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This study utilizes the Weather Research and Forecasting model with a higher resolution
(36 km × 36 km) to dynamically downscale the Community Earth System Model results
forced by the three representative concentration pathways (RCP) scenarios (RCP4.5,
RCP6.0, and RCP8.5) over China. The goal was to compare meteorological fields during
the present (2006–2015) and future (2046–2055) climatological periods. An appropriate air
stagnation judgment index was selected to explore the effect of climate change on air
quality-related meteorological conditions. The results show that the occurrence of
wintertime air stagnation over China in the middle of this century (2046–2055) will
reduce slightly, with the largest reduction projected under the RCP8.5 scenario (−4
times). However, long-lasting air stagnation events (ASE) are projected to increase in
the future, and this increasing trend is more obvious under the RCP8.5 scenario. The
projected increase in the long-lasting ASE in different regions of China ranges from 3 to 11
times. Among these, Central China has the largest increase, followed by East and
Northeast China, while South China has the lowest increase in ASE. Our results
indicate that more attention should be dedicated to extreme pollution events that may
potentially be caused by long-lasting air stagnation events in the future.
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1 INTRODUCTION

With the rapid development of the Chinese economy and the accelerated process of industrialization,
air pollution events of long durations and high concentrations occur frequently over China (Horton
et al., 2012; Wang et al., 2019; Qin et al., 2021). The Chinese government has actively taken
preventive measures to strictly control air pollutant emissions nationwide. Although the annual
mean PM2.5 (fine particle matter with aerodynamic diameter ≤2.5 μm) concentrations have
continued to decrease in recent years, severe haze pollution events still occur frequently during
the winters, especially in North China (Chen and Wang, 2015; Sun et al., 2019). Therefore, in
addition to strictly controlling emission sources, other factors, such as meteorological conditions,
need to be considered to improve air quality. The interactions between climate change and air
pollution have been hot topics in recent years. Climate and weather conditions strongly influence the
spatial and temporal distribution of air pollutants concentrations (Kinney, 2018). When emission
sources are relatively stable, diffusion, transmission, and transformation of atmospheric pollutants in
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a given region majorly depend on local meteorological conditions
(Shi et al., 2020). The impact of meteorological conditions on the
concentration of air pollutants can vary dozens of times (Zhang
et al., 2010). Therefore, to improve air quality, it is not only
necessary to control emission sources, but also to combine
meteorological conditions and climate change.

A factor that causes deterioration in air quality is atmospheric
stagnation under high-pressure systems and the resultant weak
near-surface winds, compounded by stable vertical temperature
profiles (inversion) (Lee et al., 2020). In addition to intensive
emissions, stagnant meteorological conditions, characterized by
slow winds, strong inversion, and shallow boundary layer, are key
to the formation of severe haze pollution events (Mu and Liao,
2014; Zhang et al., 2014; Zhang et al., 2015; Cai et al., 2017; Wang
et al., 2018; Xu et al., 2020). Many studies have assessed the
association between air stagnation and haze pollution in China
(Zhao et al., 2013; Wang et al., 2014; Zhang et al., 2014; Cai et al.,
2017; Jing et al., 2017; Liao et al., 2018; Wang et al., 2018).
Previous research has shown that a lower boundary layer creates
covered pot-like conditions, limiting the vertical diffusion of
pollutants (Yang et al., 2021). The weakening effect of quiet
wind on the horizontal diffusion capacity of the atmosphere
makes it difficult for pollutants to diffuse (Rigby and Toumi,
2008; Fu et al., 2014). The continuous absence of precipitation
also reduces the wet deposition of pollutants, thereby
deteriorating air quality (Guo et al., 2016). Extreme pollution
events are thus often caused by long-lasting stagnation conditions
(Cai et al., 2017).

To objectively measure stagnation conditions and their
impacts on air pollution, several air stagnation indices (ASI)
were proposed (Horton et al., 2012; Mu and Liao, 2014; Zhang
et al., 2014; Huang et al., 2018; Li et al., 2020). The most used ASI
was proposed by Horton et al. (2012), which is based on the wind
speed at 10 m (WS10) and 500 hPa, while considering total
precipitation (PCP). Collectively, these parameters are used as
indicators of horizontal atmospheric dispersion capacity and wet
deposition, respectively. However, this index has a weak
correspondence with pollutants such as PM2.5 and O3 (Li
et al., 2014; Kerr and Waugh, 2018; Garrido-Perez et al.,
2019). Huang et al. (2018) replaced the 10 m and 500 hPa
wind velocity fields with wind flux in the boundary layer and
added the available potential energy based on the convective
available potential energy (CAPE) and convective inhibition
(CIN). Wang et al. (2018) used atmospheric planetary
boundary layer height (PBLH) instead of 500 hPa wind speed
to characterize the vertical mixing of pollutants. Garrido-Perez
et al. (2021) compared the performance of the three ASIs (Horton
et al., 2012; Huang et al., 2018; Wang et al., 2018) and found that
all three revealed similar spatial patterns in the stagnation
frequency. Furthermore, the response of PM10 concentrations
to stagnation varied with ASI and depended on location and
season. The main exceptions occurred in coastal areas, where the
ASI defined by Wang et al. (2018) seemed to be more accurate
than the other ASIs.

Climate change will lead to changes in air stagnation
conditions, and global warming may increase the static
stability of the lower troposphere by reducing near-surface

wind speed, which means air stagnation events (ASE) will be
more frequent in the future (Lee et al., 2020). Horton et al. (2012)
reported that highly industrialized areas, such as eastern China,
are more sensitive to climate warming and the incidence of air
stagnation in such regions was expected to increase by 12%–25%
in the late-21st century (2081–2100) as compared to the late-20th
century (1981–2000). Wang et al. (2018) calculated ASI from
observational data to find strong air stagnation conditions from
autumn to winter over China, especially in the Sichuan basin and
the Beijing-Tianjin-Hebei (BTH) region (more than 40% of the
whole year).

The Global Climate Model (GCM) has been used widely in
previous studies for climate change projections (Hewitson and
Crane, 2006). However, the spatial resolution of GCMs is coarse
and they cannot predict regional-scale weather patterns well, and
thus, are not suitable for high-resolution regional climate, air
quality, and health impact research. Dynamical downscaling is a
kind of downscaling technique that converts coarse resolution
outputs from GCM to fine spatial resolution by developing
regional climate models (Lee et al., 2014). This study uses
climate projections from the Community Earth System Model
(CESM) provided by the Coupled Model Intercomparision
Project 5 (CMIP5) to obtain initial and boundary conditions
for the Weather Research and Forecasting (WRF) model. We
have generated regional-scale meteorological fields for the
present (2006–2015) and future (2046–2055) climatological
periods under the three RCP scenarios (RCP4.5, RCP6.0, and
RCP8.5). As mentioned above, we choose the ASI defined by
Wang et al. (2018) to calculate atmospheric stagnation in this
study and explore the impacts of climate change on air stagnation.
This paper is organized as follows. Section 2 describes the data
and methods used in this study, while the results are presented
and discussed in Section 3. Section 4 comprises a summary and
conclusions.

2 METHODS

2.1 Data Description and Experimental
Setup
Global bias-corrected data produced by CESM version 1 that
participated in the CMIP5 was obtained from the website of the
Research Data Archive (https://rda.ucar.edu/datasets/ds316.1/ #!
description). The dataset was provided in the Intermediate File
Format specific toWRF and contained all the variables needed for
the initial and boundary conditions for WRF simulations. This
dataset had already been bias-corrected using the European
Centre for Medium-Range Weather Forecasts (ECMWF)
Interim Reanalysis (ERA-Interim) fields for 1981–2005,
following the method of Bruyère et al. (2014). All the variables
had 26 pressure levels and were provided in files at 6-hourly
intervals. Files were available for a simulation for the present
(1951–2005) and three future scenarios (RCP4.5, RCP6.0, and
RCP8.5) spanning 2006–2100.

We ran theWRFmodel to generate hourlymeteorological fields
of the “Basecase” (2006–2015) and the three RCP cases (RCP4.5,
RCP6.0, RCP8.5) for the winter months (December, January, and
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February) of 2046–2055. The simulation domain covered the
entirety of China with a spatial resolution of 36 km × 36 km
(Figure 1). The physical options used to drive the WRF
simulations are listed in Table 1 (Hu et al., 2016), including the
new Thompson microphysics scheme (Thompson et al., 2008),
Rapid Radiative Transfer Model (RRTM) longwave radiation
(Mlawer et al., 1997), and Yonsei University PBL
parameterization (Hong et al., 2006). Due to corrupted data
caused by a modelling bug in CESM, bias-corrected data was
unavailable for RCP2.6. Thus, we chose three scenarios (RCP4.5,
RCP6.0, and RCP8.5), spanning the winter of 2046–2055, to drive
WRF v3.8 for future analyses. Results from the CESMmodel using
the RCP6.0 emission scenario were used as the meteorological
boundary and initial fields of the WRF model for the 2006–2015
periods. The WRF model was configured with 44 vertical layers
from surface to 50 hPa (Supplementary Figure S1). Because of the
vast territory of China, climate and air quality vary in the different
regions. To better compare and summarize changes in different
regions, we divided China into seven regions based on differences
in climate and administration (Figure 1), including East China (E),
North China (N), Central China (C), South China (S), Southwest
China (SW), Northwest China (NW), and Northeast China (NE).

2.2 Air Stagnation Days and Events
We adopt theASI definition proposed byWang et al. (2018), which is
shown in Eq. 1. This parameterization is derived using PBLH and

WS10 data to fit the normalized daily PM2.5 concentrations during
the winter. This could better explain haze events and has been used in
other studies (Zhang et al., 2019; Gao et al., 2020). For each grid cell (i,
j), if the daily cumulative precipitation is<1mmand the daily average
PBLH andWS10 satisfy Eq. 1, the air is considered stagnant and the
given day is considered to be an air stagnation day (ASD). We define
an ASE as an event in which air stagnation lasts for 3 days or more.

PBLHi,j < 0.759p exp( − 0.6 pWS10i,j) + 0.264 (1)

2.3 Model Performance Evaluation
Evaluation of model performance is an important step to
verify the reliability of modelling results and to establish
confidence for further application. The WRF simulations
were validated using the fifth-generation European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalysis
data for global climate and weather (ERA5). Monthly
averaged data (Hersbach et al., 2019) from ERA5 for 2006
to 2015 were obtained from the website https://cds.climate.
copernicus.eu/cdsapp#!/dataset/. In this study, statistical
metrics and benchmarks recommended by the
United States EPA were used. The normalized mean
deviation (NMB), normalized mean error (NME), and the
Pearson correlation coefficient (R) of the observed and
simulated values were calculated to quantitatively evaluate
model performance (Emery et al., 2017). The corresponding
equations are shown below:

NMB � ∑(Pj − Oj)
Oj

× 100 (2)

NME � ∑
∣∣∣∣Pj −Oj

∣∣∣∣
Oj

× 100 (3)

R � ∑[(Pj − �P) × (Oj − �O)]����������������������∑(Pj − �P)2 × ∑(Oj − �O)2√ (4)

3 RESULTS AND DISCUSSION

3.1 Evaluation of Present Climatological
Simulation
Figure 2 shows the spatial distribution of wintertime (DJF)
meteorological fields from the Basecase and the corresponding
ERA5 reanalysis data. Detailed statistical metrics are listed in

FIGURE 1 | Model domain and sub-regions used for analysis. E: East
China, N: North China, C: Central China, S: South China, SW: Southwest
China, NW: Northwest China, NE: Northeast China.

TABLE 1 | Major physics options for WRF simulations.

Physics Option Meaning

Microphysics mp_physics = 8 New Thompson et al. scheme
Long wave radiation ra_lw_physics = 1 RRTM scheme
Shortwave radiation ra_sw_physics = 2 Goddard shortwave
Surface layer sf_sfclay_physics = 1 Monin-Obukhov similarity theory
Land surface sf_surface_physics = 2 MM5 Land surface model
Planetary boundary layer bl_pbl_physics = 1 Yonsei University scheme
Cumulus parameterization cu_physics = 3 Grell-Devenyi ensemble scheme
Urban surface sf_urban_surface = 0 Not enabled
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Table 2. Note that PBLH,WS10, and T2 were averaged from 2006
to 2015, while PCP was calculated as the average of cumulative
winter precipitation. As can be seen from Figure 2, the simulated
PBLH in the Tibetan Plateau and its surrounding areas was
significantly underestimated, which might be due to the
complex terrain in the region (Wang et al., 2021). Combined
with Table 2, the mean PBLH within the model domain was
490.4 m in the ERA5 data, while it was 477.92 m according to
WRF. TheWRFmodel underestimated PBLHwith amean bias of
−12.48 m, while the RMSE was as large as 172.22 m. This
indicated that model performances may vary a lot across the
different regions. Nevertheless, the simulated PBLH showed a
strong positive correlation of 0.84 with ERA5 data, suggesting
that the overall model performance was acceptable. The WRF
model successfully captured the general pattern of PCP as
compared to the ERA5 data, but underestimated PCP in
southern China. Previous studies have reported that ERA5
precipitation data are relatively higher than the ground
observations over China in winters, with a mean bias of 35%
(Jiang et al., 2021; Jiao et al., 2021), which partly explains the
discrepancy between WRF simulations and ERA5 data. A
comparison of the simulated PCP with the Tropical Rainfall
Measuring Mission (TRMM) satellite data for 2006–2015
(Supplementary Figure S2) revealed that the WRF-simulated
PCP had similar spatial patterns to that of TRMM data. The

WRF-simulated mean PCP within the model domain was
15.0 mm, which was close to that of TRMM data (15.5 mm),
giving us confidence in the simulated PCP.

The WS10 and T2 (the temperature at 2 m) predicted by WRF
showed relatively consistent spatial patterns with those from
ERA5 data. WS10 was slightly overestimated with a mean bias
of 0.95 m/s. TheME and RMSE ofWS10 were both less than 2 m/
s, and thus, met the performance criteria suggested by Emery et al.
(2001). The model performance for T2 was the best among the
selected meteorological factors with correlation coefficients as
high as 0.99. To explore the differences in modelling results
before and after downscaling, we compared the CESM output
with ERA5 data and WRF simulations (Supplementary Figure
S3; Supplementary Table S1). Because bias-corrected CESM
output does not provide PBLH and PCP (Bruyère et al., 2014;
Bruyère et al., 2015), only projected WS10 and T2 obtained. As
Supplementary Figure S3 shows, both WRF and CESM
exhibited good spatial agreement with the ERA5 data. As
compared to CESM, WRF could reproduce more regional
scale details for both WS10 and T2, especially in the Tibetan
Plateau and the Sichuan Basin. Previous studies have indicated
that CESM cannot capture topography-induced temperature
patterns (Liu et al., 2013; Chen et al., 2018), which is
consistent with our results. The biases between CESM and
ERA5 were 1.07 m/s and 0.95 K for WS10 and T2,

FIGURE 2 | Comparisons of meteorological fields from Basecase simulations and ERA5 data.

TABLE 2 | Statistical parameters for simulated meteorology at all grid cells within the model domain.

ERA5 WRF Bias ME NMB NME RMSE R IoA

PBLH (m) 490.40 477.92 −12.48 115.87 −0.03 0.24 172.22 0.84 0.90
PCP (mm) 38.54 16.79 −21.75 26.80 −0.56 0.70 45.57 0.47 0.55
WS10 (m/s) 3.91 4.87 0.95 1.10 0.24 0.28 1.60 0.85 0.88
T2 (K) 275.57 276.58 1.01 1.94 0.00 0.01 2.79 0.99 0.99
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respectively, which was slightly larger than those between WRF
and ERA5.

3.2 Changes in Meteorological Conditions
Under Different Scenarios
The decadal mean values of PBLH,WS10, T2, and PCP under the
three RCP scenarios were calculated and compared with the
Basecase to obtain their spatial and temporal variations due to
climate change. Note that PCP was calculated as the average
cumulative winter precipitation. Figure 3 shows the WRF-
projected changes in PBLH, WS10, T2, and PCP under
RCP4.5, RCP6.0, and RCP8.5 scenarios relative to the present
period; relative changes in these parameters in the different
regions are depicted in Figure 4. Wintertime PBLH at the

national scale was projected to increase for the 2046–2055
period under the three RCP scenarios. The increase in PBLH
was more obvious for the RCP6.0 scenario (15.1 m), followed by
RCP8.5 (6.4 m) and RCP4.5 (2.1 m). A significant increasemainly
occurred in the Tibetan Plateau and some parts of North and
Northeast China under the three RCP scenarios. For Central,
East, and South China, the WRF-RCP4.5 and WRF-RCP8.5
projected generally shallow PBLH, while WRF-RCP6.0 showed
a weak increase.

The projected changes in PCP in China were more varied
among different scenarios. The WRF-RCP4.5 projected wetter
conditions in South and East China and slightly drier conditions
in Central, North, and Northeast China for the 2046–2055 period.
Under RCP6.0, PCP showed a decreasing trend in most of China
except Northwest and Northeast China. A significant decrease

FIGURE 3 | Spatial distributions of the projected changes in meteorological fields for the 2046–2055 period relative to the 2006–2015 period. Significant changes
(confidence level of 95%) are marked with circles.
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was projected for Central China with a regional mean of 26.65%
(−14.13 mm). Under RCP8.5, however, wetter conditions were
projected for Central, East, and South China, with a maximum
increase of 23.80% (15.1 mm). Significant decreases were found
for Southwest and Northeast China, with the regional mean value
changes of −2.35 and −1.38 mm, respectively. The PCP in North
China showed a consistent decreasing trend under the three RCP
scenarios, however, the changes were different for other regions.

For WS10, the national mean value for the 2046–2055 period
remained largely unchanged relative to the present 2006–2015
period under the RCP4.5 and RCP6.0 scenarios, while it increased
slightly under RCP8.5. The projectedWS10 showed an increasing
trend under all three scenarios over Southwest China, while the
largest increase was found under RCP8.5 (5.93%). For other
regions, the projected changes in WS10 were less than 2.02%
under the RCP4.5 and RCP6.0 scenarios. As can be seen from
Figure 3, the projected wintertime temperatures showed a
significantly increasing trend over China under all three
scenarios. Due to the highest anthropogenic greenhouse gas
emissions in RCP8.5, the projected T2 showed the greatest
increase, followed by RCP6.0 and RCP4.5. The projected
changes in temperature presented obvious regional differences.
The largest warming was found in the Tibetan Plateau, with a
maximum of 3.6°C increase in average temperature under
RCP8.5. The regional mean relative changes in T2 ranged
from 0.18% to 0.56%, and the maximum occurred in
Southwest China (0.56%).

The CESM-projected WS10 and T2 distributions over China
under the three scenarios for the 2046–2055 period were also
compared with distributions for the 2006–2015 period
(Supplementary Figures S4, S5). Generally, there are no
obvious differences between the CESM and WRF projections.
The WRF-projected mean values of changes in WS10 and T2
under the three scenarios were comparable to those obtained
from CESM; however, the latter covered a wider range, which is
attributable to the finer spatial resolution of WRF that allowed it
to better capture regional-scale climate patterns. As compared to
the CESM simulations, theWRF projections showed a decrease in

WS10 in South and Northeast China under the RCP6.0 and
RCP8.5 scenarios.

3.3 Changes in Air Stagnation Under
Different Scenarios
The spatial distributions of ASD and ASE in the Basecase and
their changes under the three RCPs over China are shown in
Figure 5. The projected total ASD during the 2006–2015 period
was 167 days, while the changes during the 2046–2055 period
under the three RCPs aere 6 days (RCP4.5), −9 days (RCP6.0),
and −7 days (RCP8.5), respectively. The maximum (minimum)
changes projected were 55 (−43), 37 (−83), and 49 (−68) days
under RCP4.5, RCP6.0, and RCP8.5, respectively. Under the
RCP4.5 scenario, the projected number of ASD increased in
most of China, while it decreased significantly in Northwest,
Southwest, and Northwest China under the RCP6.0 and RCP8.5
scenarios. Significant reductions in the number of ASD were also
found in Sichuan Basin under RCP8.5, with a minimum of about
−68 days. The projected ASE exhibited an increasing trend from
south to north during the 2006–2015 period, with a national
mean value of 56.9. The changes in ASE under the three scenarios
showed similar spatial distributions to those of ASD. Positive
changes were mainly projected for East and Central China, and
the eastern part of Northwest and Southwest China under
RCP4.5. Negative changes were found in most of China under
the RCP6.0 and RCP8.5 scenarios. At the national scale, the
projected ASE decreased in the future for the three scenarios, with
the maximum decrease occurring in RCP8.5 (−4.0), followed by
RCP6.0 (−2.9) and RCP4.5 (−0.5).

The probability distribution of ASE and the changes in ASE
over the 2046–2055 period relative to 2006–2015 was calculated
using the total ASE during the winter of the 10 years for each grid
cell in China; the distribution is shown in Figure 6 to identify the
changes of air stagnation under the different scenarios. The
numbers of ASE occurrence in China during the winter of the
10 years were mainly concentrated in 30–75 events (for points
with a frequency greater than 1%). The projected frequency of

FIGURE 4 | The relative changes (2046–2055 relative to 2006–2015) in meteorological fields for different regions of China. Statistical significance is marked
with color.
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ASE occurrence exhibited a bimodal distribution, with a major
peak at around 65–75 times and a minor peak at around 40–55
times. Both the peaks shifted to a less frequent ASE under the
three RCP scenarios, which means that the number of wintertime
ASE occurrences in China may decrease in the future. As can be
seen from Figure 6B, the changes in ASE in the 2046–2055 period
relative to the 2006–2015 period follow a normal distribution
under the three RCP scenarios. The mean changes of winter ASE

are −1, −3, and −4 times for RCP4.5, RCP6.0, and RCP8.5,
respectively. This is related to the fact that the mean value of
PBLH shows an increasing trend in the future, while the mean
values of WS10 and PCP change slightly.

Long-lasting air stagnation events can increase the risk of
public exposure to high concentrations of air pollutants. Figure 7
shows the relative frequency distribution of the duration of ASD
under the different scenarios for all grid cells over China. For

FIGURE 5 | Spatial distribution of atmospheric stagnation days, (ASD) and air stagnation events (ASE) in Basecase and their changes under the three RCPs over
China. Significant changes (confidence level of 95%) are marked with circles.

FIGURE 6 | Probability distribution of ASE (A) and ASE difference (2046–2055 relative to 2006–2015) (B).
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example, assuming that an ASE would last for 3 days, the
occurrence under different scenarios was in the order of
Basecase (28%) > RCP6.0 (26%) > RCP8.5 (23%) > RCP4.5
(22%). As can be seen from Figure 7, the longest duration of
winter ASE in China was projected to be 14 days. The frequency
of ASE lasting 2–4 days was the highest (27%–29%) in the
Basecase, but with the increase in duration, the proportion of
Basecase gradually decreased. The proportion of the RCP
scenario gradually increases, especially under the RCP8.5
scenario, which means that the probability of the occurrence
of long-lasting ASE will increase in the future.

The changes in ASE lasted for more than 5 days for the
2046–2055 period relative to the present 2006–2015 period in
different regions are given in Figure 8. Generally, the occurrence

of long-lasting ASE in different regions of China increased by
3–11 times in the mid-century decade. The largest increase was
projected unser the RCP4.5 scenario for most regions. Central
China was found to have the largest increase among the different
regions, followed by East China and Northeast China. The lowest
increase was projected for South China and was majorly ascribed
to a significant increase in PCP.

4 DISCUSSION

Our results indicate that long-lasting ASE will increase in the
mid-century winter (2046–2055) over China due to climate
change. Zou et al. (2017) projected that the forcing effect of
arctic sea ice will cause more extreme atmospheric static stability
in China. Using CMIP5 single-forcing experiments, Lee et al.
(2020) suggested that global warming caused by anthropogenic
greenhouse gases has likely increased the static stability of the
lower troposphere, implying more stagnant conditions in the
future. Huang et al. (2017) assessed changes in China’s
atmospheric stagnation from 1985 to 2014 and reported an
upward trend. Based on a multi-model ensemble analysis
under RCP8.5, Gao et al. (2020) found that by the end of this
century, climate change may lead to an increase in both the
duration and frequency of wintertime stagnation events over the
North China Plain. Our results are consistent with the above-
mentioned studies, providing confidence in our in-depth research
on future projections.

This study used a dynamic downscaling method to generate
high-resolution regional climate projects based on the outputs
from the GCM. Such methods can provide more detailed
information about regional or local synoptic patterns as
compared to CESM data (Supplementary Figure S3). The
results from the dynamic downscaling method predicted air

FIGURE 7 | The probability distribution of the number of days that ASE lasted under different representative concentration pathway, (RCP) scenarios.

FIGURE 8 | The projected changes in ASE lasted for more than 5 days in
the different regions.
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stagnation in various regions over China more suitably. However,
results also depend on the choice of ASI as different ASIs may
lead to different conclusion for different regions (Garrido-Perez
et al., 2021). The ASI used in this study was based on empirical
statistical analysis methods (Wang et al., 2018). To compare the
differences between ASIs, we calculated the ASI based on
atmospheric dynamic methods (Feng et al., 2018). The results
are shown in Supplementary Figure S7. The projected ASI
exhibited an increasing trend under RCP4.5, while it decreased
under RCP6.0 and RCP8.5, which is consistent with changes in
the projected ASD (Figure 5).

Note that only one model is used in this study, although use of
multiple model sets may be more representative. In future work,
we will evaluate the results of other models to make our findings
more representative. In addition, the accuracy of the simulations
also influences the credibility of the projections of air stagnation
but considering that we have used data from 10 years, we believe
that trends delineated in our results will not be affected.
Moreover, due to limitations in computation and storage
resources, nested simulations were not conducted in our study,
such simulations could provide finer spatial resolution. In our
follow-up study, we aim to apply the nested WRF simulations
with a 12- or 4-km horizontal resolution for key regions, such as
the North China Plain and the Yangtze River Delta.

5 CONCLUSION

This study uses future climate projections under three RCP
scenarios (RCP4.5, RCP6.0, and RCP8.5) provided by the
CESM model based on CMIP5 to drive the WRF model to
obtain regional climate projections with a higher resolution
(36 km × 36 km) over China. The ERA5 reanalysis data were
used to evaluate the performance of WRF projections. The results
indicate that the dynamic downscaling method used in this study
can generate reasonable regional climate processes. The
simulated WS10 and T2 were in good agreement with the
ERA5 data. However, PBLH and PCP were underestimated in
the Tibetan Plateau and South China, respectively. According to
our projections, the occurrence of wintertime ASE will reduce
slightly in the future, with the largest reduction (−4 times)
expected under the RCP8.5 scenario. Nonetheless, the

occurrence of long-lasting ASE will increase in the future,
where the increasing trend is more obvious under the RCP8.5
scenario. The projected increase in long-lasting ASE ranged from
3 to 11 times in the different regions, among which Central China
had the largest increase, followed by East and Northeast China.
The increase in ASE frequency was projected to be the lowest in
South China, which is likely attributed to a significant increase in
PCP. Our results suggest that atmospheric stagnation in Central
and East China should be given more attention in future research
and analysis.
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