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China’s carbon emissions are a major global concern. China has proposed a defined
“dual-carbon” aim, with the first target being to attain the carbon emissions peak by
2,030. To address this issue, this study provides a two-stage method for forecasting
China’s annual carbon emissions, which is paired with pertinent carbon emissions data
to predict China’s annual carbon emissions. We discovered the associated aspects
affecting China’s carbon emissions through the research of this article, and we predicted
the carbon emissions data from 2017 to 2020 using the two-stage technique based on
these factors. When compared to the actual data of China’s annual emissions from 2017
to 2020, the prediction intervals from this method encompass the actual data well. This
method, on the one hand, identifies the main affecting factors for estimating carbon
emissions data, and on the other hand, it validates the method’s performance. It provides
support for further policy development and change based on the outcome of this
method.
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INTRODUCTION

In response to the scarcity of resources and the deterioration of the global environment, Chinese
President Xi Jinping set a “dual-carbon” target in 2020, with carbon emissions peaked in 2030 and
eventually neutralized in 2060, urging China to contribute to environmental conservation. In January
2022, he re-emphasized the importance of the carbon-reduction process. The key to reaching the
“dual carbon” goal is the establishment of a low-carbon economy. Developing a low-carbon economy
requires a shift in China’s development model, which now includes not only pursuing economic
growth but also pursuing economic development while considering the environment. China’s
development of a low-carbon economy will have a major impact on the world’s ecological and
economic fields as the world’s second-biggest economy and largest carbon emitter. To achieve
President Xi Jinping’s goal of a low-carbon and efficient Chinese economy as soon as possible, the
Chinese government should formulate a reasonable development plan based on a combination of its
own national conditions and relevant low-carbon economy conditions (Cheng et al., 2020; Chen
et al., 2021; Du et al., 2021; Meng et al., 2021).

The primary concept is to define the process of its own carbon emissions and future changes in
carbon emissions in order to better coordinate carbon reduction efforts according to local conditions
and establish a low-carbon economy. Governments at all levels will be able to support a low-carbon
economy only when they have clarified their own carbon emissions. The two-stage model is used in
this study to fit and forecast China’s annual carbon emissions data successfully, meaning that the
actual data is highly consistent with the fitted data, and the predicted value intervals completely cover
the true value from 2018 to 2020. It is expected that the prediction will encourage the government to
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make more scientific decisions. It will also provide a powerful
drive for achieving the “dual-carbon” target and developing a
low-carbon economy.

This paper is organized as follows: Section Literature Review is
the Literature Review. In the section, we sort out the previous
research, clarifying the process and shortcomings of the previous
research, and providing a reference for the research of this paper.
Section Methodology is the methodology. In the section, we
introduce the specific method used in this paper, and give the
expression. Section Data is the data. In the section, we describe
the types and reasons for data selection, the sources of data, and
the data processing software used throughout the article. Section
Empirical Results is the empirical results. This section contains
graphs of empirical results and corresponding interpretations of
model fit results. Section Conclusion and Policy Implications is the
conclusions and policy implications. In this section, we
summarize the research in this paper, and give the
corresponding policy recommendations based on the empirical
results.

LITERATURE REVIEW

In recent years, academics have focused on low-carbon economic
research, hoping to discover the secret to sustaining economic
growth while conserving the environment. We discovered that
research on the low-carbon economy primarily begins with
quantitative research after evaluating these literatures. The
foundation of low-carbon economic research is quantitative
study. Scholars mostly focus on mechanism analysis,
influencing factor analysis, carbon emissions forecasting, and
so on in quantitative research.

In the mechanism analysis, scholars have studied the carbon
trading mechanism (Hu et al., 2019; Pan et al., 2020; Jin et al.,
2020; Chen and Lin, 2021), discussing the quality of the carbon
compensation mechanism (Gao et al., 2020; Lv and Bai, 2020),
analyzing the government mechanism of the low-carbon
economy (Marsden and Rye, 2010; Wright, 2013; Wu et al.,
2016; Sun et al., 2019; Liu et al., 2021), and seeking efficient low-
carbon economic governance methods (Zhao et al., 2011; Chen
and Zhu, 2019; Keivani et al., 2020).

In the study of influencing factors, scholars mainly focus on
the impact of various factors on carbon emissions. Some papers
research the influencing factors of carbon emissions by country
and region, such as China (Wang et al., 2016; Wang and Liu,
2017; Cao et al., 2019; Wen and Shao, 2019; Ma et al.,2019),
America (Mallia et al., 2015), India (Li et al., 2018), Pakistan
(Azam et al., 2021) and other regions (Sun et al., 2021); some
scholars conduct research on the influencing factors of carbon
emissions by industry, such as agriculture (Tian et al., 2014; Han
et al., 2018; Tian et al., 2020), construction (Lu et al., 2016; Shi
et al., 2017; Li et al., 2019), manufacturing (Chontanawat et al.,
2020), transportation (Zhang and Wei, 2015), etc. These studies
all contribute to the search for the secret to an efficient low-
carbon economy.

In the exploration of carbon emissions forecasting, the main
difference lies in the application of research methods. Different

methods have different forecasting effects, such as ARIMAmodel
(Ning et al., 2021; Yang et al., 2020), a New Information Priority
Accumulated Grey Model with Simpson (Xiang et al., 2020),
inclusive multiple model (Shabani et al., 2021), LSTM (Huang
et al., 2018; Li, 2020). In this type of research, scholars strive to
find a high-accuracy method that can predict future carbon
emissions and closely match historical data.

By examining these literatures, we discovered that research
on carbon emissions prediction is critical for the development
of a low-carbon economy. However, the existing approaches
for carbon emissions prediction are mainly point estimation,
and the data fitting is not very close to the actual data. For this
purpose, we collect data from two aspects, resource and
environmental data and economic and social data, to use a
two-stage model (Gamma regression and ARIMA model’s
residual processing) to fit and estimate the annual carbon
emissions data of China from 1999 to 2020. The result is an
interval estimation rather than a point estimation. The
prediction interval can cover the real data effectively by
fully extracting data information, which is useful to the
development of a low-carbon economy.

METHODOLOGY

The two-stage method to analyze the annual carbon emissions of
China includes the trend analysis and the residuals analysis. After
getting these parameters of the models of the trend and residuals,
we can use these two models to predict the trend and residual
respectively.

Trend Analysis
Let Zt represent the annual carbon emissions at the tth year (t =
1, 2, ..., T = 20) from 1998 to 2017. These data are left-skewed
continuous in Figure 1. Since a left-skewed continuous response
has a constant upper bound 12,000 in this data set, we can then
analyze the corresponding right-skewed response 12,000−Zt by
using some well-known distributions. Let Yt = 12,000−Zt follow
the gamma distribution. For simplicity of notation, we let
Gamma (μ, σ2) stand for the gamma distribution, where µ
and σ denote it’s mean and coefficient of variation,
respectively. Thus, if a random variable Y follows the gamma
distribution, that is Y ~ Gamma (μ, σ2), then E (Y) = μ and
Var(Y) = σ2μ2. In this paper, the Gamma regression models for
Yt is given by

Yt ~ Gamma(μt, σ2), (1)
but with the mean trend μt defined as

E(Yt) � μt � exp(xt′, β) (2)
where xt includes intercept term and six indicators are forest
coverage (x1), total energy consumption (x2), energy
consumption intensity (x3), GDP (x4), industrial structure
(x5) and employment structure (x6), as given in Section
Data, and β is a 6-dimensional vectors of regression
parameters.
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Residuals Analysis
After the trend analysis of the annual carbon emissions of China, we
could get the raw residuals Rt of the model 1, which is given by

Rt � Yt − Ŷt Ŷt is the fitted value of model 1 (3)
Then, we use the Autoregressive Integrated Moving

Average (ARIMA for short) model to fit the Rt and find the
suitable ARIMA (p, i, q) model that describes the residual
correlation.

Forecasting
We can get trend forecast values based on the trend analysis
model by applying the six indicators, and the ARIMA model can
produce forecasts with 95% prediction limitations at the same
time. The predicted values of trend and residuals are then
summed to generate the yearly carbon emissions data
forecasted values (Zhang and Ma, 2021).

DATA

To investigate the low-carbon economy, we sought for data from
two perspectives (Wu, 2021). On the one hand, it is concerned
with resources and the environment, and we seek information on
carbon emissions, forest coverage, total energy consumption, and
energy consumption intensity in this regard. Carbon emissions
reduction is a major goal in the transition to a low-carbon
economy. Total energy consumption is a resource
consumption measure that is used to reflect energy usage. The
ratio of forest area to total land area, which is used to illustrate the
availability of environmental resources, is known as forest
coverage. Energy consumption intensity is defined as the ratio
of total energy consumption to GDP, which represents the
intensity of energy consumption. On the other hand, we were
looking for information on the economy and society’s GDP,
industrial structure, and employment structure. The gross
domestic product, or GDP, is an inescapable metric for

FIGURE 1 | The histogram of carbon emission and six covariates distributions skewed to the left, and the last four being positive and skewed to the right. The
kurtosis for these data is −1.605, −1.130, −1.487, −1.705, −1.255, −0.712, and −1.285, all negative, meaning the distributions are flatter than the normal distribution.
The data histograms in Figure 1 and the model presented in this study do not appear to contradict each other, indicating that the model is plausible.
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analyzing economic concerns. Because the tertiary industry is
such an important supporting industry when the government is
focusing on developing a low-carbon economy, the industrial
structure is expressed by the contribution rate of the tertiary
industry, and the employment structure is expressed by the
proportion of employment in the tertiary industry. The
preceding data comes from the China Statistical Yearbook and
CEADs, and it spans the years 1998–2020. At the same time, this
study processes the data with R software. Table 1 shows the
descriptive statistics of the data, whereas Figure 1 shows the
histogram of the variables.

From the descriptive statistics presented in Table 1, it can be
known that the means of the variables are 7198.272, 19.400,
325049.600, 1.006, 435509.300, 47.113, and 35.526, respectively.
The standard deviations are 2850.107, 2.561, 123607.700, 0.394,
312836.800, 8.386, and 6.918, respectively. The skewness is
−0.299, −0.244, −0.235, 0.084, 0.473, 0.478, and 0.402, with the
first three being negative and the.

EMPIRICAL RESULTS

Trend Analysis of the Annual Carbon
Emissions From 1998 to 2017
First, we performed Gamma regression fitting on the indicators’
data from 1998 to 2016, and generated parameter estimates
within the 95% confidence interval using R software. Table 2
shows the results of the parameters.

With the parameter estimated by model (1), the covariates
from 1998 to 2016 are used to fit the annual carbon emissions of
China from 1999 to 2017, we can obtain the fitted values, and by
comparing the fitted values with the corresponding real data,
Figure 2 can be drawn. From Figure 2, we can see that by
collecting two aspects of data, economic and social data and
resource and environmental data, as indicators, and then
performing Gamma regression on the data, our model fully
considers the factors affecting carbon emissions in a low-
carbon economy, so that the fitted data with the real data are
highly consistent, and the fitting effect is good.

The variables from 1998 to 2016 are used to fit the annual
carbon emissions of China from 1999 to 2017 using the
parameter obtained by the model (1), and by comparing the
fitted values with the corresponding real data, Figure 2 can be
created. As shown in Figure 2, our model fully considers the
factors affecting carbon emissions in a low-carbon economy by
collecting two types of data as indicators, economic and social
data, and resource and environmental data, and then performing
Gamma regression on the data. As a result, the fitted data and the
real data are highly consistent, and the fitting effect is good.

Residuals Analysis With the ARIAM Model
We evaluated the model residuals after the trend analysis with
the Gamma model and found that they were correlated, as
shown in Figure 3. The autocorrelation and partial
autocorrelation graphs in Figure 3 show that using the
ARIMA model to handle the data is more reasonable.
Finally, to fit the residuals, we chose ARIMA (4, 1, 0). We
used the Ljung-Box test on the residuals of ARIMA (4, 1, 0) to
check the ARIMA model’s effect, and plotted autocorrelation
and partial autocorrelation graphs, as shown in Figure 4. The
p-value of the Ljung-Box test is greater than 0.05, which is 0.354,
that is, the residual sequence does not violate the assumption of
white noise, and the results shown in Figure 4 also meet the
application requirements of the ARIMA model.

The performance of the fitted data is not, however, the primary
topic of this essay. If the predicted data is unsatisfactory, the
article’s meaning will be substantially diminished. As a result, we
did the following step in order to increase forecast accuracy and
test it quickly: It is impossible to test whether impending carbon
emissions are accurate in a short period of time because future
data has not yet been obtained.

Considering the time lag in the impact of indicators on carbon
emissions, we separated the data and utilized the indicators’ data
from 1998 to 2016 to match the carbon emissions data from 1999
to 2017. As shown in Section Trend Analysis of the Annual Carbon
Emissions From 1998 to 2017, the fitted values are similar to the real
values. The covariates from 2017 to 2019 are then used to forecast
carbon emissions data from 2018 to 2020, and the predicted value

TABLE 1 | Descriptive statistics of variables.

Variables Average Std. dev Skew Kurtosis

Carbon emissions 7198.272 2850.107 −0.299 −1.605
Forest coverage 19.400 2.561 −0.244 −1.130
Total energy consumption 325049.600 123607.700 −0.235 −1.487
Energy consumption intensity 1.006 0.394 0.084 −1.705
GDP 435509.300 312836.800 0.473 −1.255
Industrial structure 47.113 8.386 0.478 −0.712
Employment structure 35.526 6.918 0.402 −1.285

TABLE 2 | The parameter estimations.

Variables Intercept X1 X2 X3 X4 X5 X6

Estimations 8.117 −0.032 −0.000003259 0.261 −0.00000156 0.056 0.004
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is compared to the actual value. This divide is obviously
advantageous for swiftly testing the accuracy of the prediction
algorithm in this research.

Forecasting of the Annual Carbon
Emissions From 2018 to 2020
Because the information provided by point prediction is
restricted, we cannot see the particular difference between the
predicted and actual value. As a result, instead of just proposing
point estimation findings to improve prediction accuracy, this
work reprocesses the ARIMA prediction results to obtain an
appropriate estimation interval. We give upper and lower bounds
in this estimation range, and if the real data is substantially
covered by the estimation interval, our prediction impact will be
thoroughly confirmed.

During the trend prediction phase, we employ the six
covariates to calculate the values of China’s carbon emissions
from 2018 to 2020, after which the ARIMA model for residuals
may provide the prediction value as well as the upper and lower
intervals. These two components are combined from the trend
prediction and residuals parts. Finally, the forecast obtained by
combining these two parts can provide the prediction as well as
the prediction intervals for the years 2018–2020.

Through the above empirical steps, we finally got the most
representative graph in this paper, Figure 5, which contains two
parts of fitting and prediction, corresponding to the Gamma
regression and ARIMA model treating process in the two-stage
model respectively.

Figure 5 shows that our fitted results are in good agreement
with the real data during the fitting stage, indicating that we have
fully considered when selecting indicators and have divided the
relevant data of the low-carbon economy into two parts, resources
and environment, economic and social, in a scientific and
reasonable manner. Simultaneously, we can see that in the
prediction stage, the median line of our interval estimate (that
is, the yellow line in the figure) is consistent with the real data, and
the upper and lower bounds perfectly cover the real data, fully

FIGURE 2 | The fitted values and the real data of carbon emissions of China from 1999 to 2017.

FIGURE 3 | Autocorrelation and partial autocorrelation plots of residuals
of the Gamma model.

FIGURE 4 | Processed autocorrelation and partial autocorrelation plots
of the residuals of the ARIMA (4, 1, 0).
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respecting the fact that real data fluctuations are caused by random
events. As a result, the two-stage model utilized in this research has
proven to be effective in fitting and forecasting carbon emissions in
a low-carbon economy.

The findings in this report will help governments at all levels
control pollution more scientifically and correctly, reduce carbon
emissions, and establish a low-carbon economy more efficiently. At
the same time, in relevant prediction research, the two-stage method
has a great promotion value. Predictive research in various domains
can use the ideas included in the two-stage approach as a reference.

CONCLUSION AND POLICY
IMPLICATIONS

We used a two-stage model to analyze and forecast China’s annual
carbon emissions data in this article. Furthermore, we projected
China’s carbon emissions from 2018 to 2020 based on the relation
between the six covariates and carbon emissions. The findings
suggest that this method can more accurately fit and forecast
China’s annual carbon emissions data. This makes it easier for
decision-makers to set more specific targets in the process of
reaching the 2030 carbon peak. At the same time, the model’s
forecasted value continues to rise, indicating that China faces a
complex challenge in meeting the carbon peak target in the current
mode. As a result, it is critical to encourage the development of a
low-carbon economy. Finally, the key factors to pay attention to in

China’s carbon emissions management process are offered based
on the research of the relationship between the six covariates and
carbon emissions.
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