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The formation processes and potential sources of particulate nitrate can be revealed by
nitrogen (δ15N-NO3

−) and oxygen (δ18O-NO3
−) isotopes; however, the linkage and

comparative information over a large scale is limited. In this work, the feasibility of
using quartz wool disk passive air samplers (Pas-QW) to identify and quantify the
nitrate concentrations and their isotopic compositions was demonstrated. The results
of a simultaneous sampling campaign from March to June showed that the NO3

−

concentration was largely attributed to the development of the regional economies.
The regional distribution of δ15N-NO3

− values was due to the source changes. The
decreasing trend of δ18O-NO3

− values with latitude from south to north was mainly a
combination of oxygen isotopic fractionation of the oxidant induced by natural factors and
anthropogenic changes in O3 concentrations. Coal combustion (CC) and mobile sources
(MS) have a significant contribution to NOx in the typical urban agglomerations, while the
high contribution from biomass burning (BB) and biogenic soil emission (BS) was mainly in
areas with high natural productivity and intensive agricultural activities. By allowing
simultaneous monitoring at multiple sites and over extended periods, passive sampling
complements existing techniques for studying nitrate aerosol, and the results can provide a
reference for the spatial distribution of its sources and formation in the China–Indochina
Peninsula (CICP).
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HIGHLIGHT

• A new method of Pas-QW was developed to monitor NO3
−

concentration and its dual isotopes.
• NO3

− concentration and δ15N-NO3
− values were controlled

by the intensity and type of the regional pollution sources.
• The latitudinal trend of δ18O-NO3

− values was attributed to
a combination of natural variations and anthropogenic
effects.

• CC and MS have a higher contribution to NOx in urban
agglomerations, but BB and BS were different.

INTRODUCTION

As a substantial component of ambient particulate matter, nitrate
(NO3

−) has an important impact on air quality, climate change,
radiative heat budget, and biogeochemical cycling of reactive
nitrogen (Ipcc, 2013; Liu et al., 2013; Altieri et al., 2021).
According to data from the global air quality monitoring
website AirVisual in 2017, Asia is home to 20 cities with the
worst air pollution in the world, and NO3

− was an important
contributing factor to particulate matter haze formation in cities
(Ding et al., 2017; Xiao et al., 2020; Guo et al., 2021). In addition,
as the precursor of NO3

−, the total NOx emissions in China have
exceeded 1.5 million tons per year in the past 10 years,
approaching or exceeding the upper limits of the
environmental carrying capacity (Fang et al., 2011; Rollins
et al., 2012; Azimi et al., 2018). Therefore, knowing NO3

−

sources and its formation mechanisms in Asian urban cities
and even in remote areas forms a necessary basis for the
further control of nitrogen emissions and improvement of air
quality.

The isotope technique is a powerful tool to distinguish
potential sources and formation pathways of nitrate aerosols.
As the precursor of NO3

−, NOx emitted from various sources has
unique features of nitrogen isotopic signals (δ15N), and the
contribution of different sources in a mixture can be well-
investigated by combining isotope techniques with stable
isotope models (Hastings et al., 2009; Miller et al., 2017; Zong
et al., 2018). Oxygen isotopic composition (δ18O) was often used
to estimate the transformation of NOx to NO3

− since the different
contribution of δ18O in nitrate aerosols (δ18O-NO3

−) emanate
fromO3 (Supplementary Text S1 in the Supporting Information;
Hastings et al., 2003; Chang et al., 2018; Fan et al., 2020).
However, oxygen isotopic fractionation can occur in the
process of the water vapor cycle (Zhang and Yao, 1994),
which may affect the δ18O-NO3

− values across a large scale.
Previous studies mainly focused on the evaluation of samples
collected by active air samplers (AASs) in a single city or limited
regions, which may lack linkage and comparative information
between different functional areas under the same analytical
system. Recently, studies have shown significant differences in
the contributions of NOx sources between urban sites and non-
urban sites (Ding et al., 2017; Guo et al., 2021; Song et al., 2021)
and the discrepancy in isotopic information (δ15N and δ18O) of
NO3

− among five Chinese megacities (Zong et al., 2020). Thus, a

multi-area simultaneous study such as passive samplers,
providing a deeper understanding of distribution
characteristics and influencing factors, will be an inevitable
trend for further exploration of nitrate aerosols.

In the last 2 decades, passive air samplers have been widely
used to monitor organic and inorganic pollutants (Demirel et al.,
2014; Jiang et al., 2018; Gaga et al., 2019). Since they are more
cost-effective and easier to install and maintain compared to
active samplers, passive air samplers may be an ideal tool for
large-scale and long-term investigations (Jiang et al., 2018; Wang
et al., 2021). Based on this knowledge, we recently developed a
new method for monitoring atmospheric particulate matter by
using the quartz wool disk passive air sampler (Pas-QW), and the
ability of this sampler to provide time-integrated measurements
of atmospheric sulfate was confirmed (Wang et al., 2021). As one
kind of quartz fiber with a larger specific surface area, Pas-QW
can provide a better measurement of particulate matter (PM) and
is in contrast with other studies. This provides a good example for
monitoring nitrate and its isotopes in the atmosphere.

Combined with passive sampling technologies, it is possible to
conduct source-diagnostic observations based on stable nitrogen
and oxygen isotopes over a large scale. The objectives of this study
are to 1) develop a method for measuring atmospheric NO3

−

collected by the Pas-QW collector, 2) conduct a campaign of
passive air sampling in CICP to assess the spatial distribution of
NO3

− concentrations and its stable isotope compositions, and 3)
combine the Bayesian model to quantitatively apportion the
contribution of each source.

MATERIALS AND METHODS

Calibration Exercise for Nitrate
A schematic of the Pas-QW used in this study is shown in
Supplementary Figure S1,S2. The sampler consists of a
quartz wool disk (14.0 cm diameter, 1.35 cm thickness, and
1.0 g mass), which was placed inside the pan and covered with
a stainless-steel mesh (1 × 1 cm). For the uptake study, two
batches of Pas-QW from different time periods were arranged in
the field deployments for better contrast. The first batch of 15
passive samplers was set up and deployed in Yantai (YT) from
January to April 2019, with every three parallel Pas-QW
collecting at 15, 29, 44, 60, and 77 d intervals over the period.
The second batch of 18 passive samplers was set up and deployed
in Guangzhou (GZ) from October to December 2020, with every
three parallel Pas-QW collecting at 15, 29, 41, 53, 62, and 74 d
intervals (Supplementary Table S1,S2,S3). Neither of the
sampling sites had any obvious point emission sources nearby.
During field sampling, the AAS was operated continuously
alongside passive sampling throughout the calibration exercise.
The AAS was set at an identical height to deploy the passive
sampler, and total suspended particle samples were collected on
prebaked quartz fiber filters. The samples were collected for a
2–5-day duration at a stable flow rate of 300 L/min. Because of
inevitable factors such as power interruption, heavy rainfall, and
typhoons, the active sampling time did not completely match the
retrieval time of the Pas-QW samplers. Therefore, the average
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concentrations of NO3
− obtained from active sampling during the

corresponding Pas-QW deployment time were used as the
reference air concentrations during the calibration exercise.
Detailed information on the calibration exercise is provided in
Supplementary Text S2.

Field Sample Collection
A total of 27 air-monitoring stations were selected as sampling
sites in China fromMarch to June in 2017, and 11 air-monitoring
stations were selected in the Indochina Peninsula (ICP) from
March to June in 2016. These included 25 urban sites, 10 rural or
suburban sites, and three background sites. Detailed information
and basic parameters of each sampling site are provided in
Supplementary Table S4,S5. The air samplers were assembled
at the deployment sites to avoid contamination during the
transport process. After deployment, these quartz wool disks
were retrieved, resealed, and transported back to Guangzhou for
storage.

Chemical and Isotopic Measurements
The quartz wool disk samples were soaked in Milli-Q water,
ultrasonically extracted for 30 min, and then the extracts were
filtered. Ionic species were measured via ion chromatography
(Dionex ICS3000; Dionex Ltd., Sunnyvale, CA, United States)
based on the reported analysis method (Zong et al., 2018). The
analytical precision determined from the replicates was less
than 5% for each ion. The detection limits were within the
range of 0.01–0.05 μg/m3 for anions and 0.02–0.07 μg/m3 for
cations. Blank values were used for calibration
(Supplementary Text S3).

The δ15N and δ18O values of NO3
− were determined by the

N2O isotope analysis method (Mcilvin and Altabet, 2005).
Briefly, NO3

− extracted from the filter was reduced to NO2
−

using cadmium powder, and then NO2
− was further reduced to

N2O using sodium azide in an acetic acid buffer. δ15N and δ18O
were analyzed using an isotope ratio mass spectrometer
(MAT253; Thermo Fisher Scientific, Waltham, MA,
United States). The detected δ15N and δ18O values (‰)
were corrected by multi-point correction (r2 = 0.999) based
on international reference standards (IAEA-NO3

−, USGS32,
USGS34, and USGS35) and reported in the standard delta
notation relative to the Vienna Canyon Diablo Troilite
standard. The standard deviation of the isotopic
measurements for both standards and samples was less than
0.35‰ for δ15N and 0.70‰ for δ18O. In addition, NO2

−

concentrations in the quartz wool disk samples were usually
less than 1% of that of NO3

−; therefore, they were neglected in
the δ15N and δ18O analyses.

Bayesian Mixing Model
The Bayesian mixing model could use stable isotopes to identify
the probability distribution of the contributions of each source to
a mixture and explicitly explain the uncertainty, which is
associated with multiple sources, fractionation, and isotopic
signatures (Parnell et al., 2013). Recently, the Bayesian model
(MixSIR) was improved by incorporating the isotopic
fractionation of the equilibrium/Leighton reaction, thereby

constructing a suitable NOx source apportionment model
(Zong et al., 2020). In our study, coal combustion (13.7 ±
4.6‰), biomass burning (1.0 ± 4.1‰), mobile sources (−7.2 ±
7.8‰), and microbial processes (−35.4 ± 10.7‰) were confirmed
as the major contributors to NOx in the CICP (Supplementary
Text S4 and Supplementary Table S6). The details of the isotopic
fractionation are discussed in Supplementary Text S5 and
Supplementary Table S7.

RESULTS AND DISCUSSION

Feasibility of Using Pas-QW to Determine
Nitrate in Air
The uptake profiles of NO3

− over time are shown in Figure 1A for
both YT and GZ, with raw data and detailed information
presented in Supplementary Table S1 and Supplementary
Text S2. Linear uptakes of NO3

− for Pas-QW during the
calibration exercise period were found by good linear
correlations between the values of uptake volume and
deployment time. The average sampling rate was 2.5 ± 1.2 m3/
day, which was comparable to the recently reported sampling
rates of sulfate based on Pas-QW (Wang et al., 2021). To reflect
the sampling rate as much as possible, two sampling calibrations
were carried out in different seasons in the North and South of
China. The sampling time of YT is the northern winter with
relatively low temperature, humidity, and light intensity, which
can cause relatively low oxidant concentration and low NOx

oxidation rate in the atmosphere, thereby reducing the
atmospheric NO3

− concentration. The sampling time of GZ is
the southern autumn characterized by low NOx concentration,
but the high oxidant concentration caused by the relatively high
temperature, humidity, and light intensity can increase
atmospheric NO3

− concentration. Although the growth trend
of nitrate collected in the two cities is slightly different, the
capture by Pas-QW both increased linearly over the period
and the difference in sampling rates was not statistically
significant (p > 0.05). This suggested that the Pas-QW offered
a feasible tool for monitoring studies and the sampling rate was
stable and not greatly affected by atmospheric NO3

−

concentration. In addition, the sampling rate is not only
affected by the physical and chemical properties of the target
compound but also influenced by atmospheric conditions.
Information on the correlation between sampling rates and
environmental and meteorological parameters is given in
Supplementary Table S2. The results showed that the
correlation between the sampling rate and these basic
parameters is not significant, indicating that the influence of
changes on meteorological parameters may be weakened during
the long-term sampling process and would not have a great
impact on the time-weighted average concentration.

The isotopic information (δ15N and δ18O) of NO3
−

collected with Pas-QW and AAS is presented in Figure 1B
and Figure 1C, respectively, with raw data listed in
Supplementary Table S3. Only the values for GZ were
compared to avoid the isotopic fractionation effects due to
unavoidable factors such as transportation or long-term
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storage. A considerable discrepancy in δ15N-NO3
− values was

observed between Pas-QW and AAS at 29-, 41-, 53-, 62-, and
74-d intervals. Considering the uncertainty caused by the
adsorption of nitric acid gas during sampling (Zhang and
Mcmurry, 1992; Schaap et al., 2004), the δ15N-NO3

− values
collected by the AAS are generally slightly depleted than those
collected by Pas-QW (Figure 1B). However, the δ15N-NO3

−

values collected by Pas-QW were linearly enriched over
74 days, indicating that nitrate mainly collected with alkali
metals has been retained in the quartz wool disk due to the
evaporation of semi-volatile ammonium nitrate (Zhang and
Mcmurry, 1992; Schaap et al., 2004). Comparing the time-
averaged δ15N-NO3

− values collected by Pas-QW and the AAS
during the sampling period, the correlation (δ15NAAS-NO3− =
-0.5×δ15NPas-QW-NO3− + 5.8, r = 0.6) between the two samplers
is reasonable. Therefore, to ensure comparability, the
δ15N-NO3

− values collected by Pas-QW in this study have
been corrected to those of AAS using this equation. As for the
δ18O of nitrate aerosol, there was no significant difference in
δ18O-NO3

− values between Pas-QW and the AAS during the
sampling period (Figure 1C). The two were in the same order
of magnitude, and the variability of each period was between
0.9 and 1.2, indicating that the oxygen isotopes collected by

Pas-QW were basically consistent with those collected by the
AAS over the long-term sampling process.

To further verify the feasibility of Pas-QW, samples from
twelve sampling sites (HRB, SY, XM, WH, SH, CD, ZZ, TY, SJZ,
BJ, NJ, and HZ) were collected in March–June of 2017 and
compared with those of the previous studies conducted in the
same regions and in the same year. The mass size distribution of
NO3

− is dominated by the accumulation mode, and its
concentration in PM2.5 is about 75% of that in TSP (Lijiang,
2003; Wang et al., 2003; Fang et al., 2013). The results for the
collection of target compounds from both fine PM and coarse PM
using Pas-QW were comparable to those of most of the previous
studies conducted on PM2.5 samples, which have been corrected
to the concentrations in TSP (Hong et al., 2018; Huang et al.,
2018;Wang P et al., 2019;Wang Y. et al., 2019; Huang et al., 2019;
Sun et al., 2019; Wu et al., 2019; Zhang et al., 2019; Wang et al.,
2020; Dong et al., 2021; Liu et al., 2021; Luo et al., 2021). The
comparison between the literature values and the measured
values in this study is shown in Figure 1D. Two values at the
same site are in the same order of magnitude, and the slope was
close to 1 (R2 = 0.6). This suggested that the detected
concentrations of NO3

− in this study were comparable to the
concentrations reported in the literature. The Pas-QW provides a

FIGURE 1 | During the calibration exercise, (A) equivalent air volumes for nitrate and sulfate using Pas-QW in Yantai and Guangzhou field sites, (B) comparison of
δ15N-NO3

− values collected by Pas-QW and the AAS for GZ, (C) comparison of δ18O-NO3
− values collected by Pas-QW and AAS for GZ, and (D) concentrations of NO3

−

in the literatures and this study at twelve sites.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 8975554

Wang et al. Nitrate over China–Indochina Peninsula

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


direct and effective measurement of atmospheric NO3
− over a

large scale.

Spatial Distribution of Nitrate
Concentrations and Its Isotopic
Compositions
Spatial information on NO3

− concentrations in the CICP is
provided in Figure 2 and Supplementary Table S4. During
the sampling period, the temperature, relative humidity, and
wind speed were within the ranges 9.1–35.1°C (21.5 ± 7.3°C),
36.0–84.0% (63.4 ± 14.0%), and 0.9–3.8 m/s (2.4 ± 0.8 m/s),
respectively. The meteorological parameters of these sampling
sites were comparable to the range of the calibration exercise
time, except for a few sites. Among the 38 sampling sites, the
average NO3

− concentration in the ICP (6.4 ± 2.3 μg/m3) was
slightly lower than that in China (7.8 ± 5.0 μg/m3). Higher values
typically appeared in urban sites (8.8 ± 4.5 μg/m3), followed by
rural sites (5.3 ± 2.8 μg/m3) and background sites (2.7 ± 0.4 μg/
m3). Analysis of variance showed that there was a significant
difference between the NO3

− concentrations of different
functional areas (p < 0.05). The lowest NO3

− concentration
was in Alxa, which was located in the northwest of China,
with a vast area surrounded by desert. The highest NO3

−

concentration was in Hangzhou, located in the Yangtze River
Delta in China. As a major commercial and financial center in
mainland China, it has a prosperous economy, with thriving
industrial activity and rapidly developing tourism (Tian et al.,
2018; Jin et al., 2021). The spatial distribution of NO3

−

concentrations was largely attributed to the development of
the regional economies, and cities with intensive human
activities usually have higher NO3

− concentrations. A similar
phenomenon was found in the NOx emission study derived from
satellite observations (Supplementary Figure S3) (Ding et al.,
2017).

In terms of its isotopic compositions, the average δ15N-NO3
−

values in China (4.9 ± 1.6‰) were lower than those in the ICP
(6.4 ± 1.6‰). The values in background sites (6.1 ± 0.2‰) and
rural sites (6.1 ± 1.3‰) are higher than those in urban sites (4.9 ±
1.8‰). The highest δ15N-NO3

− value was in Taiyuan (9.5‰),
which was located in central China, and the contribution of the
coal industry to total production is more than one third
(Yearbook S. S, 2018). The lowest δ15N-NO3

− value was in
Chongqing (2.5‰), located in the Sichuan Basin, with large
populations and intensive agricultural activities (Yearbook S. S,
2018). The average δ18O-NO3

− value in this study was 42.3 ±
8.5‰, which is consistent with that of the previous studies in the
same season (Su et al., 2020; Zong et al., 2020). The values of

FIGURE 2 | Spatial distribution of NO3
− concentrations, δ15N, and δ18O in 38 sampling sites of the CICP. The NO3

−concentrations, δ15N, and δ18O values are
indicated by blue, yellow, and red bar, respectively.
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background sites (41.5 ± 7.6‰), rural sites (40.2 ± 10.8‰), and
urban sites (43.2 ± 7.3‰) were not significantly different (p >
0.05). The δ18O-NO3

− values were largely affected by the different
pathways of nitrate formation (Hastings et al., 2003; Chang et al.,
2018; Fan et al., 2020). According to the global models, the
contribution of the •OH generation pathway to nitrate
production was equal to that of the N2O5 generation pathway
in the troposphere below 1 km altitude, especially in spring and
summer, and the dominant •OH generation pathway under high
OH-level conditions may result in low δ18O-NO3

− values
(Alexander et al., 2020; Luo et al., 2020). In addition, recent
studies have shown that the peroxy radical reaction is also an
important pathway for NO to NO2 conversion (Fang et al., 2011;
Guha et al., 2017). These changes in the NOx oxidation pathways
may lead to generally low δ18O-NO3

− values in the atmosphere.

Source and Conversion of Nitrate Based on
N and O Isotopic Signals
In the atmosphere, NO3

− is mainly produced by the conversion of
NOx, which exhibits different δ15N-NOx signatures from its
distinctive emissions. As previously mentioned, NOx from coal
combustion or biomass burning has higher δ15N values, while

δ15N from mobile sources or microbial processes tends to be
more negative (Hastings et al., 2009;Miller et al., 2017; Zong et al.,
2018). During the transformation process of NOx to NO3

−, the
nitrogen isotopic fractionation effects on δ15N cannot be
neglected (Walters et al., 2015; Walters and Michalski, 2015).
Certifiably, the δ15N-NO3

− values in this study had a significant
correlation with temperature (r = 0.32, p < 0.05; Supplementary
Table S5). According to the fractionation theory in the
conversion of NOx to NO3

−, changes in temperature can
result in the variation of nitrogen isotopic fractionation
(Walters and Michalski, 2016), which may further affect the
δ15N-NO3

− values. To assess the impact of temperature on the
δ15N-NO3

− value, we calculated the nitrogen isotopic
fractionation in these regions (Supplementary Text S5 and
Supplementary Table S7). The fractionation factor of δ15N
for the sampling sites varied from 8.8 to 10.6‰, with a mean
value of 9.7 ± 1.8‰. The nitrogen isotopic fractionation between
the sites with the highest temperatures (LAO-V) and that with the
lowest temperatures (HRB) was approximately 1.8‰, which is
lower than the difference in real nitrogen isotope values between
the two regions (3.2 ‰). This indicated that although the
variation of δ15N-NO3

− values was affected by isotopic
fractionation, source differences were still a vital factor

FIGURE 3 | Characteristics of (A) δ15N-NO3
− and δ18O-NO3

− values, (B) NO3
− concentrations and latitude, and (C) relative humidity and ambient temperature in

the CICP during the sampling period.
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affecting the regional distribution of δ15N-NO3
− values. The low

values in urban sites and high values in background and rural sites
can be attributed to increased contributions of mobile sources
and coal combustion, respectively. Regional differences were also
observed in five Chinese megacities based on the isotopic
information and modeling (Zong et al., 2020).

Previous studies have suggested that the oxidation of NO2 by
•OH (•OH + NO2) in the gas phase and the hydrolysis of N2O5

on pre-existing aerosols (N2O5+H2O, heterogeneous process)
were considered to be the two main reactions controlling the
formation of NO3

− (Morin et al., 2009; Xiao et al., 2020). The
conversion process of NO to NO2 mainly includes O3 oxidation
and peroxy radical (HO2 and its organic homolog RO2)
oxidation. According to the global models, we assumed that
15% of NO to NO2 conversion was through HO2/RO2

oxidation and 85% by O3 oxidation (Alexander et al., 2020).
The details of oxidation pathways and balance equations are
discussed in Supplementary Text S1. The use of δ18O-H2O
ranges from −27.5 to 0‰, and the terminal δ18O-O3 value
(δ18O-O3*) is 130.4 ± 12.9‰ (Fang et al., 2011; Vicars and
Savarino, 2014). Through the temperature-dependent
equilibrium isotope exchange between •OH and H2O, the
resulting minimum and maximum estimates of δ18O-OH were
from −67.4‰ to −41.0‰ (Walters and Michalski, 2016). Using
these assumptions and equations, the expected δ18O-NO3

− value
for the •OH oxidation pathway is 46.5–71.4‰, and for the N2O5

pathway, it is 88.7–113.5‰. In this study, the observed
δ18O-NO3

− values in most regions were less than 60‰,
suggesting that NOx oxidation by •OH during this period was,
indeed, the dominant pathway for the formation of NO3

− in the
atmosphere.

The characteristics of isotope compositions and basic
environmental parameters of 38 sampling sites are shown in
Figure 3. The relatively high δ18O-NO3

− values of China were
mainly found in megacities (such as GZ, NJ, ZZ, and BJ), which
were consistent with the O3 distribution in China during 2016 (Li
et al., 2018). Moreover, the δ18O-NO3

− values share a significant
positive correlation with NO3

− concentrations (r = 0.36, p < 0.05),
and the spatial distribution of the latter was mainly attributed to
the development of regional economies. These evidence imply
that the high O3 concentrations induced by human activities
increase the proportion of N2O5 heterogeneous reactions,
affecting the regional distribution of δ18O-NO3

− values. Using
the linear regression method (Supplementary Table S5), we also
found that the δ18O-NO3

− values share a significant negative
correlation with latitude (r = −0.43, p < 0.01). This indicated that
in addition to anthropogenic factors, there are other factors that
may affect the regional distribution of δ18O-NO3

− values,
especially when multiple functional areas were included over a
large scale. The wind field in the CICP during the sampling period
is provided in Supplementary Figure S4 and Supplementary
Text S6. The CICP has a definitive monsoonal climate, with a
prevailing approximately southerly wind from March to June.
This leads to the transport of water vapor from the evaporation of
tropical and subtropical oceans to higher latitudes and inland
through meridional and zonal circulations (Zhang and Yao,
1994). Given the preferential condensation of heavy isotopes,

oxygen isotopes in atmospheric precipitation continue to be
lighter as water vapor condenses and evaporates (Dansgaard,
1964; Yuetsever, 1975). The decreasing trend of δ18O-NO3

−

values from south to north in the CICP was consistent with
the variation of δ18O-H2O values at latitude, indicating that
changes in the oxygen isotopic fractionation of the oxidant
induced by natural factors may have a significant impact on
the δ18O-NO3

− values over a large spatial scale.

Source Apportionment of NOx Using the
Bayesian Model
The overall estimation showed that coal combustion was the most
important source for NOx, followed by biomass burning, mobile
sources, and biogenic process, with the contribution of 38.6 ±
8.0%, 25.5 ± 1.9%, 22.6 ± 2.8%, and 13.3 ± 3.4%, respectively
(Supplementary Figure S5). Hence, the fractional concentration
of the total NO3

− that was derived from CC, BB, MS, and BS was
2.8 ± 1.6 μg/m3, 1.9 ± 1.2 μg/m3, 1.7 ± 1.1 μg/m3, and 1.0 ± 0.7 μg/
m3, respectively (Figure 4). This finding was in agreement with
the characteristics of energy consumption in China, which
showed that coal combustion is dominant in energy
combustion, but the proportion is gradually decreasing
(Supplementary Figure S6). According to the “Twelfth Five-
Year Plan for National Environment Protection,” 95% of all
power plants in China were installed with NOx removal
systems by the end of 2015 (Shang et al., 2016). NOx

emissions decreased from 28 million tons in 2012 to 21 million
tons in 2017, with significant proportion of the decrease
attributed to the reduction in emissions from power plants
(Supplementary Figure S7) (Liu et al., 2015; Li et al., 2017).
The cities in Beijing–Tianjin–Hebei (BTH) and Yangtze River
Delta (YRD) have higher CC concentrations, which can be partly
attributed to their large populations and substantial coal
consumption. In 2017, the power consumption in Jiangsu,
Zhejiang, and Hebei provinces ranked second, fourth, and
fifth, respectively, and their thermal power generation all
exceeded 280 TWh (Yearbook C. S, 2018). In addition, GY,
SSPN, and most sites in the ICP also have higher CC
concentrations. These may be due to the anthropogenic
emissions from local households, inefficient combustion, and
the impact on the regional transmission of pollutants in the
Sichuan Basin (SC), South Asia, and the northwestern Pearl River
Delta. In China, residential consumption of coal has been
calculated to be approximately 2.7 billion tons in 2017, and
the pollution load of these households without pollution
control devices would be equivalent to that of 170 billion tons
of coal-fired power plants based on the emission calculation
(Zhang et al., 2017). The higher CC concentrations typically
appeared in urban sites (3.2 ± 1.5 μg/m3), followed by rural sites
(2.3 ± 1.5 μg/m3) and background sites (1.1 ± 0.5 μg/m3). This
result was consistent with that of previous research, that is, coal
combustion in residential stoves was a widespread source from
urban to remote areas in the CICP (Chen et al., 2017; Song et al.,
2021).

The model results showed that biomass burning was the second
largest contributor to NOx with the concentrations of 1.6 ± 0.5 μg/
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m3 and 2.0 ± 1.3 μg/m3 in the ICP and China, respectively. The
higher BB concentrations were found in SC and YRD of China,
which is consistent with the distribution of cultivated land
(Supplementary Figure S8). In cultivated areas, agricultural
wastes are usually stored as fuel for household cooking or
heating, while other wastes are consumed by open burning in
the fields. China ranks third in the world with 1.43million square
kilometers of arable land, and the NOx emissions induced by
biomass burning increased more than six-fold from 1990 to 2013
(Li et al., 2016). The ICP is a typical high-incidence area of global
biomass burning and occupies the leading position of biomass
combustion pollution emission in Asia (Streets et al., 2003). The
higher BB concentrations in this study may be mainly attributed to
the highly concentrated combustion before farming in spring
(from March to April) and various types of combustion
(burning which includes natural (wildfire) and man-made forest
fire (clearing forest)) (Streets et al., 2003). The high BB
concentrations were observed in both rural and urban sites,
indicating that biomass fuel is used as a conventional fuel and
its emission intensity could not be ignored.

The mobile source was another important contributor to NOx,
and high concentrations were observed in urban sites (2.1 ±
1.2 μg/m3), especially in the typical urban agglomerations such as
BTH and YRD. According to automobile industry surveys, the
average annual growth rate of car ownership in China reached
14% since 2009, and more than one-half of motor vehicles
occurred in megacities (Yearbook C. S, 2018). Since the mass
ratio of NOx/SOx from gasoline combustion and coal combustion
has been estimated to be 13:1 and 1:2, respectively, the ratio of
NO3

−/SO4
2− has often been used as an indicator of automobile

exhaust emissions and coal combustion (Wang et al., 2006). The
mass ratio of NO3

−/SO4
2− in this study ranged from 0.12 to 2.87,

and a high NO3
−/SO4

2− ratio in cities was consistent with the
result obtained by the Bayesian model. These suggested that the
explosive growth of car ownership in recent years may lead to
vehicle exhaust emissions becoming an important source of NOx

pollution. In addition, it has been estimated that the NOx

emissions from ships in China reached 11.3% of the total
emissions in recent years (Zhang et al., 2016). The high MS
concentrations in this study were also observed in coastal areas,

FIGURE 4 | Source-divided NO3
− concentrations of coal combustion, biomass burning, mobile sources, and microbial processes at the 38 sampling sites in the

CICP.
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indicating that ship emissions from the Bohai Sea, the East China
Sea, the South China Sea, and the Bay of Bengal may be another
important mobile source. This finding was consistent with the
conclusions of a maritime NOx emission study over Chinese seas
based on satellite observation (Ding et al., 2018).

Microbial activity in wetlands and soils can consume
accumulated nitrogen and release large pulses of NO,
especially in environments with relatively high temperature
and humidity (Zong et al., 2020). Thus, compared with other
sources, microbial processes are more uniformly distributed in
the ICP. Under high natural productivity and intensive
agricultural activities, the extensive use of nitrogen
fertilizers in cultivated land can lead to high NOx emission
(Jaeglé et al., 2004). In addition, high MS concentrations were
also observed in cities around the YRD and Bohai Bay,
indicating that oceanic sources (especially in marine
sediments and estuaries) may be another important
component of microbial processes. Although the
contribution of marine bacteria to NOx has not been widely
reported, marine sediments and estuaries can be part of
denitrification areas (Wankel et al., 2006). Based on the
similar activity mechanism of bacteria, the oceans around
the CICP may also be one of the contributors to NOx

emissions.

CONCLUSION

We developed a wool disk passive air sampler to identify and
quantify atmospheric nitrate concentrations and its isotopic
compositions over a large scale and carried out a field study at
38 sampling sites in the CICP and then combined the
measured isotope data and the Bayesian model to
quantitatively apportion the contribution of NOx sources.
Important findings of this study include 1) atmospheric
nitrate showed nearly linear uptake profiles with the mass
collected on the samplers proportional to the accumulated
time, and the average sampling rate collected by Pas-QW was
2.5 ± 1.2 m3/d; 2) results of simultaneous sampling showed
that the NO3

− concentration and δ15N-NO3
− values were

controlled by the intensity and type of the regional
pollution sources, and the latitudinal trend of δ18O-NO3

−

values was mainly a combination of oxygen isotopic
fractionation of the oxidant induced by natural factors and
man-induced changes of O3 concentrations; and 3) coal
combustion was the most important source of NOx in the
CICP, followed by biomass burning, mobile sources, and
biogenic processes. Coal combustion and mobile sources
have a significant contribution to NOx in typical urban
agglomerations such as Beijing–Tianjin–Hebei and Yangtze
River Delta, while biomass burning and biogenic soil emission

contribute mainly in areas with high natural productivity and
intensive agricultural activities (such as the Indochina
Peninsula and Sichuan Basin). Our study, which provided a
method for simultaneous monitoring at multiple sites and over
extended periods, has complemented existing techniques for
studying nitrate aerosol. This could be used in future regional
or even global research to better understand the spatial
distribution of its sources and formation.
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