Loss � RMSE �
��������������
1
n
∑ n

i�1(yi − y′
i)2√

. (8)

Besides the RMSE, we used another two functions—the
mean of absolute error (MAE) and mean absolute percentage
error (MAPE)—as the accuracy evaluation indicators for
comparing these prediction algorithms (Ma et al., 2018;
Weng et al., 2018; Xu et al., 2018; Chen C. et al., 2019;
Chen F. et al., 2019; Wu et al., 2019) in order to ensure the
robustness of the forecast algorithm. MAE , which means the
average absolute error, is calculated as follows (in all the
following formulas, n represents the sample size, yi is the
actual value, and y’

i is the predicted value):

MAE � 1
n
∑ n

i�1
∣∣∣∣yi − y′

i

∣∣∣∣. (9)

The MAPE represents the average of the absolute values of
relative percentage errors, which is calculated as follows:

FIGURE 3 | Network architecture of CLS.
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MAPE � 100%
n

∑ n
i�1

∣∣∣∣∣∣∣∣yi − y′
i

yi

∣∣∣∣∣∣∣∣. (10)

3 RESULTS AND DISCUSSION

3.1 Data and Environment
In this section, we evaluated the performance of the proposed model
by using a real-world dataset for object detection and short-term
traffic flow prediction. The detailed hardware configuration of this
experiment is as follows: the CPU of the computer is Intel (R) core
(TM) i9-9900k, the CPU frequency is 3.60 GHz, the memory is 64G,
the graphics card model is NVIDIA GeForce RTX 2080ti, and the
graphicsmemory is 11G×2. Our application is deployed on the 64-bit
operating systemUbuntu 16.04 with the deep learning frameworks of
TensorFlow 1.13.1 and Keras 2.3.1 and the parallel computing
framework of CUDA 10. The traffic data were collected at the
intersection of Qiaoxiang and Nonglin Roads in Futian District,
Shenzhen (Figure 4) between 1 June and 31 July 2021. The weather
data come from the China National Meteorological Science Data
Center.

3.2 Results for Multi-Target Tracking
The core idea of DCN-MultiNet-YOLO is separable convolution.
The standard convolution is decomposed into a depth-wise
convolution and a point-wise convolution, which play the role of
filtering and linear combination, respectively, in order to reduce the
number of parameters and calculation. As mentioned earlier, we
used the DCN V2 convolution to expand the receptive domain that
can improve the accuracy of the target detection model at the cost of
slightly sacrificing the amount of parameters. As can be seen from
Table 1, the parameter quantity of DCN-MultiNet-YOLO is only
0.48% more than that of MobileNet and 17% more than that of
CSPDarknet. Meanwhile, in order to compare the training time of
the algorithm, we set the size of the training batch to 32 and the total
training cycle to 200. It is found that when MultiNet is used as the
backbone, a single training cycle can cut the training time in half.

In order to verify the detection effect of different algorithms, the
second experiment compares the AP results of all categories in the
voc2007 + 2012 dataset, which implement the MobileNet and the
CSPDarknet53 as backbones in the control group. Figure 5 shows
that compared with the YOLOv4 network, whose backbone network
is MobileNet and CSPDarknet53, the mAP of DCN-MultiNet-
YOLO increased by 13.19% and 6.63%, respectively.

FIGURE 4 | Illustration of the study area.
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In Figure 6, we compared the results of object detection and lane
vehicle count of differentmodels. It should be noted that the detection
frame rate is related to the currently detected number and training
model. The higher the number of detected objects under the same
model, the lower is the frame rate. It can be seen from Figure 5 that
DCN-MultiNet-YOLO has more current and total detection counts
and faster real-time frame rates than that applied to MobileNet and
CSPDarknet53 as the backbone in the network.

Finally, we obtained the traffic flow every 5min in all directions of
the Qiaoxiang–Nonglin road using DCN-MultiNet-YOLO. Table 2

shows the example of the obtained traffic flow of six lanes from west
to east 7:00 to 9:00 a.m. on 1 June 2021, inwhich the columnnumbers
represent each 5-min time period during the morning peak hours,
and row numbers represent different lanes.

3.3 Results for Short-Term Traffic Flow
Prediction
Using the aforementioned object detection algorithm to make traffic
statistics on the images of the Qiaoxiang–Nonglin intersection, we

TABLE 1 | Model parameters of different backbone networks.

Non-trainable param (K) Trainable param Total param Train time (min)

MobileNet 63 11,405K 11,468K 7
CSPDarknet 66 64,363K 64,429K 16
DCN-MultiNet 62 11,461K 11,523K 7

FIGURE 5 | AP values of different backbone networks: (A) MobileNet, (B) CSPDarknet, and (C) DCN-MultiNet-YOLO.

FIGURE 6 | Model test results of different backbone networks: (A) MobileNet, (B) CSPDarknet, and (C) DCN-MultiNet-YOLO.

TABLE 2 | Example of vehicle count statistics in each lane from 7 to 9 a.m., 1 June 2021.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 35 35 37 34 46 35 33 35 40 42 34 29 24 43 26 31 34 36 35 35 37 37 23
2 37 35 34 38 40 36 30 42 44 29 32 38 34 46 35 40 44 38 40 44 48 49 47
3 27 27 29 29 28 28 29 28 32 20 27 26 28 30 31 28 35 34 23 30 40 26 39
4 31 30 40 33 37 51 35 32 45 25 35 37 34 34 39 34 52 42 37 45 52 42 39
5 14 16 17 14 16 16 10 12 11 12 10 14 11 13 11 10 12 14 11 13 11 14 10
6 13 12 20 17 17 19 15 15 18 12 13 15 11 14 14 17 17 18 16 24 13 18 18
FPS 16 15 17 15 16 16 17 16 16 14 16 14 15 16 15 15 15 17 15 17 17 16 17
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can obtain the traffic statistics of the intersection for 2 months. We
accumulated the traffic flow of three turns (left, right, and straight) in
four directions (east, south, west, and north) every 5min as a sample.
After removing the abnormal data, a total of 5616 sample records
were generated by using the traffic flow in 2months.We used 85%of

the aforementioned records as the training set and 15% as the test set.
As shown in Figure 7, we first selected 4 days (two sunny days and
two rainy days) to analyze the traffic data of the whole day. From the
traffic flow data, we can draw the following conclusions: 1) the total
traffic flow on rainy days is lower than that on sunny days. This is
because the intersection is located in a busy section of Shenzhen, and
the rainy days reduce the commuting ability of this road because
many vehicles that would have taken this road chose other roads. 2)

FIGURE 7 | Traffic flow under different weather conditions.

FIGURE 8 | Loss function curve of the algorithm.

TABLE 3 | Comparison of the prediction results of four models.

Network structure Evaluation function Weather conditions

Sunny Cloudy Rainy

KNN RMSE 30.22 38.31 52.54
MAE 23.57 31.11 38.39
MAPE (%) 24.05 32.28 40.37

LSTM RMSE 18.58 26.27 35.73
MAE 12.97 18.65 25.82
MAPE (%) 13.14 19.26 26.01

Cov-LSTM RMSE 15.32 19.24 27.38
MAE 12.06 16.72 19.35
MAPE (%) 12.71 17.13 20.42

CLSTM RMSE 15.74 16.78 18.31
MAE 13.65 14.34 16.06
MAPE (%) 12.91 15.19 16.85

Note: All the results are obtained by averaging on each day for the test dataset (about
10 days).

FIGURE 9 | Comparison of real and predicted traffic flows under
different weather conditions.
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We compared the correlation coefficient of the two sets of data and
found that the correlation coefficient of the two groups of traffic flow
data on sunny days is 0.935 and on rainy days it is 0.872, indicating
that traffic changes are more random on rainy days, which makes it
more difficult to predict.

It can be seen from Figure 8 that the loss function of the
algorithm decreases with the number of iterations. The loss
function begins to converge after about 70 iterations and
finally converges to about 0.16. The convergence of the
algorithm proves that the traffic prediction method proposed
in this article is feasible.

Two kinds of neural network structures—LSTM and Cov-
LSTM (Liu et al., 2017)—are compared as benchmarks of the
proposed network for prediction performance in this article. We
also selected the KNN representative clustering algorithm to
compare the accuracy of traffic prediction.

According to Table 3, on the sunny day, the CLSTM has RMSE,
MAE, and MAPE values of 15.74, 13.65, and 12.91%, respectively,
which are slightly higher than the values of Cov-LSTM of 15.32,
12.06, and 12.71% but lower than those of LSTMandKNN.Onnon-
sunny days (cloudy and rainy days), the proposed module can
achieve a smaller prediction error than the other module with all
three metrics for all prediction horizons. On the cloudy day, it has
RMSE, MAE, and MAPE values of 16.78, 14.34, and 15.19%,
respectively, and 18.31, 16.06, and 16.85% on the rainy day. This
is because the environmental conditions of the traffic flow are usually
interwoven with each other, which can be captured more efficiently
by the CLSTM module. The results prove the effectiveness of the
proposed model.

Furthermore, we compared the prediction performance of both
the benchmark neural network and CLSTM. Although the three
network structures can eventually converge and overcome the long-
term dependency of RNN, their performances are different. Figure 9
illustrates performance comparison in terms of the predicted traffic
volume from 0:00 a.m. to 12:00 p.m. for a 5-min prediction horizon.
It can be seen that all three networks have relatively good prediction
performance on sunny days. However, the prediction performance
of the benchmark network on rainy days is not sufficient. In
particular, in the evening and morning rush hours when there is
a large fluctuation in traffic volume, the performance advantages of
CLSTM are particularly prominent.

4 CONCLUSION

The grip of traffic flow patterns from multi-temporal images is
essential to mitigating urban congestion and can assist in the

construction of smart cities. In this article, we made use of 2-
month traffic video data for traffic flow monitoring and
prediction. We proposed 1) DCN-YOLO, a novel multi-target
tracking and counting method for moving targets, which
introduced the DCN V2 convolution into the YOLOv4
backbone network and replaced the original CSPDarknet
network in order to solve the problem of limited detection
accuracy of the MobileNet model. 2) CLSTM, a variant of the
LSTM network, which takes the environmental conditions as the
feature fusion layers for the short-term traffic flow prediction.
Through the case study of one popular road junction in the
metropolitan area, the results indicated the better performance of
the proposed architecture, of which the mAP of the moving car
detection with DCN-YOLO increased by 13.19%, and the
prediction RMSE of the CLSTM decreased by 49.01% on
rainy days.

Despite the strength of the proposed algorithms in this work,
there is still room for improvement. With respect to object
detection, it could be necessary to embed depth-wise separable
convolution to reduce the number of CSPDarknet53 of the
YOLOv4 network to fit for real-time operations at the mobile
end. In terms of short-term traffic flow prediction, the current
weather conditions can only be described as qualitative
variables, such as sunny and rainy days, which limit the
prediction accuracy to a certain extent. Future work can
include more quantitative factors such as precipitation and
air pressure. In addition to factors from the physical
environment, human factors, such as driver behaviors under
emergency events, can be considered to make the model closer
to reality.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YZ conceived and designed the study and also provided
funding; NW contributed to the study design, made
improvements to the algorithm, and drafted the manuscript;
XL contributed to the data acquisition and experimental study;
and LX was involved in data acquisition and revision of the
manuscript.

REFERENCES

Bochkovskiy, A., Wang, C. Y., and Liao, H. (2020). YOLOv4: Optimal Speed and
Accuracy of Object Detection. doi:10.48550/arXiv.2004.10934

Chen, C., Cheng, R., and Ge, H. (2019). An Extended Car-Following Model
Considering Driver’s Sensory Memory and the Backward Looking Effect.
Physica A: Stat. Mech. its Appl. 525, 278–289. doi:10.1016/j.physa.2019.
03.099

Chen, F., Song, M., Ma, X., and Zhu, X. (2019). Assess the Impacts of Different
Autonomous Trucks’ Lateral Control Modes on Asphalt Pavement
Performance. Transportation Res. C: Emerging Tech. 103, 17–29. doi:10.
1016/j.trc.2019.04.001

Chen, X., and Chen, R. (2020). “A Review on Traffic Prediction Methods for
Intelligent Transportation System in Smart Cities,” in 2019 12th International
Congress on Image and Signal Processing, BioMedical Engineering and
Informatics (CISP-BMEI), Suzhou, China, 19-21 Oct. 2019 (IEEE). doi:10.
1109/CISP-BMEI48845.2019.8965742

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 9054439

Zheng et al. Moving Vehicle Counting and Traffic Prediction

https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1016/j.physa.2019.03.099
https://doi.org/10.1016/j.physa.2019.03.099
https://doi.org/10.1016/j.trc.2019.04.001
https://doi.org/10.1016/j.trc.2019.04.001
https://doi.org/10.1109/CISP-BMEI48845.2019.8965742
https://doi.org/10.1109/CISP-BMEI48845.2019.8965742
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Dai, G., Ma, C., and Xu, X. (2019). Short-term Traffic Flow Prediction Method for
Urban Road Sections Based on Space-Time Analysis and GRU. IEEE Access 7
(99), 143025–143035. doi:10.1109/ACCESS.2019.2941280(

Denimal, E., Marin, A., Guyot, S., Journaux, L., and Molin, P. (2017). Automatic
Biological Cell Counting Using a Modified Gradient Hough Transform.
Microsc. Microanal 23 (01), 11–21. doi:10.1017/S1431927616012617

Du, B., Peng, H., Wang, S., Bhuiyan, Z. A., Wang, L., Gong, Q., et al. (2020). Deep
Irregular Convolutional Residual LSTM for Urban Traffic Passenger Flows
Prediction. IEEE Trans. Intell. Transportation Syst. 21 (3), 972–985.

Fu, R., Zhang, Z., and Li, L. (2016). “Using LSTM and GRU Neural Network
Methods for Traffic Flow Prediction,” in 2016 31st Youth Academic Annual
Conference of Chinese Association of Automation (YAC), Wuhan, China, 11-
13 Nov. 2016 (IEEE). doi:10.1109/yac.2016.7804912

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask R-CNN,” in 2017
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22-
29 Oct. 2017 (IEEE). doi:10.1109/ICCV.2017.322

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep Residual Learning for Image
Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016 (IEEE). doi:10.
1109/CVPR.2016.90

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition. IEEE Trans. Pattern
Anal. Machine Intelligence 37 (9), 1904–1916. doi:10.1109/TPAMI.
2015.2389824

Khatoun, R., and Zeadally, S. (2016). Smart Cities. Commun. ACM 59 (8), 46–57.
doi:10.1145/2858789

Khekare, G. S., and Sakhare, A. V. (2013). “A Smart City Framework for Intelligent
Traffic System Using VANET,” in 2013 International Mutli-Conference on
Automation, Computing, Communication, Control and Compressed Sensing
(iMac4s), Kottayam, India, 22-23 March 2013 (IEEE). doi:10.1109/imac4s.
2013.6526427

Li, D., Miao, Z., Peng, F., Wang, L., Hao, Y., Wang, Z., et al. (2020). Automatic
Counting Methods in Aquaculture: A Review. J. World Aquaculture Soc. 52.
doi:10.1111/jwas.12745

Little, J., Kelson, M., and Gartner, N. (1981). MAXBAND: A Program for Setting
Signals on Arteries and Triangular Networks. Transportation Res. Rec.
J. Transportation Res. Board 795, 40–46.

Liu, S., and Huang, D. (2019). Learning Spatial Fusion for Single-Shot Object
Detection. doi:10.48550/arXiv.1911.09516

Liu, Y., Zheng, H., Feng, X., and Chen, Z. (2017). “Short-term Traffic Flow
Prediction with Conv-LSTM,” in 2017 9th International Conference on
Wireless Communications and Signal Processing (WCSP), Nanjing, China,
11-13 Oct. 2017 (IEEE). doi:10.1109/WCSP.2017.8171119

Ma, C., Dai, G., and Zhou, J. (2021). Short-Term Traffic Flow Prediction for Urban
Road Sections Based on Time Series Analysis and LSTM_BILSTM Method.
IEEE Trans. Intell. Transport. Syst. (99), 1–10. doi:10.1109/tits.2021.3055258

Ma, C., Hao, W., He, R., and Moghimi, B. (2018). A Multiobjective Route Robust
Optimization Model and Algorithm for Hazmat Transportation. Discrete Dyn.
Nat. Soc. 2018, 1–12. doi:10.1155/2018/2916391

Ma, X., Tao, Z., Wang, Y., Yu, H., and Wang, Y. (2015). Long Short-Term Memory
Neural Network for Traffic Speed Prediction Using Remote Microwave Sensor Data.
Transportation Res. Part C: Emerging Tech. 54, 187–197. doi:10.1016/j.trc.2015.03.014

Marais, J., Meurie, C., Attia, D., Ruichek, Y., and Flancquart, A. (2014). Toward
Accurate Localization in Guided Transport: Combining GNSS Data and
Imaging Information. Transportation Res. Part C: Emerging Tech. 43,
188–197. doi:10.1016/j.trc.2013.11.008

Mckenney, M., and Frey-Spurlock, C. (2018). “Aging in Place: Challenges for Smart
& Resilient Communities,” in SIGSPATIAL ’18: 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
November 2018, 1–2. doi:10.1145/3284566.3284567

Petkovics, Á., Simon, V., Gódor, I., and Böröcz, B. (2015). Crowdsensing Solutions
in Smart Cities towards a Networked Society. EAI Endorsed Trans. Internet
Things 1 (1), e6. doi:10.4108/eai.26-10-2015.150600

Raja, G., Ganapathisubramaniyan, A., Selvakumar, M. S., Ayyarappan, T., and
Mahadevan, K. (2018). “Cognitive Intelligent Transportation System for Smart
Cities,” in 2018 Tenth International Conference on Advanced Computing (ICoAC),
Chennai, India, 13-15 Dec. 2018 (IEEE). doi:10.1109/icoac44903.2018.8939091

Redmon, J., and Farhadi, A. (2018). YOLOv3: An Incremental Improvement. doi:10.
48550/arXiv.1804.02767

Tan, Z., and Pan, P. (2019). “Network Fault Prediction Based on CNN-LSTM
Hybrid Neural Network,” in 2019 International Conference on
Communications, Information System and Computer Engineering
(CISCE), Haikou, China, 5-7 July 2019 (IEEE). doi:10.1109/cisce.2019.
00113

Telang, S., Chel, A., Nemade, A., and Kaushik, G. (2021). “Intelligent Transport
System for a Smart City,” in Security and Privacy Applications for Smart City
Development.

Weng, J., Du, G., Li, D., and Yua, Y. (2018). Time-varying Mixed Logit Model for
Vehicle Merging Behavior inWork ZoneMerging Areas.Accid. Anal. Prev. 117,
328–339. doi:10.1016/j.aap.2018.05.005

Wu, W., Liu, R., Jin, W., and Mac, M. (2019). Stochastic Bus Schedule
Coordination Considering Demand Assignment and Rerouting of
Passengers. Transportation Res. B: Methodological 121, 275–303.

Xu, X., Šarić, Ž., Zhu, F., and Babić, D. (2018). Accident Severity Levels and Traffic
Signs Interactions in State Roads: a Seemingly Unrelated Regression Model in
Unbalanced Panel Data Approach. Accid. Anal. Prev. 120, 122–129. doi:10.
1016/j.aap.2018.07.037

Yoo, D., Park, S., Lee, J.-Y., Paek, A. S., and Kweon, I. S. (2016). “AttentionNet:
Aggregating Weak Directions for Accurate Object Detection,” in 2015 IEEE
International Conference on Computer Vision (ICCV), Santiago, Chile, 7-13
Dec. 2015 (IEEE). doi:10.1109/iccv.2015.305

Zear, A., Singh, P. K., and Singh, Y. (2016). Intelligent Transport System: A
Progressive Review. Indian J. Sci. Technology 9 (32), 1–8. doi:10.17485/ijst/
2016/v9i32/100713

Zhang, L., Zhu, G., Mei, L., Shen, P., Shah, S. A. A., and Bennamoun, M. (2018).
“Attention in Convolutional LSTM for Gesture Recognition,” in Proceedings of
the 32nd International Conference on Neural Information Processing Systems,
1957–1966.

Zhang, S., Zhao, X., and Tian, Q. (2019). Spontaneous Speech Emotion
Recognition Using Multiscale Deep Convolutional LSTM. IEEE Trans.
Affective Comput., 1. doi:10.1109/TAFFC.2019.2947464

Zheng, H., Lin, F., Feng, X., and Chen, Y. (2021). A Hybrid Deep Learning Model
with Attention-Based Conv-LSTM Networks for Short-Term Traffic Flow
Prediction. IEEE Trans. Intell. Transport. Syst. 22 (11), 6910–6920. doi:10.
1109/TITS.2020.2997352

Zheng, Y., Guo, R., Ma, D., Zhao, Z., and Li, X. (2020). A Novel Approach to
Coordinating GreenWave Systemwith Adaptation Evolutionary Strategy. IEEE
Access 8, 214115–214127. doi:10.1109/ACCESS.2020.3037129

Zheng, Z., Chen, W., Wu, X., Chen, P. C. Y., and Liu, J. (2017). LSTM Network: a
Deep Learning Approach for Short-Term Traffic Forecast. Iet Intell. Transport
Syst. 11 (2), 68–75.

Zhou, Y., Ji, J., and Song, K. (2014). A Moving Target Detection Method Based on
Improved Frame Difference Background Modeling. Tocsj 8 (1), 970–975.
doi:10.2174/1874110x01408010970

Conflict of Interest: Author NW is employed by Guangzhou Wonping Info-Tech
Co., Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zheng, Li, Xu and Wen. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 90544310

Zheng et al. Moving Vehicle Counting and Traffic Prediction

https://doi.org/10.1109/ACCESS.2019.2941280
https://doi.org/10.1017/S1431927616012617
https://doi.org/10.1109/yac.2016.7804912
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1145/2858789
https://doi.org/10.1109/imac4s.2013.6526427
https://doi.org/10.1109/imac4s.2013.6526427
https://doi.org/10.1111/jwas.12745
https://doi.org/10.48550/arXiv.1911.09516
https://doi.org/10.1109/WCSP.2017.8171119
https://doi.org/10.1109/tits.2021.3055258
https://doi.org/10.1155/2018/2916391
https://doi.org/10.1016/j.trc.2015.03.014
https://doi.org/10.1016/j.trc.2013.11.008
https://doi.org/10.1145/3284566.3284567
https://doi.org/10.4108/eai.26-10-2015.150600
https://doi.org/10.1109/icoac44903.2018.8939091
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1109/cisce.2019.00113
https://doi.org/10.1109/cisce.2019.00113
https://doi.org/10.1016/j.aap.2018.05.005
https://doi.org/10.1016/j.aap.2018.07.037
https://doi.org/10.1016/j.aap.2018.07.037
https://doi.org/10.1109/iccv.2015.305
https://doi.org/10.17485/ijst/2016/v9i32/100713
https://doi.org/10.17485/ijst/2016/v9i32/100713
https://doi.org/10.1109/TAFFC.2019.2947464
https://doi.org/10.1109/TITS.2020.2997352
https://doi.org/10.1109/TITS.2020.2997352
https://doi.org/10.1109/ACCESS.2020.3037129
https://doi.org/10.2174/1874110x01408010970
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	A Deep Learning–Based Approach for Moving Vehicle Counting and Short-Term Traffic Prediction From Video Images
	1 Introduction
	2 Methods
	2.1 Overall Structure of the Algorithm
	2.2 DCN-MultiNet-YOLO
	2.3 Conditional Long Short-Term Memory

	3 Results and Discussion
	3.1 Data and Environment
	3.2 Results for Multi-Target Tracking
	3.3 Results for Short-Term Traffic Flow Prediction

	4 Conclusion
	Data Availability Statement
	Author Contributions
	References


