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It is significant to establish a precise dissolved oxygen (DO) model to obtain clear
knowledge ablout the prospective changing conditions of the aquatic environment of
marine ranches and to ensure the healthy growth of fisheries. However Do in marine
ranches is affected by many factors. DO trends have complex nonlinear characteristics.
Therefore, the accurate prediction of DO is challenging. On this basis, a two-
dimensional data-driven convolutional neural network model (2DD-CNN) is
proposed. In order to reduce the influence of missing values on experimental
results, a novel sequence score matching-filling (SSMF) algorithm is first presented
based on similar historical series matching to provide missing values. This paper
extends the DO expression dimension and constructs a method that can convert a DO
sequence into two-dimensional images and is also convenient for the 2D convolution
kernel to further extract various pieces of information. In addition, a self-attention
mechanism is applied to construct a CNN to capture the interdependent features of
time series. Finally, DO samples from multiple marine ranches are validated and
compared with those predicted by other models. The experimental results show
that the proposed model is a suitable and effective method for predicting DO in
multiple marine ranches. The MSE MAE, RMSE and MAPE of the 2DD-CNN prediction
results are reduced by 51.63, 30.06, 32.53, and 30.75% on average, respectively,
compared with those of other models, and the R2 is 2.68% higher on average than
those of the other models. It is clear that the proposed 2DD-CNN model achieves a
high forecast accuracy and exhibits good generalizability.
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1 INTRODUCTION

DO content of water quality, is necessary for all kinds of aquatic organisms. And changes in DO can
reflect changes in the water quality of an aquaculture (Ni et al., 2019). Most fish stop feeding when the
oxygen level is lower than 2 mg/L. Large numbers of fish die when the oxygen level is less than 1 mg/
L. A low DO content is also a warning sign of eutrophication (Takahashi et al., 2021). To ensure the
sound development of fisheries, the accurate prediction and control of DO are necessary tasks in the
management of marine ranch fisheries.
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Accurate water quality prediction has been challenging due to
the complex effects of physical, chemical, biological,
hydrometeorological and human-related processes. Some
scholars have used traditional machine learning models to
predict water quality. Tiyasha et al. (2021) used four types of
prediction models, including a random forest (RF), to predict the
DO content in the Klang River, Malaysia. Traditional machine
learning techniques were applied by Valera et al. (2020) to
reconstruct and predict nearshore DO concentrations in small
coastal bays. Ahmed and Lin (2021) used a forest of quantile
regression models to predict the DO levels in three rivers.
Traditional machine learning prediction models can produce
effective predictions for small sample sets with relatively
simple relationships, but they fail to meet the prediction
accuracy requirements for nonlinear, vaguely uncertain water
quality features. In light of these problems with traditional
machine learning models, the parameter optimization of
traditional machine learning models is greatly influenced by
human subjective factors. Some models using a meta-learning
algorithm for local fine searching and pheromone dynamic
updating have emerged. Liu et al. (2014) used an improved
particle swarm optimization algorithm and least squares
support vector regression to predict the DO content in a crab
culture. Heddam and Kisi (2017) proposed an optimally pruned
extreme learning machine (OP-ELM), which was newly applied
to predict DO concentration with and without water quality
variables as predictors. The above literature shows that this
hybrid machine learning model can improve the prediction
accuracy for DO and overcome the defects of traditional
methods. However, its complex modeling methods and steps
are still prone to falling into local minima during optimization, so
the existing DO prediction models are not intelligent and must
still be further improved.

In recent years, many scholars have attempted to predict water
quality using neural networks. Compared to traditional predictive
models, neural network models have a high self-learning ability
and excellent generalizability, allowing them to solve complex
nonlinear approximation problems. These methods yield good
simulation and prediction effects for trends in the water
environment. Zhang et al. (2019) proposed a novel model
based on multilayer artificial neural networks (MANNs) and
mutual information (MI) to predict the trends of DO. proposed a
new clustering-based softplus class-specific extreme learning
machine to predict DO changes in time series. Rozario and
Devarajan (2021) used a fuzzy C-means clustering method to
construct a radial basis function neural network to predict
changes in DO. Wu et al. (2018) presented a new model for
DO content prediction based on a sliding window, particle swarm
optimization, and error backpropagation.

The above models of water quality prediction are based on
shallow networks. However, because of the small number of
shallow network neurons used, the feature extraction ability of
these models is not strong. And the data of some complex
functions cannot be used in learning and training. Therefore,
some scholars have improved the prediction accuracy of
traditional models by developing deep neural network models.
Zhi et al. (2021) applied long short-term memory (LSTM) to

predict DO levels in several rivers. Cao et al. (2021) proposed a
gradient-boosted regression tree algorithm based on an attention
gate recurrent unit to predict DO levels in three dimensions.
Yaqub et al. (2020) propose a long short-term memory (LSTM)-
based neural network and developed to predict the ammonium,
total nitrogen, and total phosphorus. Zhu et al. (2021) proposes a
DO prediction model incorporating deep learning algorithms of
ResNets, BiLSTM, and Attention. The LSTM mentioned above is
a recurrent neural structure commonly used in sequence
modeling. Compared with the traditional recurrent neural
network (RNN), LSTM can alleviate gradient disappearance or
explosion problems. However, due to the relatively complex
internal structure, the training efficiency is much lower than
that of the traditional RNN with the same computational
resources, and the training is more difficult overall.

A convolutional neural network (CNN) (Kim, 2017) is a type of
feedforward deep neural network containing a convolutional layer,
which is composed of five structures: a convolutional layer, a pooling
layer, a fully connected layer and a softmax layer. Due to its
characteristics of local computation, sparse connection and weight
sharing, among the available neural networks, CNNs can effectively
reduce network complexity and are robust and fault tolerant.
Additionally, CNNs are easy to train and optimize and have been
successfully applied in many scientific fields, including computer
vision (Hu et al., 2018; Luo et al., 2018), image classification (Sun
et al., 2020; Pei et al., 2021), speech recognition (Haque et al., 2020;
Song, 2020), natural language processing (Xiao et al., 2020; Yu et al.,
2020) and others. Due to the advantages of CNNs in capturing
features, they have been increasingly applied in hydrology. Khosravi
et al. (2020) used CNN algorithm to develop a flood susceptibility
map for Iran.Chen et al. (2020) designed an improved CNN model
to establish a CNN calibration approach for the quantitative
determination of water pollution with near-infrared data.
Barzegar et al. (2020), Barzegar et al. (2021) improved the
accuracy of forecasts achieved by a hybrid CNN LSTM deep
learning (DL) model. Baek et al. (2020) used a combined CNN-
LSTM model for water level and water quality prediction. Yan et al.
(2021) predicted water quality using a one-dimensional residual
CNN. However, most of the above studies used combined CNN
models, which extracted deep features with a CNN and then used
another model for prediction. These combined the modeling
methods are cumbersome, and they generally adopt a one-
dimensional CNN for data feature extraction; however, this
approach cannot capture all the relevant spatiotemporal
information.

In this paper, an improved 2DD-CNNDO prediction model is
proposed. Amethod for converting a one-dimensional time series
into a two-dimensional image is proposed. With this approach,
the time dependence of the data is preserved, and the spatial
characteristics are obtained. Then, we improve the two-
dimensional CNN to perform regression fitting and increase
the precision of the prediction model by adding an attention
module. The established model strengthens the connections with
DO. The main contributions of this article are as follows.

(1)Amodel-based data-driven two–dimensional model-based
CNN is constructed, which can effectively improve the prediction
accuracy of water quality parameters.
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(2)To solve the problem of discontinuity of feature
information caused by partial missing values in the data set, a
novel sequence score matching-filling (SSMF) algorithm is
proposed. The historical feature sequence is used as the
reference object for missing values, rendering the filled-in data
more reliable.

(3)To solve the problem of discontinuity of feature
information caused by partial missing values in the data set, a
novel sequence score matching-filling (SSMF) algorithm is
proposed. The historical feature sequence is used as the
reference object for missing values, rendering the filled-in data
more reliable.

(4)To resolve the problem of local perception of the
convolution kernel, an attention module is added to the model
to construct a CNN to capture the interdependent features of the
time series.

The rest of this article is organized as follows. Section 2
describes the study area and data sources considered in this
paper and the proposed study method. Section 3 describes the
steps in establishing the 2DD-CNN prediction model. Section 4
analyzes the model prediction performance, compares the 2DD-
CNN model with other models and assesses DO data from
multiple ranches. Section 5 summarizes the study and the
existing modeling problems.

2 MATERIALS AND METHODS

2.1 Study Area and Data Source
Shandong Province, China, is rich in marine resources, with a
coastline length of approximately 2078 kilomiles. The national
marine ranch demonstration area accounts for 40% of China,
ranking first among the demonstration areas in China. This study
included 12 marine ranches along the coastal waters of Shandong
Peninsula(35°05′N ~ 37°50′N, 119°16′E ~ 122°42′E). The
Shandong Peninsula extends into the Bohai Sea and the
Yellow Sea, opposite the Liaodong Peninsula. Twelve marine
ranches are spread along the coastline of Shandong Peninsula at
depths of less than 656 feet. Therefore, the distribution of DO is
different from that in the open ocean and is greatly affected by
climate and land characteristics. The DO level changes constantly
throughout the year, and the changes are complicated. The
characteristics of DO and the locations of marine ranches are
shown in Figure 1.

In the marine ranch environment, DO data are collected for
10 min, with 144 consecutive samples per day. Notably, 55,000
samples are obtained for each ranch between 2019 and 2021,
including 50,000 samples that formed the training set and 5,000
that formed the test set. The same rolling prediction mechanism
is used for the training and test sets.

FIGURE 1 | Research information of the original data.
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2.2 Data Processing Strategy
Due to the interference from sensor equipment, the environment
and human factors, the collected time series contained some
missing values and outliers. Poor-quality datasets containing
large numbers of missing values and outliers will result in
low-quality forecasting results. Data preprocessing can
improve the quality of the data, thus improving the accuracy
and performance of the subsequent learning process of the model
(Niu and Wang, 2019).

In this paper, we identified the outliers first; then, we removed
the outliers and treated them as missing values. Finally, we filled
missing values based on the sequence score matching-filling
(SSMF) method proposed, as shown in Figure 2. The SSMF
approach divides the data into several sets of sequences,
determines the score of each set of sequences according to the
defined rules, and finds the sequence most similar to the selected
sequence based on a score comparison approach, which is
regarded as sequence score matching. The next feature in the
matching sequence is used to fill the corresponding missing value
in the selected sequence. This method is based on featurization.
Historical data are used for matching, and the time series trend of
historical data is used to estimate the value at the next moment to
fill in the data gap. Thus, the problem of discontinuous feature
information in training datasets can be avoided.

The following symbols are defined for the SSMF process:

• TSbefore = {ts1, ts2, ts3, /tsN−1, tsN}: Original dataset
containing missing values, where N is the sequence length;

• TSafter � {ts1′, ts2′, ts3′,/tsN−1′ , tsN′ } : Dataset after filling
the missing values;

• L: Length of feature sequence;
• numLablem : The number of occurrences of each category in
the overall dataset, whereM is the total number of categories
Lablem = round (tsn, 2), and m ≤ M;

• F [fn−S, fn−S+1, /fn−2, fn−1]: Features dictionary, where f is
feature sequence and n ≤ N;

• Tablef [scoren]: The feature query dictionary;

The procedure for filling missing values is as follows.
Step 1: Determine the length of feature sequence. For a time

series of length N, the shortest length L of the feature sequence
can be obtained according to Eq. 1. To minimize the number of
calculations, the number of methods used per L data
permutations should be greater than or equal to the total
number of time series. Here, L is the length of the feature
sequence before the missing values are filled. Let missn be a
missing value and n be the missing value’s position in a sequence.
In this paper, missing values are postprocessed from L
consecutive values.

L � argminL AL
L ≥N + 1 − L( ) (1)

Step 2: Calculates the probabilities for each category
P(labelm). First, each value is classified based on Labelm =
Label (Tsn),Where, the Label function is used to divide the
number of categories. Each value is regarded as a category,
and two decimal places are retained. The number of
occurrences of each category in the overall dataset is counted
as. Then, the probability of occurrence of each category is
obtained according to Eq. 2.

P labelm( ) � numlabelm

N
m � 1, 2,/M( ) (2)

Step 3: Calculate the feature score of each feature sequence
and establish the feature query dictionaryTablef. Consecutive
values are regarded as a set of feature sequences denoted as Seq
= fn−L, fn−L+1, /fn−2, fn−1, fn. The L+1 value in the feature
sequence is regarded as the feature label of the sequence, e.g., F
[fn−L, fn−L+1, /fn−2, fn−1, fn] = fn. If the first L features of the
feature sequence are known, the corresponding feature scores
can be approximated with Eq. 3. All the feature scores for the
original sequence are calculated, and the feature dictionary is
then established as Tablef [scoren] = fn−L, fn−L+1,/fn−2, fn−1, fn,
where n ∈ (L + 1, N). Eq. 3 is used to determine the final trend
of this set of feature data.

FIGURE 2 | SSMF method for filling missing values.
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scoren � w∏L
i�1

e i( )pP Label fn−S−1+i( )( ), w � 1, fn−1 − fn−2 ≥ 0
−1, fn−1 − fn−2 < 0{

(3)
Step 4: A sliding window is used to traverse the original

sequence, and the dictionary Tablef is queried to fill the
missing values. SSMF fills the missing values in a data
sequence. The sliding window is used to traverse the original
sequence TSbefore, and the corresponding feature score is
calculated according to the L-1 values before the missing
value, which are obtained from querying Tablef. Next, the set
of features with the closest score is obtained. The consistency
among the distribution characteristics of L values and missing
values is assessed to find the feature that yields the highest
matching score in the feature dictionary. This process is
regarded as sequence feature matching, and missn = F [Tablef
[scoren]] = fn. This equation returns the processed sequence
TSafter.

2.3 Two-Dimensional Graph of DO Data
To realize the transformation of a DO sequence from temporal
dependence to spatial dependence, we must reduce the amount of

redundant information in the data transformation process.
Notably, here, we transform one-dimensional data convertting
into two-dimensional images to match the input of the 2DD-
CNN, which is used for feature extraction (Ashourloo et al.,
2020). In this paper, a method of converting DO data into two-
dimensional images is developed, and this approach can
effectively learn the characteristics and structures of time series.

The process of constructing a two-dimensional image of DO
data in this paper is shown in Figure 3. First, the internal rotation
matrix is used to arrange the one-dimensional time series and to
transform the one-dimensional time series into a two-
dimensional matrix D. D is obtained according to Eq. 4,
where k is the number of columns in the matrix.

D �

D 1( ) D 2( ) . D k( )
D 4k−4( ) D 4k−3( ) . D k+1( )

. . . .

. D kpk( ) D k×k−1( ) .

. . . .
D 3k−2( ) . . D 2k−1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Secondly, the value at each position in the two-dimensional
matrix is extended to RGB three-channel form. Specifically, the

FIGURE 3 | Process of constructing two-dimensional image of DO data.
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two-dimensional matrix is transformed into an RGB three-
channel image. In the image, each pixel represents a value.
According to the color in the image, the overall distribution of
pixel values can be intuitively assessed. All values can be
uniformly expressed with different colors. The data are stored
without loss in three RGB channels. RGB is the color of red, green
and blue channels. The R, G, and B channels have 256 levels. Red,
green and blue are abbreviated as R,G,B respectively. The
brightness of the R, G, and B channels ranges from 0 to 255.
Based on these characteristics, this paper divides all the data n
into three sets include n1, n2 and n3, n = n1 + n2 + n3, where
n1 ∈ (0, 99) represents R, n2 ∈ (0.00, 0.99) represents
G,n3 ∈ (0.0000, 0.0099) represents B. To maximize the visual
weight of the first channel, the values in the first set are
uniformly filled in the interval of (0, 255). The value output
by the first channel is Rn:

Rn � � 255
max n1( )� × n1 (5)

The value output by the second channel is Gn:

Gn � n2 × 100 (6)
The value output by the third channel is Bn:

Bn � n3 × 10000 (7)
Finally, the PIL image processing library is used, and the

resulting image is stored in png lossless format.

2.4 Configurations of the Designed CNN
The CNN constructed in this paper consists of three parts,
namely, a convolutional layer, a pooling layer and a fully
connected layer (Jiang et al., 2020; Yang et al., 2021). A linear
weighted filter with a local receptive field, namely, a convolution
layer, is alternately applied with the pooling layer to sample the
extracted features. The fully connected layer distributes the data
according to a nonlinear function. The calculation process
involving these layers is as follows.

(1) The convolution layer provides local calculations and
sparse connections and applies weight sharing. The
convolution operation process is represented by Eq. 8, which
Wi represents the original matrix and yi represents the
convolutional kernel. F is the convolution operation and
retention factor of the characteristic matrix. The feature map
first performs the F convolution operation and then adds bi. The
convolutional kernel is slid according to the padding threshold
until the entire feature graph has been obtained.

Zi+1 � F Wi, yi( ) + bi (8)
(2) The pooling layer does not contain parameters; it performs

feature selection based on the matrix. The pooling layer retains
important features to reduce the number of subsequent
operations and avoid overfitting. Common pooling layer
operations include maximum pooling and average pooling.

(3) The fully connected layer reshapes the output tensor of the
pooling layer into a one-dimensional vector and then maps it to a
sample label pool.

The goals of the convolution layer and pooling layer in the
CNN are to extract features and reduce the number of
computations. One-dimensional vectors are predicted with the
fully connected layer. The overall architecture of the CNN built in
this paper is shown in Figure 4. This architecture contains two
convolutional layers, two pooling layers and two fully connected
layers. The input image is transformed into an input feature
matrix. This matrix is then passed through the convolution and
pooling layers and then transformed into one-dimensional data
before being passed to the fully connected hidden layer and fully
connected output layer. Finally, the prediction result is output. In
this paper, the CNN architecture shown in Figure 4 is
constructed. No upper limit is set for the input window, and
the lower limit of the input window is a 4 × 4 matrix.

The first convolutional layer adopts a 32-layer convolution
core of 3 × 3. The second pooling layer adopts a maximum
pooling core of 2 × 2. The third convolutional layer uses 64 layers
of size 3 × 3. The fourth pooling layer also adopts 2 × 2 maximum
pooling. The final layer of the feature graph is flattened to connect
the fully connected hidden layer to a one-dimensional vector. The
final result is output with the fully connected output layer. The
activation function used in the middle layer of the proposed
model is a ReLU function. Unlike the traditional classification
model, the proposed model does not use an activation function in
the final layer, which is used to directly output the final results.

3 DISSOLVED OXYGEN PREDICTION
MODEL

In this paper, a 2DD-CNN is proposed to predict the DO level in
marine ranches. Themodel prediction process is divided into four
steps: data preprocessing, constructing the two-dimensional
graph of DO data, applying an self-attention module and
implementing the 2DD-CNN prediction framework. The
process of 2DD-CNN model prediction is shown in Figure 5.

Step 1: Data Preprocessing. The collected DO sequence
contains some missing values and outliers. First, the σ
principle is used to identify the outliers. This principle can be
used to identify low-probability events outside the standard
normal distributed interval (u − 3σ, u + 3σ). Such values
should be removed and regarded as missing values. Second,
the SSMF algorithm proposed previously is used to fill the
missing values. If we find that sequence Seq has a similar
score to the feature sequence Seq, for the target missing value
missn. Then the next value in the similar sequence is used to fill
the missing position missn in the target sequence.

Step 2: Encoding Time Series to Images. This step converts a
DO sequence into an image. First, the DO sequence is
transformed into a two-dimensional matrix by internal
rotation. Then, the two-dimensional matrix is mapped to RGB
channels. Thus, the transformation of the DO sequence from
temporal dependence to spatial dependence is realized.

Step 3: Self-attention Module. To solve the problem, the
prediction effect is limited by the local perception of the CNN
convolution kernel, the global receptive field is added. In this step,
an self-attention mechanism (Wang et al., 2021) is established,
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and the self-attention module is built before the CNN model
(Vaswani et al., 2017; Wang et al., 2018) to mine the influence
weight of the information at each position in the matrix based on
the available prediction results; then, a new weighting matrix is
constructed. The correlation between values is calculated by
matrix multiplication. Then, these correlation scores are
combined to obtain a weighting matrix. The specific steps are
as follows.

Firstly, three 1 × 1 convolution kernels are defined asWq,Wk,
Wv. These kernels are established with the original image to
obtain three feature maps, expressed as Q(x), K(x)andV(x). As
shown in Eq. 9, these three feature maps have a triplet structure.

Q x( ) � Wqx,K x( ) � Wkx,V x( ) � Wvx (9)
Secondly, obtaining the attention map Score,i,j based on the

matrix dotted product of K(x) and Q(x), as shown in Eq. 10, is
obtained with the softmax function. Finally, as expressed in Eq.
11, the self-attention feature map obtained through the dot
product of Score,i,j, and V(x) is Attention(x). Attention(x) is
used as the input of the 2DD-CNN. At this time, our model
captures the characteristics of the input matrix considering the
corresponding weights.

Scorei,j′ � exp Scorei,j( )∑N
i�1 exp Scorei,j( ), where Scorei,j � Q xi( )TV xj( )

(10)
Attention x( ) � Scorei,j′ V xj( ) (11)

The partial perception of the CNN convolutional kernels
results in each kernel only calculating area information. As the
neural network layers deepen, the convolutional kernel region
information is limited to only one area. Thus, the regions outside
of the convolutional kernel area are not considered, and the effect
of prediction is limited. Thus, adding the self-attention module to
the model is a good way to solve this problem.

Step 4: 2DD-CNN Prediction Network Framework. First, the
number and order of convolutional and pooling layers are
determined, and the detailed structure is shown in Figure 4.

Second, the ratio of training data to verification data is set as 16:1,
and the trained back-propagation 2DD-CNN is used. The initial
values of the weight and bias parameters in the input layer and
output layer of 2DD-CNN are set. Then, the input dataset size
and output dataset size are determined according to the 2DD-
CNN features. Finally, the model is optimized by the root mean
square prop (RMSProp) algorithm. Based on repeated
experimental analyses, the prediction effect based on the 2DD-
CNN is the best when the model parameters are learningrate =
0.02, batchsize = 15 and epochs = 100. The trained model is used
in the prediction of DO levels.

4 RESULTS AND DISCUSSION

To verify the model proposed in this paper, the 2DD-CNN is used
to predict the oxygen sequences for 12 ranches. A comparison
experiment with other algorithms and a generalization
experiment involving multiple ranches are performed. The
Python 3.8 language is used in the experiments, and the
hardware included an Inter(R)Core(TM) i5-8265 CPU at3.30
GHz and 8 GB memory.

4.1 Performance Criteria
To verify the excellent performance of the 2DD-CNN model and
analyze the errors between the predicted and observed values of
the model, this paper applies five measurement indices: the mean
square error (MSE), mean absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error (MAPE)
and coefficient of determination (R2). The corresponding
mathematical expressions are given in Equations 12–14,
Equation 15 and Equation 16, where ôi is the predicted
values and oi is the observed values. The MSE is generally
used to detect the deviation between the predicted values and
the observed values of the model. It calculates the sum of squares
of the distance between the predicted values and the observed
values. The quadratic form is convenient for derivation, so it is
often used as a loss function in linear. The MAE is the absolute
value of the difference between the observed values and the

FIGURE 4 | Convolutional neural network structure.
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predicted values. It is less affected by outliers (outliers separated
from the sample distribution) and can better reflect the actual
situation of the predicted values error. The RMSE adds the square
root sign on the basis of the MSE, which is more intuitive in
comparison. The range of MAPE is [0, + ∞), MAPE is expressed
as a percentage, for which 0% indicates perfect model, while a
value greater than 100% indicates an inferior model. Further,
MAPE is easier to explain. R2 is indicator used to evaluate the
quality of fitting. The lower the MSE, MAE, RMSE and MAPE
values are, the smaller that the prediction error is. Additionally,

the higher that the R2 value is, the better the fit is between the
predicted and observed values.

MSE � 1
n
∑n
i�1

ôi − oi( )2 (12)

MAE � 1
n
∑n
i�1

ôi − oi| | (13)

RMSE �
������������
1
n
∑n
i�1

ôi − oi( )2
√

, (14)

FIGURE 5 | Flow chart of DO prediction.
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MAPE � 100%
n

∑n
i�1

|ôi − oi
oi

|, (15)

R2 � 1 − ∑n
i�1 ôi − oi( )2∑n
i�1 �oi − oi( )2 (16)

4.2 Single Ranch Prediction Evaluation With
Other Prediction Models
In this case, 55,000 DO values from the Luhaifeng marine ranch
in Qingdao are used as an example, Data from other Marine
ranches were analyzed in the same way as the focus of the study.
The data are divided into a training set and test set at a 10:1 ratio.
Under the same conditions, the 2DD-CNN is compared with
other models. The comparison model includes a CNN, an LSTM
model, CNN-LSTM, a back Propagation Neuron Network (BP)
(Zhang and Lou, 2021), a decision tree (DT) (Anmala and
Turuganti, 2021), a RF (Karijadi and Chou, 2022), dynamic
evolving neural fuzzy inference system (DENFIS) (Adnan
et al., 2019), a group method of data handling (GMDH)
neural networks (Adnan et al., 2020) a hybrid model based on
long short-term memory neural network and ant lion optimizer
(LSTM-ALO) (Yuan et al., 2018), a hybrid model based on an
optimally pruned extreme learning machine (OP-ELM) and a
hybrid model based on the least squares support vector machine
and gravitational search algorithm (LSSVM–GSA) (Zeng et al.,
2021).

Figure 6 shows the prediction results based on 600
observations from the test set and various prediction models.
The 2DD-CNN model and other models exhibit good
performance in predicting trends. For comparison, we enlarge
part of the plot of 71 data points showing the 2DD-CNN
predictions. Notably, among all the predictions, these values

are closest to the observed values. Specifically, the lag of the
neural network prediction model is obvious. The prediction
effects of the LSTM model and the LSTM’s hybrid model are
second to that of the 2DD-CNN. The results in Figure 6 show
that the prediction effect of the 2DD-CNN is generally superior to
that of the other models.

The experimental results of all models are further verified by
comparing the corresponding evaluation indics MSE, MAE,
RMSE, MAPE, and R2. The results are shown in Table 1. The
predicted values of the 2DD-CNN display the lowest MSE, MAE,
MAPE and RMSE and the highest R2, corresponding to the lowest
prediction error. Compared with LSTM, the 2DD-CNN reduces
the MSE, MAE, RMSE and MAPE of the predictions by 45.8,
26.21, 26.4 and 26.3%, respectively. Compared with BP, the 2DD-
CNN reduces the MSE, MAE, RMSE and MAPE of the
predictions by 13.8, 18.3, 7.2 and 18.95%, respectively.
Compared with RF, the 2DD-CNN reduces the MSE, MAE,

FIGURE 6 | The DO content prediction results.

TABLE 1 | Comparison of evaluation indexes of model prediction error.

Model MSE MAE RMSE MAPE R2

2DD-CNN 0.007595 0.065866 0.087150 1.653,131 0.983,616
CNN 0.015655 0.095538 0.125,120 2.359,237 0.966,227
CNN-LSTM 0.028474 0.138,715 0.168,743 3.268,304 0.942,419
LSTM 0.014010 0.089261 0.118,362 2.241,713 0.967,440
BP 0.008812 0.080576 0.093872 2.039655 0.974,442
GMDH 0.042199 0.150,444 0.205,425 3.866,152 0.906,206
RF 0.043860 0.155,353 0.209,427 4.014477 0.908,870
DT 0.036191 0.140,532 0.190,240 3.637,882 0.922,261
LSTM-ALO 0.018542 0.082875 0.136,168 2.168,491 0.975,121
DENFIS 0.016854 0.087585 0.129,822 2.214,271 0.963,552
OP-ELM 0.018616 0.082947 0.136,439 2.172,834 0.975,097
LSSVM-GSA 0.015000 0.090607 0.122,474 2.323,732 0.967,818

The bold values are the result of the 2DD-CNN model.
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RMSE andMAPE of the predictions by 87.7, 57.6, 58.4 and 58.8%,
respectively. Compared with DT, the 2DD-CNN reduces the
MSE, MAE, RMSE and MAPE of the predictions by 79.0, 53.13,
54.19 and 54.56%, respectively. Compared with DENFIS, the
2DD-CNN reduces the MSE, MAE, RMSE and MAPE of the
predictions by 54.94, 24.8, 32.87 and 25.34%, respectively.
Compared with GMDH, the 2DD-CNN reduces the MSE,
MAE, RMSE and MAPE of the predictions by 82.00, 56.22,
57.58 and 57.24%, respectively. Compared with the traditional
CNN prediction model, the 2DD-CNN reduces the MSE, MAE,
RMSE and MAPE of the predictions by 51.49, 31.06, 30.35 and
29.9%, respectively. Compared with CNN-LSTM, the 2DD-
CNN reduces the MSE, MAE, RMSE and MAPE of the
predictions by 73.33, 52.52, 48.35 and 49.42%, respectively.
Compared with LSTM-ALO, the 2DD-CNN reduces the MSE,
MAE, RMSE and MAPE of the predictions by 59.04, 20.52,
36.00 and 23.77%, respectively. Compared with OP-ELM, the
2DD-CNN reduces the MSE, MAE, RMSE and MAPE of the
predictions by 59.20, 20.59, 31.13 and 23.92%, respectively.
Compared with LSSVM-GSA, the 2DD-CNN reduces the MSE,
MAE, RMSE and MAPE of the predictions by 49.37, 27.31,
28.84 and 1.63%, respectively. On average, the MSE of
predictions obtained with the 2DD-CNN is 51.63% lower
than that obtained with other models, the MAE is 30.06%
lower, the RMSE is 32.53% lower, the MAPE is 30.75% lower
and the R2 is 2.68% higher. From the comparison of the results,
the 2DD-CNN model performs significantly better than the
other models in predicting DO levels. Additionally, the existing
CNN prediction models performed worse than the studied
LSTM and BP models. Nevertheless, the prediction
performance of the improved 2DD-CNN model is better
than that of all of the other models. In summary, improving

the CNN to establish the 2DD-CNN model proposed in this
paper yields a significant improvement in the accuracy of DO
prediction.

Figure 7 shows a box plot of the predicted and observed DO
values for eleven models in individual marine ranches. The 2DD-
CNN predictions are similar to the observed values overall. The
other model results differ from the observed values based on the
upper quartile, mean, maximum andminimum values. The upper
limits of the predicted values of the LSTM model and DT model
are similar to the upper limit of the observed values. However, the
values obtained with the 2DD-CNN are most similar to the
observed values based on the mean value, upper and lower
quartiles and lower limit. The BP model, RF model and
DENFIS model results largely differed from the observed
values based on the upper and lower quartiles and the upper
and lower limits. The range of predicted values of the BP model is
smaller than the range of observed values, with predictions
concentrated near the mean value; this result indicates that the
prediction of maximum and minimum values by the BP model is
not accurate. The prediction range of the RF model exceeds that
of the observed values, and the prediction of extreme values is
inaccurate. The prediction range of RF model exceeds the
observed values, and the prediction of extreme values is also
inaccurate. The DENPFIS model is not very accurate in
predicting the results at lower values. Compared with the
observed values, the values predicted by the CNN model and
CNN-LSTM model moved upward overall. The data of the
predicted values and observed value of the hybrid model had
great similarities on the whole, but some outliers appeared in the
model prediction, which might have been due to model
overfitting. In conclusion, the prediction accuracy of the BP
model, RF model and DT model is not good. Other CNN

FIGURE 7 | Comparison of predicted and observed values of DO for different models.

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 90493910

Li and Zhang Deep Learning-Based Water Qualiety Prediction

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


models, the CNN-LSTM model and the LSTM-ALO model have
certain deviations in prediction, and the models must be adjusted.
The DENFIS, GMDH, OP-ELM, and LSSVM-GSA models have
poor prediction effects on some outliers and edge values. The data
distributions of the 2DD-CNN-predicted values and observed
values are very close.

Figure 8 shows the Taylor diagram of the performance of
ten models. The scattered dots in the figure represent the
model, the radiating lines represent the correlation
coefficients, the horizontal and vertical axes represent the
standard deviations, and the semicircular dotted lines
represent the RMSE. Figure 8A shows the whole part of
the Taylor diagram, and 8 B shows the enlarged display of
eleven model indicators. For the prediction of DO, the
discrete correlation coefficient, standard deviation and
RMSE proposed in this paper are 0.991,817, 0.988,898 and
0.1280, respectively, and the prediction result is the best.
Based on the observed values, the closer that a value is to the
red dot representing the observed value in the Taylor
diagram, the better that the prediction performance is. In
summary, the prediction of DO proposed in this paper is
the best.

To further analyze the prediction ability of the models, the
prediction results for 144 samples each day with different
models are presented in the form of line charts and density
correlation graphs. Figure 9 shows the values predicted by
each model compared to the observed values. In Figure 9, the
data predicted by the model proposed in this paper are closest
to the observed values, and the prediction effect of peaks and
valleys is the best among all models. We analyze the correlation
between the predicted and observed values based on the
density correlation plot in Figure 9. In this figure, the
closer that a scatter point is to the light-colored dotted line,
the closer that the predicted values is to the corresponding
observed value. The line fit based on the scatter point is the
dark dotted line.

This outcome can be clearly observed in the figure. The
graph in Figure 9A shows that the predicted values of 2DD-
CNN is almost the same as the observed DO, indicating good

performance. The graph on the right of Figure 9A shows that
all points are located near the straight line, and the linear
regression line of these points almost covers the straight line.
This outcome shows that 2DD-CNN can predict DO data with
high accuracy. Figure 9B shows the prediction results of the
CNN. Compared with the curves in Figures 9A,B, the
predicted values of the CNN are more difference from the
observed values than are predicted values of 2DD-CNN.
Compared with the right figure of Figures 9A,B, the fitted
line is farther from the y = x line, and the point dispersion is
greater. This outcome indicates that the prediction effect of
the CNN model is inferior to that of 2DD-CNN. The model in
this paper is an improvement on the CNN model. Compared
with the CNNmodel, the self-attention module is added to the
model in this paper, and two-dimensional convolution is
adopted. The results show that the improved model
improves the prediction accuracy of DO. In the line chart
in Figure 9C, the values predicted by the CNN and CNN-
LSTM models exhibit obvious variations in positions
compared with the positions of the observed values. These
differences are clear in the density correlation diagram in
Figure 9D, which shows the predicted value of the BP model.
As a shallow neural network, the BP has the characteristics of
a simple structure. However, due to limited neurons and
shallow networks, the accuracy is not as good as the
predicted value of the deep neural network in the fitting
experiment of complex DO trends. In Figure 9E, the
prediction accuracy of the LSTM model and LSTM’s hybrid
are second only to that of the 2DD-CNN. As an RNN model,
LSTM can meet most accuracy requirements, but the training
efficiency is not high due to its relatively complex internal
structure. There is some deviation between the predicted and
observed values in the line chart and density correlation
diagram. The values predicted by the BP, DT and RF
models in Figure 9F, Figure 9G and Figure 9H,
respectively, deviate from the observed values, and the
prediction of peaks and valleys is not accurate.
Additionally, the RF can only predict the general trend of
the DO. Two traditional machine learning models, DT and

FIGURE 8 | Comparison of predicted and observed values of DO for different models. (A) is a whole Taylor diagram, and (B) is a partially enlarged Taylor diagram.
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FIGURE 9 |Comparison of predicted and observed values of DO for multiple models. (A) is the result of 2DD-CNN. (B) is the result of CNN. (C) is the result of CNN-
LSTM. (D) is the result of BP. (E) is the result of LSTM. (F) is the result of DT. (G) is the result of RF. (H) is the result of DENFIS. (I) is the result of LSTM-ALO. (J) is the result
of OP-ELM. (K) is the result of LSSVM-GSA. (L) is the result of GMDH.
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RF, perform poorly in fitting complex nonlinear DO data.
Figure 9H shows the predicted value of the DENFIS model.
DENFIS performs poorly in predicting the peak value,

showing a situation of amplifying the peak value and
underestimating the value. In the density correlation
diagram, it can also be observed that the predicted values

FIGURE 9 | (Continued).
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of the DENFIS model deviate greatly from the observed values
compared with the medium-high value segment and the low-
value segment. As a mathematical fuzzy inference model,

DENFIS is not as effective as a deep learning model in
predicting DO. Figures 9I,J,K show the prediction effects
of the LSTM-ALO, OP-ELM and LSSVM-GSA models,

FIGURE 9 | (Continued).
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respectively, in comparison with the hybrid model. The
parameters of the deep learning LSTM model, shallow ELM
neural network, GMDH and LSSVM-GSA machine learning
model were optimized using a metaheuristic algorithm. The
prediction results showed good performance with slight

errors. Although the model parameters were optimized to a
large extent, the structure of the model remained unchanged.
The prediction accuracy is still limited by the model itself,
which is not as accurate as the model proposed in this paper.
The operation process of the hybrid model is complicated.

FIGURE 10 | Application of the model to data from different ranches.
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The above experimental analysis indicates that 2DD-CNN not
only outperforms the other models in predicting DO but also
performs better in predicting peaks and valleys, displaying the
best overall fit to observations.

4.3 Prediction Accuracy Evaluation Based
on Data From Multiple Ranches
DOdata from 12marine ranches are used as samples to verify and
evaluate whether 2DD-CNN could be applied to analyze DO data

from different marine ranches with large environmental
differences. In this paper, the DO level is predicted for 12 h in
12 ranches in the research area. The lowest value reached
approximately 0.2 mg/L, and the highest value reached
approximately 15 mg/L. All the data selected in this paper are
sufficiently representative.

The predicted results are shown in Figure 10, and
comparisons of predicted and observed values for each ranch
are shown through line charts and density correlation plots. The
2DD-CNN displays good performance for all the considered

TABLE 2 | Prediction error evaluation indexes of 12 ranch models.

Ranch Number Marine ranch MSE MAE RMSE MAPE R2

Ranch 1 Qingdao Luhaifeng National 0.010691 0.075311 0.103,396 1.854,217 0.983,372
Ranch 2 Xixiakou Group National 0.009136 0.074883 0.095581 1.026838 0.985,410
Ranch 3 Rongcheng Hongtai Fishing 0.001645 0.033601 0.040560 0.240,704 0.994,178
Ranch 4 Ryongcheng Broussonetia Ranch 0.002021 0.037824 0.044960 0.270,987 0.992,899
Ranch 5 Changdao Xiangyu Reef Casting 0.002888 0.032824 0.053741 0.770,817 0.990,028
Ranch 6 Weihai Yutai Fishing 0.000824 0.022561 0.028698 0.171,321 0.998,891
Ranch 7 Rongcheng Swan Lake Fishing 0.000063 0.004945 0.007967 4.348,656 0.998,488
Ranch 8 Rizhao Aquatic Group Reef Casting 0.039713 0.055784 0.199,281 1.567,903 0.971,123
Ranch 9 Rongcheng Yandunjiao 0.003290 0.034221 0.057354 1.182,211 0.998,119
Ranch 10 Rongcheng Chengshan Hongyuan 0.000086 0.007644 0.009270 0.185,958 0.997,184
Ranch 11 Rizhao Wanbao Fishing 0.005856 0.042857 0.076525 0.708,804 0.976,465
Ranch12 Shandong Oriental Ocean National 0.000426 0.013398 0.020630 0.314,491 0.999,757

FIGURE 11 |Radar diagrams of the prediction error evaluation indexes for 12 ranches based on themodel proposed in this paper. (A) is the value of MSE. (B) is the
value of MAE. (C) is the value of RMSE. (D) is the value of MAPE. (E) is the value of R2.
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ranches, and the blue predictions and red observations exhibit
high overlap. The positive correlation reaches a maximum when
the value is 1 in the density correlation diagram. Generally, when
r exceeds 0.5, a strong correlation exists. The correlation between
the predicted and observed values is more than 0.7 for all ranches
with the 2DD-CNN model.

The correlation between the predicted and observed values for
ranches 2, 3, 4, 5, 6, 7, 10 and 12 reached greater than 0.99. The
fitting lines of the scatter plots in the density correlation map are
very close to y = x, with a small inclination and small intercept.
The line chart and density correlation diagram for each ranch
show that 2DD-CNN exhibits good performance in predicting
peak and valley values, and the agreement between the fitting line
and points in the density correlation diagram is high. The model
best predicts the DO values for ranches 3, 4, 6, 7, 10 and 12, but
the results are not as good for ranches 1, 2, 8, 9 and 11. Notably,
the DO data for ranches 3, 4, 6, 7, 10, and 12 are relatively smooth,
but in other cases, the data contain a small amount of noise.
Although the predicted DO in cases with noise is not as good as
that in other cases, the prediction results still display high
accuracy; thus, even if DO data contain a small amount of
noise, the model can still achieve accurate predictions.

TheMSE, MAE, MAPE, RMSE and R2 are used to measure the
accuracy of the 2DD-CNN in DO prediction for multiple marine
ranches, as shown in Table 2 and Figure 11. The MSE, MAE,
MAPE, RMSE for all ranches are very low, and R2 is greater than
0.97. Figure 11 illustrates a three-part radar diagram. Figure 11A
shows the MSE of the predicted and observed values for 12
ranches. The MSEs vary for different ranches but are all below
0.02. Figure 11B shows the MAE of the predicted and observed
values for 12 ranches. In Figure 11B, the MAEs of multiple
ranches displayed in the radar chart are similar to those in
Figure 11A, with values below 0.08. Figure 11D shows the
RMSE of the predicted and observed values for 12 ranches
with values below 0.2. Figure 11E shows the MAPE of the
predicted and observed values for 12 ranches with values
below 2. Figure 11C shows the R2 results based on the
predicted and observed values for the 12 ranches. In
Figure 11C, an almost circular shape is observed because all
values are close to 1. In summary, by analyzing and evaluating the
predicted DO values for 12 marine ranches, we find that the 2DD-
CNN can effectively forecast DO data in different intervals and in
cases with different influencing factors. Thus, the model displays
strong generalization ability.

4.4 Discussion
In this part, we will discuss the research results of 2DD-cnn from
the aspects of missing value filling, time series transformation
into image work and convolution neural network prediction
model, so as to further discuss the effectiveness and
progressiveness of the proposed dissolved oxygen prediction
method. Each section is discussed below.

4.4.1 The Superiority of the Newly Developed SSMF
Algorithm
Common data filling methods generally include providing
KNN(Qi et al., 2021) data, interpolation, means, medians,

etc., and returning the predicted values for the model. The
former algorithm is simple, and the characteristics represented
by the filled-in data are too singular. Although the predicted
value of the latter filling model can accurately match the changes
in the time series, the modeling process of the algorithm is too
complex. In this paper, we propose a new SSMF algorithm to
provide the missing values. This method uses the sequence
before the missing value to match the historical data, defines
the historical sequence feature as the score formula, considers
the historical feature sequence as the decision reference object of
the missing value, and takes the final entries of the most similar
historical data as the missing value, thereby rendering the
provided data more reliable. Usually, we observe the
sequence according to whether there are similar fragments in
past periods of time. The correlation between the past time
series and the current time series and the subsequences related
to the past will be used for decision-making regarding the
current time point. Similar to this method, the logic is also
the method of providing the predicted value of the model, such
as using a machine learning model like RF (Deng et al., 2019) to
pretest and provide the value after learning the historical data,
but the method proposed in this paper is simpler and does not
require modeling. Our algorithm can capture the sequence
features, and the amount of computation is only O(n). The
accuracy of the provided data is guaranteed, while the
calculation is simple.

4.4.2 The Superiority of the Two-Dimensional Graph of
the DO Data Strategy
In order to obtain more accurate prediction, we should use as
many features embedded in time series as possible in the
prediction model. Recent studies have shown that by
converting one-dimensional time series data into two-
dimensional images in some way, more features embedded
in the original time series can be retained. Therefore, a new
framework is explored to visualize time series, so as to learn the
features and structures of time series with the help of the
success of deep learning in the field of computer vision.
However, at present, most of the research on time series
focuses on the classification of time series. For example, A
time series classification method based on CNN and recursive
graph is proposed (Hatami et al., 2018). In this method, firstly,
the recursive graph is used to convert the time series into two-
dimensional texture images. Yang et al. (2019) proposed a
framework for sensor classification using multivariate time
series sensor data as input, which encodes multivariate time
series data into two-dimensional color images. However, we
propose a novel framework for encoding time series as two-
dimensional images to predict DO, this method preserves the
time series information in the form of matrix arrangement. At
the same time, in addition to the adjacent data, the periodic
data or interval data also contain some rules and
characteristics. We think that the closer the data is, the
more meaningful it is. Therefore, this cyclotron
arrangement method transforms the time information into
spatial information to a certain extent. The method of
transforming sequences into two-dimensional pictures

Frontiers in Environmental Science | www.frontiersin.org July 2022 | Volume 10 | Article 90493917

Li and Zhang Deep Learning-Based Water Qualiety Prediction

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


proposed in this paper aims to mine various forms of
information, and is also convenient for two-dimensional
convolution kernel to further extract a variety of
information. We use the method of converting dissolved
oxygen data into two-dimensional pictures and inputting
them into convolutional neural network, which rarely
appears in the study of dissolved oxygen prediction.
Moreover, according to the experiment in Section 4.2, the
prediction accuracy of our proposed method is higher than
that of other models.

4.4.3 The Effectiveness of Self-Attention in the CNN
Module
The long-term dependence of the capture sequence plays an
important role in deep learning prediction models. However, the
convolution operation has a significant weakness in that it only
operates on a local neighbourhood, thus missing global information
(Bello et al., 2019). With the deepening of the network, there has
always been the problem of local calculation, limiting the
performance of the model. To resolve this problem, this paper
uses a self-attention mechanism to improve the CNN. The self-
attention mechanism is a variant of the attention mechanism,
decreasing the dependence on external information. A self-
attention mechanism is used to mine the influence weight of
information at each position in the input matrix on the
prediction results, which can accurately capture the internal
correlation of data or features and better assist the optimization
process of CNN models (Jia et al., 2021). Its application in DO
sequence prediction is mainly through calculating the interaction
between DO sequences, to solve the problem of long-distance
dependence. The self-attention mechanism is a variant of the
attention mechanism, decreasing the dependence on external
information, and it is better at capturing the internal correlation
of data or features. At this time, the CNN prediction model is more
focused on capturing the characteristics of the input matrix.
Through the learning of feedforward neural networks, we can
better consider the context information of time series.

5 CONCLUSION

Because the aquatic environment of marine pastures is affected by
various factors, the change in DO is complex and nonlinear. To
improve the prediction accuracy for DO, the change trend in it
can be accurately predicted. In this paper, an improved 2DD-
CNN DO prediction model is proposed. In the pretreatment
stage, an SSMF method is proposed to provide missing values,
and a new method is used to convert the time series of water
quality parameters into pictures and input them into a two-
dimensional CNN. At the same time, the two-dimensional CNN
model is improved, and a convolutional self-attention module is
added to the network to resolve the long-distance dependence
problem by calculating the interaction between DO sequences.
The model proposed in this paper achieves good improvement in
prediction accuracy. The 2DD-CNN model has a very good
prediction effect and exhibits good generalizability for the
prediction error, fitting degree, peak valley value and data

segments with large and gentle fluctuations. This model is
applicable not only to the prediction of one water quality
parameter but also to the prediction of other water qualities.
The prediction of water quality parameters plays an important
role in marine ranch management by providing quantitative
information for the solution of emerging environmental
problems and the decision-making of sustainable management.

Although 2DD-CNNhas achieved good results in predictingDO,
there remain many aspects that can be improved. First, DO data
preprocessing has a significant impact on the accuracy of data
modeling and is an important method to improve the accuracy
of DO prediction. In the method that the SSMF used to provide
missing values in this paper, parameter optimization is greatly
affected by human subjective factors and cannot ensure the
optimization of set parameters. Therefore, optimizing SSMF
parameters will be the focus of the next improvement. Second,
the research in this paper only involves the prediction of one-
dimensional DO, but due to the interaction of water quality
parameters of marine pastures, DO is affected by many water
quality parameters. To further capture the variation
characteristics of DO, predicting DO according to
multidimensional water quality parameters is an important
research direction. In addition, the method of transforming time
into images designed in this paper could store more feature data, so
further research work could be performed in the direction of feature
expression in the future to better mine the internal relationships of
data and to improve the prediction accuracy.
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