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With the publication of the latest version of ISO 14064-1, the National Carbon Neutrality
Program of Costa Rica included measurement uncertainty as a mandatory requirement for
the reporting of greenhouse gas (GHG) inventories as an essential parameter to have
precise and reliable results. However, technical gaps remain for an optimal implementation
of this requirement, including a lack of information regarding uncertainties in the official
database of Costa Rican emission factors. The present article sought to fill the gap of
uncertainty information for 22 emission factors from this database, providing uncertainty
values through the collection of input information, use of expert criteria, fitting of probability
distributions, and the application of the Monte Carlo simulation method. Emission factors
were classified into three groups according to their estimation methods and their
information sources. Five probability distributions were chosen and fitted to the input
data based on their previous application in the field. Standard uncertainties and 95%
confidence intervals were estimated for each emission factor as the standard deviations
and differences between the 2.5% and 97.5% percentiles of their simulated data. As
expected, most of the standard uncertainties were estimated between 15% and 50% of
the value of the emission factor, and confidence intervals tended to asymmetry as the
standard uncertainties or the number of input data for the emission factor estimation
increased. High consistency was found between these results and values reported in other
studies. These results are critical to complement the official database of Costa Rican
emission factors and for national users to estimate the uncertainties of their greenhouse
gas inventories, easing to comply with national environmental policies by adapting to
international requirements in the fight against climate change. Additionally, improvement
opportunities were identified to update the emission factors from livestock enteric
fermentation, manure management, waste treatments, and non-energy use of
lubricants, whose estimations are based on outdated references and methodologies.
An opportunity to improve and reduce the remarkably high uncertainties for emission
factors associated with the biological treatment of solid waste through studies adapted to
the specific characteristics of tropical countries like Costa Rica was also pointed out.
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INTRODUCTION

The latest National Surveys on Climate Change (UNDP and
UCR, 2014; MINAE and UNDP, 2021) revealed that most of the
Costa Rican population is aware that there are risks associated
with climate change that can already be perceived and they agree
to take action to fight against this global enemy. Accordingly, the
government of Costa Rica has launched national policies and
programs that seek to decarbonize its economy (Government of
Costa Rica, 2019) and adapt to the climate change consequences
(Government of Costa Rica, 2018), including the National
Carbon Neutrality Program (PPCN, by its Spanish acronym)
(DCC and PMR, 2020). Thanks to these efforts, Costa Rica was
recognized with the Champions of Earth Policy Leadership
Award (UNEP, 2019), but many challenges still remain.

With the publication of the latest version of ISO 14064-1
(2018), the PPCN included measurement uncertainty as a
mandatory requirement for the reporting of greenhouse gas
(GHG) inventories as an essential parameter to have precise
and reliable data for the correct quantification of emissions and
removals (DCC and PMR, 2020). Measurement uncertainty,
formally defined as the doubt about the true value of a
quantity that remains after making its measurement or
estimation, is the best quality parameter of any measurement
or estimation and reflects the impossibility of knowing exactly its
value (JCGM, 2008a). Among the accepted methodologies for
estimating uncertainty, the law of propagation of uncertainty
included in the Guide to the Expression of Uncertainty in
Measurement (GUM) and the Monte Carlo simulation method
included in the Supplement 1 of the GUM (GUM-S1) stand out.
These methodologies are based onmodeling an output quantity y
as a known function of several input quantities xi and handles the
uncertainties associated with the input quantities by modeling
them as random variables with defined probability distributions.
These approaches use the on-hand information about the input
quantities to produce an approximate evaluation of the
uncertainty of the output quantity through a first-order Taylor
series expansion or a propagation of probability distributions
using simulation techniques (JCGM, 2008a; JCGM, 2008b).

In the context of GHG inventories, uncertainty estimation has
been pointed as a key component to increase confidence in the
reported results and help decision makers to better target areas
for implementing mitigation strategies and policy development
(El-Fadel et al., 2001; EPA, 2002; IIASA, 2007; Jonas et al., 2010a;
Jonas et al., 2010b; Hergoualch et al., 2021). Several studies have
been developed regarding this topic, including EPA (1996),
Bharvirkar (1999), Frey (2007), Ritter et al. (2010), Pouliot
et al. (2012), Milne et al. (2015), Quilcaille et al. (2018), and
Solazzo et al. (2021), among others. With the publication of IPCC
Guidelines for National Greenhouse Gas Inventories (IPCC,
2000; IPCC, 2006a; IPCC, 2019a), it was possible to establish a
globally approved framework to estimate uncertainties in this
field, based on both methodologies described in the GUM and
GUM-S1. It has been pointed out that the first method may be
easier to implement and suitable for calculating uncertainties
from uncorrelated, normally distributed individual input
estimates with variation ranges below ±30%, but it can lead to

significant uncertainty underestimations when these restrictions
are breached (Fauser et al., 2011;Wójcik-Gront and Gront, 2014).
The Monte Carlo simulation method allows for different
probability distribution functions, parameter correlations,
complex models, and large uncertainties, making it more
attractive for a wider range of cases. Applications of the
Monte Carlo uncertainty estimation method in the field of
GHG emission includes Monni et al. (2004), Ramírez et al.
(2008), Fauser et al. (2011), Silva et al. (2011), Wójcik-Gront
and Gront (2014), Caldwallader and VanBriesen (2017), and Cho
et al. (2018), among others.

In Costa Rica, additional technical guidelines were developed
to aid the implementation of uncertainty estimation in GHG
inventories (DCC and LCM, 2020). Also, a study by Molina-
Castro and Calderón-Jiménez (2021) served to complement and
update the official database of Costa Rican emission factors (IMN,
2021), providing uncertainty values for the emission factors of the
fuel sector and methodological guidance to approach uncertainty
estimation of emission factors using asymmetric probability
distributions. However, technical gaps still remain for an
optimal implementation of uncertainty estimation in the GHG
inventories of Costa Rica, including a lack of information
regarding uncertainties of the national emission factors for the
agricultural, waste treatment, livestock, and industrial sectors
from the Costa Rican official database. Although studies
carried out in other countries can be found to estimate
emission factors and their uncertainties in the sectors
mentioned above (for example Milne et al. (2014) and Monni
et al. (2007) for agriculture, Zheng et al. (2004) for croplands,
Caldwallader and VanBriesen (2017) for wastewater, Basset-
Mens et al. (2009) for livestock, among others), no related
works have been carried out in Costa Rica. These gaps are
becoming serious limitations that prevent the reporting of
complete, transparent, and reliable emission results that meet
the nationally established requirements, urging the development
of national-specific studies that complete the missing
information.

This article sought to fill the gap of uncertainty information
that the official database of Costa Rican emission factors currently
has, providing values for the missing uncertainties of emission
factors through the collection of information and application of
the Monte Carlo simulation method where needed. It should be
remembered that emission factors are key elements for indirect
quantification of emissions, where emissions (E) are not
measured directly as an amount of gas released into the
atmosphere but estimated from other data values associated
with the activity that cause the emission (d) and emission
factors (f) that relate these data to the amount of gas emitted,
as shown in Eq. 1.

E � d · f (1)
Therefore, according to the GUM uncertainty estimation
principles mentioned previously, emission factor uncertainties
are necessary for the estimation of the emission uncertainty. As a
consequence of the process followed to achieve the proposed
objective, this study also includes suggested updates for some of
the emission factors considered. It is expected that this study,
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together with the one previously published by Molina-Castro and
Calderón-Jiménez (2021), will ease compliance with the
requirements for reporting GHG emission results and will
serve as a guide for uncertainty estimation and interpretation
in GHG inventories in Costa Rica and other countries around
the world.

METHODS

Emission Factors Selection
According to the last official database published by the National
Meteorological Institute of Costa Rica (IMN, by its Spanish
acronym), emission factors from livestock enteric
fermentation, manure management, waste treatments, most
croplands and grasslands, and non-energy use of lubricants
are missing uncertainty information (IMN, 2021). These
factors corresponded to the initial list within the scope of the

present study. However, after holding meetings with IMN experts
in the field, the emission factors associated with croplands,
grasslands, and enteric fermentation from cattle (including
calves) were excluded since there are national unpublished
studies that include uncertainty estimates for their values. It is
expected that future publications of the official database will
include these uncertainties. Thus, the emission factors selected for
this study and their current values are shown in Table 1.

Emission Factors Classification
As shown in Table 1, the emission factors included in the scope of
this study were classified into three groups according to their
estimation methods and their information sources. This is done
because the subsequent methodological strategies used to
estimate their uncertainties depend on the way the emission
factors are obtained. The details of each group are shown below.
For reproducibility purposes, the values, confidence intervals, and
their source for all the input quantities mentioned below can be
consulted in Supplementary Tables S1–S3 of the supplementary
material.

Group 1: Factors From Literature
This group included emission factors with values taken directly
from the literature, specifically from IPCC Guidelines (IPCC,
2006d; IPCC, 2006f; IPCC, 2019b). These factors correspond to
the most basic level of emission estimation proposed by the IPCC
(Tier 1) and can be used when there is no national information
available. An expected variation interval with 95% confidence for
these factors can usually be found within the literature. Emission
factors associated with livestock enteric fermentation (other than
cattle), manure management, and biological treatment of solid
wastes (composting and anaerobic digestion) were included in
this group.

Group 2: Simple Model Estimation
This group included emission factors (output quantities) with
values estimated from simple multiplicative models with no
more than three variables with uncertainty (input quantities).
These factors correspond to a higher level of emission
estimation proposed by the IPCC (Tier 2 or 3). For this
group, the mathematical models and the values of their
inputs were taken from IPCC Guidelines (IPCC, 2006g;
IPCC, 2019d). An expected variation interval with 95%
confidence for the input variables can also be found in these
guidelines. Emission factors associated with wastewater
treatments and discharge were included in this group.

For industrial wastewater treatments (anaerobic reactor and
anaerobic lagoon) and river discharge, the model used to estimate
their emission factors (f) is shown in Eq. 2. The input quantities
Bo and MCF correspond to the maximum CH4 producing
capacity and the Methane Correction Factor (a fraction
between 0 and 1), respectively (IPCC, 2006g; IPCC, 2019d).

f � Bo ·MCF (2)
It should be mentioned that no variation intervals were found for
MCF in industrial wastewater. Therefore, expert judgment was
used to fill in this missing information, following the IPCC

TABLE 1 | Emission factors included in this study with their current values taken
from the official database of emission factors of Costa Rica (IMN, 2021),
classified according to their estimation methods.

Group 1: Factors from literature

Process/Sources Gas Emission factor

Enteric Fermentation Units: kg/(head year)
Buffalo CH4 55
Sheep CH4 5
Goats CH4 5
Horses CH4 18
Swine CH4 1
Manure Management Units: kg/(head year)
Cattle CH4 1.00
Horses CH4 1.64
Goats CH4 0.17
Swine CH4 1.00
Poultry CH4 0.02
Biological Treatment of Solid Waste Units: g/kg
Composting CH4 4.0
Composting N2O 0.3
Anaerobic digestion CH4 2.0

Group 2: Simple model estimation

Process/Sources Gas Emission factor

Industrial Wastewater Treatment Units: kg/kg
Anaerobic reactor CH4 0.2
Anaerobic shallow lagoon CH4 0.2
Anaerobic deep lagoon CH4 0.05
River discharge CH4 0.025
Domestic Wastewater Treatment Units: kg/(person year)
(Anaerobic shallow) Lagoon CH4 1.752
Septic tank CH4 4.38
River discharge CH4 0.964

Group 3: Complex Model Estimation

Process/Sources Gas Emission Factor
Non-Energy Products Use Units: kg/L
Lubricants CO2 0.5101
Solid Waste Disposal Units: kg/kg
Landfill CH4 0.0581
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recommendations for this case (IPCC, 2006g). The criteria of
three national technical experts in wastewater treatment and its
emissions were used.

For domestic wastewater treatments (septic tank and
anaerobic lagoon) and river discharge, the model used to
estimate their emission factors (f) is shown in Eq. 3. The
additional input quantity BOD corresponds to the Biochemical
Oxygen Demand (BOD) per capita estimated for the specific
country or region under analysis (IPCC, 2019d).

f � Bo ·MCF · BOD · I · 365
1000

(3)

The variable I is a correction factor for additional industrial BOD
discharged into sewers. For this study, I was not considered an
input quantity but a constant (no uncertainty) equal to 1, as
suggested by IPCC Guidelines for uncollected systems (IPCC,
2019d).

Group 3: Complex Model Estimation
This group included emission factors (output quantities) with
values estimated from complex models including both
multiplications and additions and considering more than three
variables with uncertainty (input quantities). These factors
correspond to a higher level of emission estimation proposed
by the IPCC (Tier 2 or 3). For this group, as detailed below, the
mathematical models and the values of their inputs were taken
from IPCC Guidelines and other references, including
measurement standards, databases, and national studies in the
subject. Expected variation intervals with 95% or 100%
confidence or raw data for the input variables were also found
in these references. Emission factors associated with solid waste
treatment by landfill and non-energy use of lubricants were
included in this group.

For non-energy use of lubricants, the model used to estimate
its emission factor (f) is shown in Eq. 4. The input quantities
AWC and AWO correspond to the atomic weights of carbon and
oxygen with values taken from CIAWW (2020). The quantities
ODU, CC, and NCV correspond to the default Oxidized During
Use factor, Carbon Content, and Net Calorific Value for
lubricants taken from IPCC Guidelines (IPCC, 2000c; IPCC,
2006b). The quantity ρr lub is the mean relative density of
lubricants used in Costa Rica obtained by Morales (2016),
recommended by IMN and DCC experts and considered as a
state-of-the-art in the subject. Finally, the quantity ρH2O
corresponds to the density of water at 15°C, reference
temperature for commercial lubricants characterization, taken
from ASTM D4052 standard (ASTM, 2019).

f � (AWC + 2AWO)
AWC

· ODU · CC ·NCV · ρr lub · ρH2O

1000
(4)

For solid waste treatment by landfill, the model used to
estimate its emission factor (f) is shown in Eq. 5. The
additional input quantity AWH corresponds to the atomic
weight of hydrogen with value also taken from CIAWW
(2020). Similar to Eqs 2, 3, the input quantity MCF is a
Methane Correction Factor. The sum within the parenthesis

corresponds to the Degradable Organic Carbon (DOC) in the
bulk waste based on its composition. It is estimated from an
average of each fraction of DOC in the different types of waste
(DOCi) weighted by its mass fraction in the bulk waste (Wi).
DOCi values were taken from IPCC (2006e), while Wi values
were defined from a national study carried out in 2002
(FEDEMUR, 2002). Finally, the quantities DOCf and F
correspond to the default fraction of DOC which
decomposes in the landfill and the default fraction of CH4

in generated landfill gas, respectively (IPCC, 2019c).

f � (AWC + 4AWH)
AWC

·MCF ·⎛⎝∑n

i�1DOCi ·Wi
⎞⎠ ·DOCf · F

(5)

Uncertainty Estimation Methodologies
Probability Distribution Selection and Fitting
As mentioned above, uncertainty estimation processes based
on GUMmethodologies (JCGM, 2008a; JCGM, 2008b) require
probability distributions to be defined and fitted to the input
quantities. For the present study, all input quantities
correspond to continuous variables, so only continuous
probability distributions were considered. Based on their
previous applications in the field (IPCC, 2006a; DCC and
LCM, 2020; Molina-Castro and Calderón-Jiménez, 2021),
the following distributions were selected: the normal
distribution, the uniform distribution, the (Student’s)
t-distribution, the logarithmic normal distribution, and the
(asymmetric) triangular distribution. A description of each
distribution and its fitting is shown below. The distribution
fitted to each input quantity can be consulted in
Supplementary Tables S1–S3 of the supplementary
material. An example of these distributions is shown in
Figure 1.

Normal distribution (Laplace-Gauss distribution): The
normal distribution corresponds to the probability distribution

FIGURE 1 | Comparison example of the probability distributions
considered in the present study, fitted to a common case scenario.
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of a continuous random variable X whose density function gX is
shown in Eq. 6.

gX(ξ) � 1
σ

���
2π

√ e
[−(ξ−μ)2

2σ2
]

(6)

The distribution parameters correspond to μ (mathematical
expectation or mean) and σ (standard deviation), while ξ
corresponds to the variable describing the possible values of
the random variable X. The normal distribution is used when
the quantity values result from the additive effect of several
random causes, each of which has a relatively small
importance (JCGM, 2008a). It is usually recommended for the
expression of expanded uncertainties in metrology and when the
variation interval of the quantity is small and symmetrical to the
mean (IPCC, 2006a; JCGM, 2008b). This distribution was fitted
to all the symmetric input quantities taken from the IPCC
guidelines and ASTM standards, whose variation intervals are
or can be expressed in the form of ± U. The μ parameter was
estimated with the input quantity value and the σ parameter was
estimated following Eq. 7. According to the recommendations of
the IPCC guidelines, a coverage factor k = 2 was considered for all
cases under the assumption that the variation intervals ± U
correspond to 95% confidence intervals (IPCC, 2006a).

σ ≈
U

k
� U

2
(7)

Uniform distribution: The uniform distribution corresponds to
the probability distribution of a continuous random variable X
whose density function gX is shown in Eq. 8.

gX(ξ) �
⎧⎪⎨⎪⎩

1
b − a

, a≤ ξ ≤ b

0 , ξ < a or b< ξ
(8)

The distribution parameters correspond to b and a, the upper and
lower bounds of the possible values, respectively. Similar to
previous equations, ξ is the variable describing the possible
values of X. The uniform distribution is widely used when the
only information available about the quantity is a lower limit and
an upper limit (JCGM, 2008b; DCC and LCM, 2020). This
distribution was fitted to all the atomic weights taken from
CIAWW (2020) as suggested by Possolo et al. (2018).
(Student’s) t-distribution: The t-distribution corresponds to
the probability distribution of a continuous random variable X
whose density function gX is shown in Eq. 9.

gX(ξ) �
Γ(υ+12 )

Γ(υ2) ���
υπ

√ (1 + ξ2

υ
)−υ+1

2

(9)

The only distribution parameter corresponds to υ (degrees of
freedom, υ > 0), while Γ is the gamma function and ξ is the
variable describing the possible values of X. The t-distribution is
used in cases similar to the normal distribution, but with finite
degrees of freedom (JCGM, 2008a). It is usually recommended for
the expression of expanded uncertainties in metrology and in the
presence of series of replicate values representing the same

quantity (JCGM, 2008b). This distribution was fitted to the
density mean value of lubricants taken from Morales (2016)
with 20 degrees of freedom. A normal distribution could also
have been fitted for this case, but the t-distribution was preferred
because it specifically included the degrees of freedom.

Logarithmic normal (log-normal) distribution: The log-
normal distribution corresponds to the probability distribution
of a continuous random variable X whose natural logarithm
results in a normal distribution. Its density function gX is
shown in Eq. 10.

gX(ξ) � 1
σξ

���
2π

√ e
[−(ln ξ−μ)

2

2σ2
]

(10)

The distribution parameters correspond to μ and σ, which are the
mean and standard deviation of the logarithm of the normally
distributed variable, respectively. Similar to previous equations, ξ
is the variable describing the possible values of X. The log-normal
distribution may be appropriate when the variation interval for a
non-negative variable is large and known to be positively skewed
(IPCC, 2006a). It is also used to model the multiplication product
between many uncertain quantities, which asymptotically
approaches to log-normality (JCGM, 2008b). This distribution
was fitted to inputs taken from IPCC guidelines with asymmetric
variation intervals whose limits are far from physical boundary
values like 0. Other asymmetric distributions such as the
generalized extreme value distribution (Johnson et al., 1995) or
the skew-normal distribution (Azzalini and Capitanio, 2014)
could have been fitted for these cases, but the log-normal
distribution was preferred because of its widespread use in the
subject. The fitting process followed the methodology described
by Molina-Castro and Calderón-Jiménez (2021).

(Asymmetric) triangular distribution: The triangular
distribution corresponds to the probability distribution of a
continuous random variable X whose density function gX is
shown in Eq. 11.

gX(ξ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(ξ − a)
(b − a)(c − a) , a≤ ξ < c

2
b − a

, ξ � c

2(b − ξ)
(b − a)(b − c) , c< ξ ≤ b

0 , other case

(11)

The distribution parameters correspond to b, a, and c, the upper
and lower bounds of the possible values and its most probable
value (height of the triangle), respectively. Similar to previous
equations, ξ is the variable describing the possible values of X.
When (b–c) ≠ (c–a), the triangular distribution becomes
asymmetric. The triangular distribution is widely used when
the only information available about the quantity is a lower
limit, an upper limit, and a preferred or most probable value
(JCGM, 2008b; DCC and LCM, 2020). This distribution was fitted
to inputs taken from IPCC guidelines with asymmetric variation
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intervals whose limits are close to physical boundary values like 0
or 1. A PERT-beta distribution (Mcbride and Mcclelland, 1967)
or trimmed variants of other asymmetric distributions could have
been fitted for these cases, but the asymmetric triangular
distribution was preferred for its ease of understanding and its
simple calculations. The fitting process followed similar
methodologies as described by Molina-Castro and Calderón-
Jiménez (2021) and Molina-Castro (2022), solving multiple
equations systems derived geometrically from the area of the
triangle (Petty and Dye, 2013).

Monte Carlo Simulation Method
The propagation of probability distributions corresponds to a key
step to achieve a correct evaluation of the measurement
uncertainty of an output quantity Y defined as a known
function f of several input quantities Xi (JCGM, 2008b;
Possolo and Iyer, 2017). By defining and fitting a probability
density functions gXi for each of the input quantities Xi, the
probability density function gY of the output quantity Y can be
propagated by solving Eq. 12.

gY(η) � ∫∞
−∞

. . . ∫∞
−∞
gXi(ξ i) δ(η − f(ξi)) dξN . . . dξ1 (12)

The function δ(·) denotes the Dirac delta function, while η and ξi
correspond to the variables describing the possible values of the
output quantity Y and random variables Xi, respectively. The
Monte Carlo simulation method provides a general numerical
approximation to obtain a representation of the probability
density function gY(η). To do this, a large number of repeated
random samples (simulations) are taken from the probability
density functions gXi(ξi) and the output of the known function f
is estimated each time. The set of all output values obtained this
way represents the approximate distribution of Y. Finally, using a
simple statistical analysis, properties of the variable Y such as its

mean, standard deviation, and intervals between percentiles of
interest can be estimated from the simulated data (JCGM, 2008b;
Crowder et al., 2020.). The complete process is illustrated in
Figure 2.

The process described above was applied for all emission
factors within the scope of this study. For the emission factors
included in group 1, the simulation processes were carried out
directly on the fitted distributions. For the emission factors
included in groups 2 and 3, the simulation processes were
carried out considering Eqs 2–5 for the propagation of
distributions. Simulations of size 1,000 000 were used. Finally,
for each set of data generated for the emission factors, its mean,
standard deviation, and the interval between its 2.5% and 97.5%
percentiles were estimated, corresponding to the estimated value
of the emission factor, its standard uncertainty u, and its 95%
confidence interval, respectively.

Data Processing
For all the calculations, statistical evaluation, and simulations, the
free environment for statistical computing R version 4.1.2 (R
Core Team, 2021a) was used. The R-code included sections
already generated and openly provided by Possolo et al. (2019)
and Molina-Castro and Calderón-Jiménez (2021). For
simulations and fitting of probability distributions,
computational facilities provided by R-packages triangle
(Carnell, 2019), base (R Core Team, 2021b), and stats (R Core
Team, 2021c) were also used.

RESULTS AND DISCUSSION

Table 2 shows the complete results obtained from the simulations
processes used for each emission factor considered. The results
correspond to the estimated value of the emission factor, its
standard uncertainty u, and the limits of its 95% confidence

FIGURE 2 | Schematic representation of the process followed to obtain a general numerical approximation of the output quantity distribution with the Monte Carlo
simulation method.
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interval calculated from the simulated data population for each
emission factor. All estimated standard uncertainties and limits of
95% confidence intervals are reported as absolute values.
However, due to their widespread use in the GHG sector, the
corresponding relative standard uncertainties and interval limits
are shown in Supplementary Table S4 of the supplementary
material.

When comparing the values of the official emission factors
shown in Table 1 with the estimated values shown in Table 2,
differences are obtained for buffalo enteric fermentation,
composting of solid waste (N2O), river discharge of industrial
wastewater, non-energy use of lubricants, and solid waste disposal
in landfills. The reason for these differences is due to the use of
updated information from the latest 2019 versions of the IPCC
guidelines or other references in the present study, while the
official values are based on outdated values included in the 2006
or earlier versions of these guidelines. The specific variables or
input quantities updated this way are specified in Supplementary

Tables S1–S3 of the supplementary material. For this reason,
users and those responsible for the official list of emission factors
of Costa Rica are suggested to update the emission factors
according to the latest versions of the references used. The
information included in Table 2 can be used for this purpose.

In this same context, it should be noted that 2019 IPCC
guidelines (IPCC, 2019b) established a new methodology to
estimate emissions from livestock manure management instead
of the default use of recommended emission factors (Tier 1
method from IPCC, 2006d). Therefore, it is also suggested to
those responsible for the official list of emission factors of Costa
Rica to consider updating the values for these sources consistently
with the new methodologies indicated by the updated references
and evaluate their corresponding uncertainty estimations. This
update could not be carried out in the present study due to the
lack of data required to apply the new methodologies (IPCC,
2019b). Additionally, an update in the data used to estimate the
emission factor associated with landfills is suggested. As

TABLE 2 | Estimated values, absolute standard uncertainties, and 95% absolute confidence intervals for the emission factors using the Monte Carlo simulation method.
Updated values are suggested for emission factors marked with an asterisk (*).

Process/Sources Gas Estimated emission factor Estimated Std. Uncertainty
(u)

Estimated 95% C. I.

Enteric Fermentation [Units: kg/(head year)]

Buffalo* CH4 68 17 (34, 102)
Sheep CH4 5.00 1.25 (2.50, 7.50)
Goats CH4 5.00 1.25 (2.50, 7.50)
Horses CH4 18.0 4.5 (9.0, 27.0)
Swine CH4 1.00 0.25 (0.50, 1.50)

Manure Management [Units: kg/(head year)]

Cattle CH4 1.00 0.15 (0.70, 1.30)
Horses CH4 1.640 0.246 (1.148, 2.132)
Goats CH4 0.170 0.026 (0.119, 0.221)
Swine CH4 1.00 0.15 (0.70, 1.30)
Poultry CH4 0.020 0.003 (0.014, 0.026)

Biological Treatment of Solid Waste [Units: g/kg]

Composting CH4 4.00 1.973 (0.03, 8.00)
Composting* N2O 0.24 0.141 (0.06, 0.60)
Anaerobic digestion CH4 2.00 5.78 (0.0, 20.0)

Industrial Wastewater Treatment [Units: kg/kg]

Anaerobic reactor CH4 0.200 0.0317 (0.138, 0.262)
Anaerobic shallow lagoon CH4 0.200 0.0317 (0.138, 0.262)
Anaerobic deep lagoon CH4 0.050 0.0107 (0.031, 0.073)
River discharge* CH4 0.028 0.0081 (0.0129, 0.0446)

Domestic Wastewater Treatment [Units: kg/(person year)]

(Anaerobic shallow) Lagoon CH4 1.752 0.460 (0.964, 2.768)
Septic tank CH4 4.380 0.960 (2.672, 6.439)
River discharge CH4 0.964 0.321 (0.424, 1.677)

Non-Energy Products Use [Units: kg/L]

Lubricants* CO2 0.5184 0.1337 (0.2592, 0.7880)

Solid Waste Disposal [Units: kg/kg]

Landfill* CH4 0.0519 0.0086 (0.0343, 0.0680)

*Emission factors and their uncertainties were estimated with updated reference data.
C. I., Confidence Interval.
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evidenced in this study, the current official factor continues to use
values of mass fractions in the bulk waste from a study conducted
20 years ago (FEDEMUR, 2002). Since then, several municipal
waste composition studies have been developed in Costa Rica,
including Campos-Rodríguez and Soto-Córdoba (2014),
Herrera-Murillo et al. (2016), and Soto-Córdoba and
González-Buitrago (2019), among others. Results from these
and other studies could be used to estimate more accurate
mass compositions of the bulk waste and improve the national
emission factor.

The uncertainties included in Table 2 for each of the emission
factors are highly relevant considering that an estimate “is
complete only when accompanied by a statement of the
uncertainty of that estimate” (JCGM, 2008a). Therefore, with
the standard uncertainties and confidence intervals shown in
Table 2, now it can be considered that these emission factors are
complete estimates, useful for users of this official list who seek to
estimate the uncertainty associated with their emission
inventories.

It is important to note that the limits of the 95% confidence
interval are usually used for expressing uncertainty in a
condensed way known as expanded uncertainty (U) in
metrology, specifically when the variation interval is
symmetric to the value of the emission factor and the interval
can be expressed as f ± U. For asymmetric intervals, the reported
limits are maintained due to their capacity to clearly express the
magnitude of the variability associated with emission factors,
even though they cannot be expressed in the condensed notation
(IPCC, 2019a). In Supplementary Table S4 of the supplementary
material, where expanded uncertaintiesU can be easily identified,
symmetrical cases in which the ± U notation could be applied
include emission factors from livestock enteric fermentation (f ±
50%), manure management (f ± 30%), and industrial wastewater
treatment with anaerobic reactors and shallow
lagoons (f ± 31%).

It should be remembered that the standard uncertainties
shown in Table 2 must be interpreted as standard deviations
associated with the emission factors since the latter are considered
random variables. For this reason, these uncertainties are of
special interest for users since they can be combined with
uncertainties of other variables (JCGM, 2008a; JCGM, 2008b).
This is the case for the indirect quantification of emissions, which
combines emission factors (f) with activity data (d). With the
standard uncertainties shown in Table 2 available, users only
need to know the uncertainties associated with their activity data
(typically taken from their measurement instruments or
certificates) to estimate their emissions’ uncertainties. For the
estimation of relative uncertainties according to DCC and LCM
(2020), values shown in Supplementary Table S4 of the
supplementary material are recommended.

To compare and better understand the magnitudes of the
estimated uncertainties, their relative values shown in
Supplementary Table S4 are used. Most of the standard
uncertainties are between 15% and 50% of the value of the
emission factor. This behavior was expected since the emission
factors usually show uncertainties greater than 15% (IPCC, 2006a;
DCC and LCM, 2020). Also, their confidence intervals tend to

asymmetry as their uncertainties or the number of multiplicative
elements in their estimation increases (IPCC, 2006a; IPCC, 2019a).
When comparing these results with other studies, a general high
consistency was found with the values reported by Solazzo et al.
(2021) and Milne et al. (2014). The confidence intervals associated
with livestock (enteric fermentation and manure management) are
practically identical in all cases. It should be highlighted that Milne
et al. (2014) suggest fitting a lognormal distribution for ±50%
intervals. Under this assumption, the standard uncertainties for
enteric fermentation emission factors estimated in the present study
could increase from 25% to 28.3%. However, fitting a normal
distribution for a symmetrical interval of ±50% is consistent
with Wójcik-Gront and Gront (2014), who suggest this value as
an upper limit for this assumption. In the case of wastewater
treatment, Solazzo et al. (2021) indicate that the uncertainty for
wastewater treatment emissions highly depends on the technology
and that the confidence intervals for these emission factors can vary
between -33% and +78%. In the present study, a minimum lower
limit of -56% (septic tank) and a maximum upper limit of +74%
(river discharge) were obtained. For landfills, Solazzo et al. (2021)
indicate that the global confidence intervals of uncertainty for CH4

can vary between 35% and 134%, the first value being consistent
with the interval of [-34%, +31%] obtained in the present study.
Finally, for the emission factor associated with the non-energy use
of lubricant, Solazzo et al. (2021) suggest a confidence interval of
±100%, practically double that obtained in the present study. This
difference can be justified because the former corresponds to a
generalized value and the latter responds to a localized
national study.

Although meeting the results’ expectations, it should be
noted that the present study used expert criteria in a novel way
to establish the expected variabilities for some input variables
in the absence of this information. Additionally, the present
study did not only map the different strategies to define the
emission factors and apply the Monte Carlo method as a
flexible and technically sound methodology for the
quantification of their uncertainties but also reported the
standard uncertainties associated with the emission factors,
critical information to complement the official database and
to help users obtain reliable results more easily.

Attention is drawn to the large values of standard uncertainties
and their confidence interval limits estimated for the emission factors
associated with the biological treatment of solid waste. These factors
correspond to default emission factors taken from the IPCC
guidelines (group 1 in this study). As such, they can present very
high uncertainties (standard uncertainties ≥50%, confidence interval
limits ≥100%) because they describe the behavior of emissions under
a wide range of conditions evaluated in different studies compiled by
the IPCC. These cases are clear examples of possible opportunities to
focus national and regional environmental efforts towards the
quantification of specific emission factors for tropical countries
like Costa Rica. These efforts may include studies that consider
the specific characteristics of the tropical region, such as its climate,
topography, available technologies, treatment conditions, among
others. In this way, the estimation of national emission factors
more suitable for users could be achieved, with smaller
uncertainties than those currently estimated.
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CONCLUSIONS AND RECOMMENDATIONS

With the present study, it was possible to fill the gap on the
information of uncertainties associated with the emission factors
considered from the official database of Costa Rica thanks to the use
of probability distributions’ fitting and the Monte Carlo simulation
method. This information included both standard uncertainty values
and 95% confidence intervals for each of the emission factors
addressed. These results are critical to complement the official
database of Costa Rican emission factors and for national users to
estimate the uncertainties of their GHG inventories. A higher level of
confidence in the results of GHG inventories is expected at the
national level through the implementation of the results generated in
this study. In turn, this will ease compliance with the national
environmental policies and commitments by adapting to
international requirements in the fight against climate change.

One of the main limitations of this study was the
decentralization of the information since different national
actors handle the data required to make these estimations. For
this reason, significant time was invested in tracking
information and coordinating meetings between different
professionals involved in this field of study. Also, the
information found could be incomplete or outdated in
some cases. This situation made it necessary to use expert
consensus or the search for complementary sources such as
normative specifications as strategies to fill in the information
gaps. Furthermore, the absence of published studies on the
subject of uncertainty estimation for GHG inventories in
Costa Rica is mentioned, so these pioneering works do not
have national references to contrast the obtained results and it
is necessary to rely on studies in other latitudes to corroborate
their technical consistency and rationality.

Improvement opportunities were identified to update the
estimates of some national emission factors based on outdated
references and methodologies, including factors from livestock
enteric fermentation, manure management, waste treatments,
and non-energy use of lubricants. It was also possible to identify
remarkably high uncertainties for three emission factors associated
with the biological treatment of solid waste (confidence interval
limits ≥100%). The accuracy of these factors could be improved
and their uncertainties may be reduced through national studies
adapted to the specific characteristics of tropical countries like
Costa Rica instead of using generalized international references.

Finally, it is considered that the present study provides the
expected guidance for the interpretation and manipulation of
emission factor uncertainties. This study will hopefully ease the
process of implementing uncertainty estimation in GHG
inventories, obtaining a more accurate, transparent, and
reliable quantification of GHG emissions in Costa Rica and
other countries around the world.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

The publication of this study was covered by NDC Support
Programme of the United Nations Development Programme
(UNDP) in Costa Rica.

ACKNOWLEDGMENTS

The author would like to thank Eng. Ana Rita Chacón-Araya
(Department of Development, National Meteorological Institute of
Costa Rica, IMN), Johnny Montenegro-Ballestero (Climate Change
National Program, National Meteorological Institute of Costa Rica,
IMN), and Eng. Kendal Blanco-Salas (National Inventory of
Greenhouse Gas Emissions of Costa Rica, Climate Change
Direction, DCC) for their technical guidance in the topic and
their openness to share information and criteria necessary to
develop this study. I also wish to thank Eng. Adrián Sandí-
Campos (independent environmental consultant), Eng. Bernardo
Mora-Gomez (School of Chemical Engineering, Costa Rican
University, UCR), and Eng. Johanatan Barboza-Vallejo (School of
Industrial Engineering, Hispano-American University of Costa Rica,
UH) for their valuable technical criteria in emission factors associated
with industrial wastewater treatments, Dr. Bryan Calderón-Jiménez
(Head of the Chemical Metrology Department, Costa Rican
Metrology Laboratory, LCM) and MSc. Fernando Andrés-Monge
(Pressure Laboratory, Costa Rican Metrology Laboratory, LCM) for
their valuable guidance and general review of the manuscript, and
Eng. Laura Mora-Mora (Climate Change Direction, DCC) for her
support on the development of this study.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenvs.2022.896256/
full#supplementary-material

REFERENCES

ASTM D4052-18A (2019). Standard Test Method for Density, Relative
Density, and API Gravity of Liquids by Digital Density Meter.
Pennsylvania,US: ASTM.

Azzalini, A., and Capitanio, A. (2014). The Skew-Normal and Related Families.
Cambridge: Cambridge University Press.

Basset-Mens, C., Kelliher, F. M., Ledgard, S., and Cox, N. (2009). Uncertainty of Global
Warming Potential forMilk Production on aNewZealand Farmand Implications for
Decision Making. Int. J. Life Cycle Assess. 14, 630–638. doi:10.1007/s11367-009-
0108-2

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 8962569

Molina-Castro Monte Carlo for Emission Factors Uncertainties

https://www.frontiersin.org/articles/10.3389/fenvs.2022.896256/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2022.896256/full#supplementary-material
https://doi.org/10.1007/s11367-009-0108-2
https://doi.org/10.1007/s11367-009-0108-2
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Bharvirkar, R. (1999). Quantification of Variability and Uncertainty in Emission
Factors and Emissions Inventories (Master’s Degree Thesis. North Carolina,
USA): North Carolina State University. Available at: http://www.lib.ncsu.edu/
resolver/1840.16/885 (Accessed Oct 06, 2020).

Cadwallader, A., and VanBriesen, J. M. (2017). Incorporating Uncertainty into
Future Estimates of Nitrous Oxide Emissions from Wastewater Treatment.
J. Environ. Eng. 143 (8), 04017029. doi:10.1061/(asce)ee.1943-7870.
0001231

Campos-Rodríguez, R., and Soto-Córdoba, S. (2014). Estudio de generación y
composición de residuos sólidos en el cantón de Guácimo, Costa Rica. Tecnol.
Marcha 27 (3), 122–135. doi:10.18845/tm.v27i3.2072

Carnell, R. (2019). Triangle: Provides the Standard Distribution Functions for the
Triangle Distribution [version 0.12]. Available at: https://bertcarnell.github.io/
triangle/(Accessed Jan 30, 2022).

Cho, C., Kang, S., Kim, M., Hong, Y., and Jeon, E. (2018). Uncertainty Analysis for
the CH4 Emission Factor of Thermal Power Plant by Monte Carlo Simulation.
Sustainability 10, 3448. doi:10.3390/su10103448

CIAAW (2020). Atomic Weights of the Elements 2020. Ottawa, Canada:
Commission on Isotopic Abundances and Atomic Weights. Available at:
https://www.ciaaw.org/atomic-weights.htm (Accessed Jan 20, 2022).

Crowder, S., Delker, C., Forrest, E., and Martin, N. (2020). “Monte Carlo
Methods for the Propagation of Uncertainties,” in Chapter in Introduction
to Statistics in Metrology (Germany: Springer), 153–180. doi:10.1007/978-3-
030-53329-8_8

DCC and LCM (2020). Guía metodológica para la estimación y análisis de la
incertidumbre de emisiones y remociones de gases de efecto invernadero (GEI). San
José, CR: National Carbon Neutrality Program 2.0. Available at: https://
cambioclimatico.go.cr/wp-content/uploads/2019/11/PPCN-GuiaIncertidumbre.pdf
(Accessed Jan 19, 2022).

DCC and PMR (2020). Programa País de Carbono Neutralidad: Categoría
Organizacional. San José, CR: National Carbon Neutrality Program 2.0. Available
at https://cambioclimatico.go.cr/wp-content/uploads/2020/04/1-PPCN_
Organizacional.pdf (Accessed Jan 19, 2022).

El-Fadel, M., Zeinati, M., Ghaddar, N., and Mezher, T. (2001). Uncertainty in
Estimating and Mitigating Industrial Related GHG Emissions. Energy Policy 29
(12), 1031–1043. doi:10.1016/s0301-4215(01)00033-7

EPA (1996). Evaluating the Uncertainty of Emission Estimates. Final Report. North
Carolina, USA: Emission Inventory Improvement Program. Available at:
https://www.epa.gov/sites/production/files/2015-08/documents/vi04.pdf
(Accesed Oct 05, 2020).

EPA (2002). Quality Assurance/Quality Control and Uncertainty Management
Plan for the US Greenhouse Gas Inventory: Procedures Manual for Quality
Assurance/Quality Control and Uncertainty Analysis. Availble at: https://nepis.
epa.gov/Exe/ZyPURL.cgi?Dockey=P1005GXH.TXT (Accessed Oct 05, 2020).

Fauser, P., Sørensen, P., Nielsen, M., Winther, M., Plejdrup, M., Hoffmann, L., et al.
(2011). Monte Carlo (Tier 2) Uncertainty Analysis of Danish Greenhouse Gas
Emission Inventory. Greenh. Gas Meas. Manag. 1, 3–4. doi:10.1080/20430779.
2011.621949

FEDEMUR (2002). Estudio de caracterización de desechos que ingresan al relleno
sanitario de Río Azul. Unpublished study. San José, CR: Eastern Regional
Municipal Federation.

Frey, C. (2007). Quantification of Uncertainty in Emission Factors and Inventories.
NC: Emission Inventory Conference. Available at: https://www3.epa.gov/
ttnchie1/conference/ei16/session5/frey.pdf (Accessed Oct 06, 2020).

Government of Costa Rica (2018). Costa Rican National Climate Change
Adaptation Policy 2018-2030 (Política Nacional de Adaptación al Cambio
Climático De Costa Rica 2018-2030). Available at: https://cambioclimatico.go.
cr/wp-content/uploads/2019/01/Politica-Nacional-de-Adaptacion-al-Cambio-
Climatico-Costa-Rica-2018-2030.pdf (Accessed Jan 19, 2022).

Government of Costa Rica (2019). National Decarbonization Plan (Plan Nacional
de Descarbonización). Available at: https://cambioclimatico.go.cr/wp-content/
uploads/2019/02/PLAN.pdf (Accessed Jan 19, 2022).

Hergoualc’h, K., Mueller, N., Bernoux, M., Kasimir, Ä., van der Weerden, T. J., and
Ogle, S. M. (2021). Improved Accuracy and Reduced Uncertainty in
Greenhouse Gas Inventories by Refining the IPCC Emission Factor for
Direct N2 O Emissions from Nitrogen Inputs to Managed Soils. Glob.
Chang. Biol. 27, 6536–6550. doi:10.1111/gcb.15884

Herrera-Murillo, J., Rojas-Marín, J. F., and Anchía-Leitón, D. (2016). Tasas De
Generación Y Caracterización De Residuos Sólidos Ordinarios En Cuatro
Municipios Del Área Metropolitana Costa Rica. Rev. Geográfica América
Cent. 2, 235–260. doi:10.15359/rgac.57-2.9

IIASA (2007). Uncertainty in Greenhouse Gas Inventories. IIASA Brief Policy #01.
Laxenburg: International Institute for Applied Systems Analysis. Available at:
http://pure.iiasa.ac.at/id/eprint/17103/1/pb01-web.pdf (Accessed Dec 08,
2021).

IMN (2021). Factores de emisión de gases de efecto invernadero. 11th Ed.. Costa
Rica: National Meteorology Institute of Costa Rica. Available at: http://cglobal.
imn.ac.cr/index.php/publications/factores-de-emision-gei-decima-edicion-
2021/(Accessed Dec 07, 2021).

IPCC (2000). “Good Practice Guidance and Uncertainty Management in National
Greenhouse Gas Inventories. Quantifying Uncertainties in Practice,” in
Intergovernmental Panel on Climate Change, Methodology Report for the
National Greenhouse Gas Inventories Programme. Available at: https://www.
ipcc.ch/publication/good-practice-guidance-and-uncertainty-management-in-
national-greenhouse-gas-inventories/(Accessed Jan 19, 2022).

IPCC (2006a). “Volume 1: General Guidance and Reporting – Chapter 3:
Uncertainties,” in 2006 IPCC Guidelines for National Greenhouse Gas
Inventories. Available at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/
1_Volume1/V1_3_Ch3_Uncertainties.pdf (Accessed Jan 19, 2022).

IPCC (2019a). Volume 1: General Guidance and Reporting – Chapter 3:
Uncertainties. 2019 Refinement to the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories. Available at: https://www.ipcc-nggip.iges.or.jp/
public/2019rf/pdf/1_Volume1/19R_V1_Ch03_Uncertainties.pdf (Accessed
Jan 19, 2022).

IPCC (2006b). Volume 2: Energy – Chapter 1: Introduction. 2006 IPCC Guidelines
for National Greenhouse Gas Inventories. Available at: https://www.ipcc-nggip.
iges.or.jp/public/2006gl/pdf/2_Volume2/V2_1_Ch1_Introduction.pdf
(Accessed Jan 19, 2022).

IPCC (2006c). Volume 3: Industrial Processes And Product Use – Chapter 5: Non-
Energy Products from Fuels And Solvent Use. 2006 IPCC Guidelines for National
Greenhouse Gas Inventories. Available at: https://www.ipcc-nggip.iges.or.jp/public/
2006gl/pdf/3_Volume3/V3_5_Ch5_Non_Energy_Products.pdf (Accessed Jan 19,
2022).

IPCC (2006d). Volume 4: Agriculture, Forestry and Other Land Use – Chapter 10:
Emissions from Livestock and Manure Management. 2006 IPCC Guidelines for
National Greenhouse Gas Inventories. Available at: https://www.ipcc-nggip.iges.
or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf (Accessed Jan
19, 2022).

IPCC (2019b). Volume 4: Agriculture, Forestry and Other Land Use – Chapter 10:
Emissions from Livestock and Manure Management. 2019 Refinement to the 2006
IPCC Guidelines for National Greenhouse Gas Inventories. Available at: https://www.
ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch10_Livestock.pdf
(Accessed Jan 19, 2022).

IPCC (2006e). Volume 5: Waste – Chapter 2: Waste Generation, Composition, and
Management Data. 2006 IPCC Guidelines for National Greenhouse Gas
Inventories. Available at: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/
5_Volume5/V5_2_Ch2_Waste_Data.pdf (Accessed Jan 19, 2022).

IPCC (2019c). Volume 5: Waste – Chapter 3: Solid Waste Disposal. 2019
Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas
Inventories. Available at: https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/
5_Volume5/19R_V5_3_Ch03_SWDS.pdf (Accessed Jan 19, 2022).

IPCC (2006f).Volume 5:Waste – Chapter 4: Biological Treatment of SolidWaste. 2006 IPCC
Guidelines for National Greenhouse Gas Inventories. Available at: https://www.ipcc-
nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf (Accessed Jan
19, 2022).

IPCC (2006g). Volume 5: Waste – Chapter 6: Wastewater Treatment and Discharge.
2006 IPCCGuidelines for National Greenhouse Gas Inventories. Available at: https://
www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_6_ Ch6_Wastewater.
pdf (Accessed Jan 19, 2022).

IPCC (2019d). Volume 5: Waste – Chapter 6: Wastewater Treatment and
Discharge. 2019 Refinement to the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories. Available at: https://www.ipcc-nggip.iges.or.jp/
public/2019rf/pdf/5_Volume5/19R_V5_6_Ch06_Wastewater.pdf (Accessed
Jan 19, 2022).

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 89625610

Molina-Castro Monte Carlo for Emission Factors Uncertainties

http://www.lib.ncsu.edu/resolver/1840.16/885
http://www.lib.ncsu.edu/resolver/1840.16/885
https://doi.org/10.1061/(asce)ee.1943-7870.0001231
https://doi.org/10.1061/(asce)ee.1943-7870.0001231
https://doi.org/10.18845/tm.v27i3.2072
https://bertcarnell.github.io/triangle/
https://bertcarnell.github.io/triangle/
https://doi.org/10.3390/su10103448
https://www.ciaaw.org/atomic-weights.htm
https://doi.org/10.1007/978-3-030-53329-8_8
https://doi.org/10.1007/978-3-030-53329-8_8
https://cambioclimatico.go.cr/wp-content/uploads/2019/11/PPCN-GuiaIncertidumbre.pdf
https://cambioclimatico.go.cr/wp-content/uploads/2019/11/PPCN-GuiaIncertidumbre.pdf
https://cambioclimatico.go.cr/wp-content/uploads/2020/04/1-PPCN_Organizacional.pdf
https://cambioclimatico.go.cr/wp-content/uploads/2020/04/1-PPCN_Organizacional.pdf
https://doi.org/10.1016/s0301-4215(01)00033-7
https://www.epa.gov/sites/production/files/2015-08/documents/vi04.pdf
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1005GXH.TXT
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1005GXH.TXT
https://doi.org/10.1080/20430779.2011.621949
https://doi.org/10.1080/20430779.2011.621949
https://www3.epa.gov/ttnchie1/conference/ei16/session5/frey.pdf
https://www3.epa.gov/ttnchie1/conference/ei16/session5/frey.pdf
https://cambioclimatico.go.cr/wp-content/uploads/2019/01/Politica-Nacional-de-Adaptacion-al-Cambio-Climatico-Costa-Rica-2018-2030.pdf
https://cambioclimatico.go.cr/wp-content/uploads/2019/01/Politica-Nacional-de-Adaptacion-al-Cambio-Climatico-Costa-Rica-2018-2030.pdf
https://cambioclimatico.go.cr/wp-content/uploads/2019/01/Politica-Nacional-de-Adaptacion-al-Cambio-Climatico-Costa-Rica-2018-2030.pdf
https://cambioclimatico.go.cr/wp-content/uploads/2019/02/PLAN.pdf
https://cambioclimatico.go.cr/wp-content/uploads/2019/02/PLAN.pdf
https://doi.org/10.1111/gcb.15884
https://doi.org/10.15359/rgac.57-2.9
http://pure.iiasa.ac.at/id/eprint/17103/1/pb01-web.pdf
http://cglobal.imn.ac.cr/index.php/publications/factores-de-emision-gei-decima-edicion-2021/
http://cglobal.imn.ac.cr/index.php/publications/factores-de-emision-gei-decima-edicion-2021/
http://cglobal.imn.ac.cr/index.php/publications/factores-de-emision-gei-decima-edicion-2021/
https://www.ipcc.ch/publication/good-practice-guidance-and-uncertainty-management-in-national-greenhouse-gas-inventories/
https://www.ipcc.ch/publication/good-practice-guidance-and-uncertainty-management-in-national-greenhouse-gas-inventories/
https://www.ipcc.ch/publication/good-practice-guidance-and-uncertainty-management-in-national-greenhouse-gas-inventories/
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_3_Ch3_Uncertainties.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_3_Ch3_Uncertainties.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/1_Volume1/19R_V1_Ch03_Uncertainties.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/1_Volume1/19R_V1_Ch03_Uncertainties.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_1_Ch1_Introduction.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_1_Ch1_Introduction.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/3_Volume3/V3_5_Ch5_Non_Energy_Products.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/3_Volume3/V3_5_Ch5_Non_Energy_Products.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch10_Livestock.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch10_Livestock.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch10_Livestock.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_2_Ch2_Waste_Data.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_2_Ch2_Waste_Data.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/5_Volume5/19R_V5_3_Ch03_SWDS.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/5_Volume5/19R_V5_3_Ch03_SWDS.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_4_Ch4_Bio_Treat.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_6_Ch6_Wastewater.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_6_Ch6_Wastewater.pdf
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_6_Ch6_Wastewater.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/5_Volume5/19R_V5_6_Ch06_Wastewater.pdf
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/5_Volume5/19R_V5_6_Ch06_Wastewater.pdf
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


ISO 14064-1 (2018). Greenhouse Gases— Part 1: Specification with Guidance at the
Organization Level for Quantification and Reporting of Greenhouse Gas
Emissions and Removals.

JCGM(2008a).Evaluation ofMeasurementData –Guide to the Expression ofUncertainty
in Measurement GUM: 1995 with Minor Corrections, 100. Joint Committee for
Guides in Metrology, JCGM. Available at: http://www.bipm.org/utils/common/
documents/jcgm/JCGM_100_2008_E.pdf (Accessed Dec 07, 2021).

JCGM (2008b). Evaluation Of Measurement Data – Supplement 1 to the “Guide to
the Expression of Uncertainty in Measurement” – Propagation Of Distributions
Using a Monte Carlo Method, 101. Joint Committee for Guides in Metrology,
JCGM. Available at: http://www.bipm.org/utils/common/documents/jcgm/
JCGM_101_2008_E.pdf (Accessed Dec 07, 2021).

Johnson, N., Kotz, S., and Balakrishnan, N. (1995). in Continuous Univariate
Distributions, Volume 2. 2nd Ed (New York: John Wiley & Sons).

Jonas, M., Marland, G., Winiwarter, W., White, T., Nahorski, Z., Bun, R., et al.
(2010a). Benefits of Dealing with Uncertainty in Greenhouse Gas Inventories:
Introduction. Clim. Change 103, 3–18. doi:10.1007/s10584-010-9922-6

Jonas, M., White, T., Marland, G., Lieberman, D., Nahorski, Z., and Nilsson,
S. (2010b). Dealing with Uncertainty in GHG Inventories: How to Go
about it? Lect. Notes Econ. Math. Syst. 633, 229–245. doi:10.1007/978-3-
642-03735-1_11

Mcbride, W. J., and Mcclelland, C. W. (1967). PERT and the Beta Distribution.
IEEE Trans. Eng. Manage. EM-14 (4), 166–169. doi:10.1109/tem.1967.6446985

Milne, A. E., Glendining, M. J., Bellamy, P., Misselbrook, T., Gilhespy, S., Rivas
Casado, M., et al. (2014). Analysis of Uncertainties in the Estimates of Nitrous
Oxide and Methane Emissions in the UK’s Greenhouse Gas Inventory for
Agriculture. Atmos. Environ. 82, 94–105. doi:10.1016/j.atmosenv.2013.10.012

Milne, A. E., Glendining, M. J., Lark, R. M., Perryman, S. A. M., Gordon, T., and
Whitmore, A. P. (2015). Communicating the Uncertainty in Estimated
Greenhouse Gas Emissions from Agriculture. J. Environ. Manag. 160,
139–153. doi:10.1016/j.jenvman.2015.05.034

MINAE and UNDP (2021). National Survey on Climate Change (Encuesta
Nacional de Cambio Climático). Costa Rica: Ministry of Environment and
Energy of Costa Rica. Available at: https://cambioclimatico.go.cr/wp-
content/uploads/2021/05/Encuesta_Nacional_Cambio_Climatico_
PNUD_DCC_Final_ALTA_compressed.pdf (Accessed Jan 19, 2022).

Molina-Castro, G., and Calderón-Jiménez, B. (2021). Evaluating Asymmetric
Approaches to the Estimation of Standard Uncertainties for Emission
Factors in the Fuel Sector of Costa Rica. Front. Environ. Sci. 9. doi:10.3389/
fenvs.2021.662052

Molina-Castro, G. (2022). Evaluación de factores de corrección para estimar
incertidumbres de distribuciones triangulares con intervalos de cobertura
del 95 %. Rev. Ing. 32 (2), 14–28. doi:10.15517/ri.v32i2.49699

Monni, S., Perälä, P., and Regina, K. (2007). Uncertainty in Agricultural CH4 and N2O
Emissions from Finland - Possibilities to Increase Accuracy in Emission Estimates.
Mitig. Adapt Strat. Glob. Change 12, 545–571. doi:10.1007/s11027-006-4584-4

Monni, S., Syri, S., and Savolainen, I. (2004). Uncertainties in the Finnish
Greenhouse Gas Emission Inventory. Environ. Sci. Policy 7, 87–98. doi:10.
1016/j.envsci.2004.01.002

Morales, M. (2016). UCR Kerwà Repository. Evaluación de las emisiones de
dióxido de carbono (CO2) en automóviles generado por el uso no
energético de lubricantes/aceites de motor) en el Gran Área Metropolitana
College’s degree tesis. San José, CR: University of Costa Rica. Available at:
https://www.kerwa.ucr.ac.cr/handle/10669/73661 (Accessed Dec 08, 2021).

Petty, N. W., and Dye, S. (2013). Notes on Triangular Distributions. Reefton, New
Zealand: Statistics Learning Centre. Available at: https://learnandteachstatistics.
files.wordpress.com/2013/07/notes-on-triangle-distributions.pdf (Accessed Jan
29, 2022).

Possolo, A., and Iyer, H. K. (2017). Invited Article: Concepts and Tools for the
Evaluation of Measurement Uncertainty. Rev. Sci. Instrum. 88, 011301. doi:10.
1063/1.4974274

Possolo, A., Merkatas, C., and Bodnar, O. (2019). Asymmetrical Uncertainties.
Metrologia 56, 045009. doi:10.1088/1681-7575/ab2a8d

Possolo, A., Van der Veen, A. M. H., Meija, J., and Hibbert, D. B. (2018).
Interpreting and Propagating the Uncertainty of the Standard Atomic
Weights (IUPAC Technical Report). Pure Appl. Chem. 90 (2), 395–424.
doi:10.1515/pac-2016-0402

Pouliot, G., Wisner, E., Mobley, D., and Hunt, W. (2012). Quantification of
Emission Factor Uncertainty. J. Air & Waste Manag. Assoc. 62 (3),
287–298. doi:10.1080/10473289.2011.649155

Quilcaille, Y., Gasser, T., Ciais, P., Lecocq, F., Janssens-Maenhout, G., and Mohr, S.
(2018). Uncertainty in Projected Climate Change Arising from Uncertain
Fossil-Fuel Emission Factors. Environ. Res. Lett. 13, 044017. doi:10.1088/
1748-9326/aab304

R Core Team (2021a). R: A Language and Environment for Statistical Computing
[version 4.1.2]. Austria: R Foundation for Statistical Computing. Available at:
http://www.R-project.org/(Accessed Jan 30, 2022).

R Core Team (2021b). The R Base Package [version 4.1.2]. Austria: R Foundation
for Statistical Computing. Available at: http://www.R-project.org/(Accessed Jan
30, 2022).

R Core Team (2021c). The R Stats Package [version 4.1.2]. Austria: R Foundation
for Statistical Computing. Available at: http://www.R-project.org/(Accessed Jan
30, 2022).

Ramírez, A., de Kaizer, C., Van der Sluijs, J. P., Olivier, J., and Brandes, L. (2008).
Monte Carlo Analysis of Uncertainties in the Netherlands Greenhouse Gas
Emission Inventory for 1990–2004. Atmos. Environ. 42, 8263–8272. doi:10.
1016/j.atmosenv.2008.07.059

Ritter, K., Lev-On, M., and Shires, T. (2010). Understanding Uncertainty in
Greenhouse Gas Emission Estimates: Technical Considerations and
Statistical Calculation Methods. 19th Annual International Emission
Inventory Conference. Texas. Available at: https://www3.epa.gov/ttn/chief/
conference/ei19/session3/shires.pdf (Accessed Jan 19, 2022).

Silva, J. M. N., Carreiras, J. M. B., Rosa, I., and Pereira, J. M. C. (2011). Greenhouse
Gas Emissions from Shifting Cultivation in the Tropics, Including Uncertainty
and Sensitivity Analysis. J. Geophys. Res. 116, D20304. doi:10.1029/
2011jd016056

Solazzo, E., Crippa, M., Guizzardi, D., Muntean, M., Choulga, M., and Janssens-
Maenhout, G. (2021). Uncertainties in the Emissions Database for Global
Atmospheric Research (EDGAR) Emission Inventory of Greenhouse Gases.
Atmos. Chem. Phys. 21, 5655–5683. doi:10.5194/acp-21-5655-2021

Soto-Córdoba, S., and González-Buitrago, J. (2019). Determinación del índice de
generación y composición de residuos sólidos en la zona urbana del cantón de
Turrialba, Costa Rica. Tecnol.Marcha 32 (3), 106–117. doi:10.18845/tm.v32i3.4500

UNDP and UCR (2014). National Survey on Environment and Climate Change
(Encuesta Nacional de Ambiente y Cambio Climático). San José, CR: United
Nations Development Programme. Avaible at: https://www.undp.org/content/
dam/costa_rica/docs/undp_cr_enacc_2014.pdf (Accessed Jan 19, 2022).

UNEP (2019). Costa Rica - Policy Leadership Award. Nairobi, Kenya: United
Nations Environment Programme. Available at: https://www.unenvironment.
org/championsofearth/laureates/2019/costa-rica (Accessed Jan 19, 2022).

Wójcik-Gront, E., and Gront, D. (2014). Assessing Uncertainty in the Polish
Agricultural Greenhouse Gas Emission Inventory Using Monte Carlo
Simulation. Outlook Agric. 43 (1), 61–65. doi:10.5367/oa.2014.0155

Zheng, X., Han, S., Huang, Y., Wang, Y., and Wang, M. (2004). Re-quantifying the
Emission Factors Based on Fieldmeasurements and Estimating the Direct N2O
Emission from Chinese Croplands. Glob. Biogeochem. Cycles 18, GB2018.
doi:10.1029/2003GB002167

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022Molina-Castro. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 89625611

Molina-Castro Monte Carlo for Emission Factors Uncertainties

http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf
https://doi.org/10.1007/s10584-010-9922-6
https://doi.org/10.1007/978-3-642-03735-1_11
https://doi.org/10.1007/978-3-642-03735-1_11
https://doi.org/10.1109/tem.1967.6446985
https://doi.org/10.1016/j.atmosenv.2013.10.012
https://doi.org/10.1016/j.jenvman.2015.05.034
https://cambioclimatico.go.cr/wp-content/uploads/2021/05/Encuesta_Nacional_Cambio_Climatico_PNUD_DCC_Final_ALTA_compressed.pdf
https://cambioclimatico.go.cr/wp-content/uploads/2021/05/Encuesta_Nacional_Cambio_Climatico_PNUD_DCC_Final_ALTA_compressed.pdf
https://cambioclimatico.go.cr/wp-content/uploads/2021/05/Encuesta_Nacional_Cambio_Climatico_PNUD_DCC_Final_ALTA_compressed.pdf
https://doi.org/10.3389/fenvs.2021.662052
https://doi.org/10.3389/fenvs.2021.662052
https://doi.org/10.15517/ri.v32i2.49699
https://doi.org/10.1007/s11027-006-4584-4
https://doi.org/10.1016/j.envsci.2004.01.002
https://doi.org/10.1016/j.envsci.2004.01.002
https://www.kerwa.ucr.ac.cr/handle/10669/73661
https://learnandteachstatistics.files.wordpress.com/2013/07/notes-on-triangle-distributions.pdf
https://learnandteachstatistics.files.wordpress.com/2013/07/notes-on-triangle-distributions.pdf
https://doi.org/10.1063/1.4974274
https://doi.org/10.1063/1.4974274
https://doi.org/10.1088/1681-7575/ab2a8d
https://doi.org/10.1515/pac-2016-0402
https://doi.org/10.1080/10473289.2011.649155
https://doi.org/10.1088/1748-9326/aab304
https://doi.org/10.1088/1748-9326/aab304
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1016/j.atmosenv.2008.07.059
https://doi.org/10.1016/j.atmosenv.2008.07.059
https://www3.epa.gov/ttn/chief/conference/ei19/session3/shires.pdf
https://www3.epa.gov/ttn/chief/conference/ei19/session3/shires.pdf
https://doi.org/10.1029/2011jd016056
https://doi.org/10.1029/2011jd016056
https://doi.org/10.5194/acp-21-5655-2021
https://doi.org/10.18845/tm.v32i3.4500
https://www.undp.org/content/dam/costa_rica/docs/undp_cr_enacc_2014.pdf
https://www.undp.org/content/dam/costa_rica/docs/undp_cr_enacc_2014.pdf
https://www.unenvironment.org/championsofearth/laureates/2019/costa-rica
https://www.unenvironment.org/championsofearth/laureates/2019/costa-rica
https://doi.org/10.5367/oa.2014.0155
https://doi.org/10.1029/2003GB002167
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


GLOSSARY

ASTM American Society for Testing and Materials

AW Atomic Weight

BOD Biochemical Oxygen Demand

CC Carbon Content

CIAAW Commission on Isotopic Abundances and Atomic Weights

DCC Climate Change Direction (Spanish acronym)

DOC Degradable Organic Carbon

EPA Environmental Protection Agency

GHG Greenhouse Gas(es)

GUM Guide to the Expression of Uncertainty in Measurement

GUM-S1 Supplement 1 to the GUM

IMN National Meteorological Institute of Costa Rica (Spanish acronym)

IPCC Intergovernmental Panel on Climate Change

ISO International Organization for Standardization

JCGM Joint Committee for Guides in Metrology

LCM Costa Rican Metrology Laboratory (Spanish acronym)

MCF Methane Correction Factor

MINAE Ministry of Environment and Energy of Costa Rica (Spanish
acronym)

NCV Net Calorific Value

ODU Oxidized During Use

PMR Partnership for Market Readiness

PPCN National Carbon Neutrality Program (Spanish acronym)

UCR University of Costa Rica (Spanish acronym)

UNDP United Nations Development Programme

UNEP United Nations Environment Programme

C Carbon

CH4 Methane

CO2 Carbon dioxide

H Hydrogen

H2O Water

N2O Nitrous oxide

O Oxygen
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