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Accurate identification of source information (i.e., source strength and location) is crucial for
the air pollution control or effective accidental response. Optimization inversion based on
bio-inspired algorithms (BIOs) is an effective method for estimating source information.
However, the impacts of different BIOs and the shared parameter of population size in
BIOs on source inversion performance have not been revealed. Here the source inversion
performance (i.e., accuracy and robustness) of six typical BIOs [i.e., bacterial foraging
optimization algorithm (BFO), chicken swarm optimization algorithm (CSO), differential
evolution algorithm (DE), genetic algorithm (GA), particle swarm optimization (PSO), and
seeker optimization algorithm (SOA)], and their population sizes are evaluated based on
the Prairie Grass dataset which covering different atmospheric conditions (i.e., Pasquill
stability classes A, B, C, D, E, and F). Results indicated the population size has substantial
influence on source inversion. The accuracy of all BIOs in source strength fluctuated greatly
when the population size was small, whereas, tended to be stable as the population size
increased. Overall, the BFO had the best accuracy with lowest deviations (74.5% for
source strength and 29.7 m for location parameter x0), whereas SOA had the best
robustness for all source parameters. Atmospheric conditions indicated an obvious
influence on the inversion performance of the BIOs. The BFO and CSO performed the
best with the lowest deviations [137.5 and 26.7% for unstable conditions (A, B, and C) and
stable condition (E), respectively], all algorithms are comparable (67.4 ± 2.1%) in neutral
condition (D), and BFO and CSO had the comparable performances (23.2 and 24.3%) and
performed better under extremely stable condition (F). This study enhances the
understanding of the factors influencing source inversion and provides a reference for
the selection of appropriate bio-inspired algorithms and the reasonable setting of
population size parameter for source inversion in practical environmental management.
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1 INTRODUCTION

Atmospheric pollution caused by daily emissions in industries or
abrupt accidents is concerning because it endangers life and
property safety, causing substantial economic losses and
threatening the ecological environment (Hutchinson et al.,
2017; Zhong et al., 2020). Accurate determination of source
pollutant emission information or source parameters (e.g.,
source strength and location) plays a crucial role in the refined
control of air pollution or improving emergency response
capabilities of abrupt air pollution accidents (Wei et al., 2016;
Ma et al., 2020). However, it is generally difficult to directly
acknowledge the pollution source information because of the
characteristics of concealment of conventional pollution
emissions and the harmfulness of accidents. Source inversion
based on environmentally observed pollutant concentrations is
an effective alternative method for obtaining unknown pollution
source parameters (Lamb et al., 2016; Bergamaschi et al., 2018;
Ma et al., 2018; Albani et al., 2020).

Source parameters inversion is always an ill-posed inverse
problem (Haupt et al., 2007; Ma et al., 2017; Cui et al., 2019).
Theories based on probability and optimization are the two main
approaches for solving the ill-posed inverse problem (Wang et al.,
2017). Probability modeling methods are mainly based on
Bayesian inference, and the estimations are obtained using
stochastic Monte Carlo (Sohn et al., 2003) or Markov Chain
Monte Carlo (Guo et al., 2009; Wang et al., 2017) sampling
techniques. However, the effective use of the method depends on
a lot of reliable prior information (e.g., measurement errors,
parameter bounds and expected inputs) (Zheng and Chen,
2011; Yu M. et al., 2019). This information is hard to be
obtained in the real conditions, especially in the case of
emergency rescue where rapid decision making is required.
Optimization source inversion identifying the source
parameters by minimizing the difference between the air
dispersion model outputs and the measured concentrations is
widely used because of its less dependence on prior information
and high estimation accuracy (Zheng and Chen, 2010; Ma et al.,
2017). Traditional optimization algorithms such as gradient-
based method [e.g., the Nelder Mead simplex method (NM),
Shi, 2013; the least-squire, Singh and Rani, 2014] and direct
search method [e.g., the Pattern Search (PS), Zheng and Chen,
2010] have been utilized by some scholars to inverse unknown
source parameters. However, this category of algorithms is
limited in practices when the initial value is not set properly
or the objective function is not differentiable. Bio-inspired
optimization algorithms (BIOs) have been coming out as one
of the best promising optimization techniques, which belongs to
the nature-inspired algorithm (based on some principles from
physics, biology or ethology) (Boussaïd et al., 2013; Alanis et al.,
2018). In recent years, a few BIOs such as genetic algorithm (GA)
(Haupt, 2005; Long et al., 2010; Rodriguez et al., 2011; Li and
Zhang, 2017; Mao et al., 2020), particle swarm optimization
(PSO) (Chen and Chen, 2014), seeker optimization algorithm
(SOA) (Hu et al., 2021) and chicken swarm optimization
algorithm (CSO) (Chen et al., 2021) are used in related
research on source inversion since they does not depend on

gradient descent information and has excellent global
optimization performance compared with that of traditional
algorithms. However, above studies only focused on the
performance of the single algorithm in source inversion
applications and were carried out based on the virtual cases or
the extremely limited field experimental data. Their performance
in real-world applications deserves further research. Additionally,
some other bio-inspired algorithms have been developed for
different applications or research purposes, such as the
bacterial foraging optimization algorithm (BFO) (Mishra,
2005; Tripathy et al., 2006) and differential evolution
algorithm (DE) (Feoktistov, 2006). Sarkar et al. (2022) made a
review on the application of BIOs (e.g., CSO, BFO, DE, etc.) in
different food processing and related operations, and had
concluded that there is no generic algorithm that will perform
well for each optimization problem. However, from our best
knowledge, these algorithms with good performance in other
research fields have not been applied in source inversion of
atmospheric pollutants and their performances in source
inversion have not been revealed. In the previous studies, Ma
et al. (2013) and Shen et al. (2019) compared the performance of
different optimization algorithms in source inversion based on
the limited field experiments and found that the different
optimization algorithms varied greatly in different source
parameters inversion. Therefore, the differences of selecting
different BIOs may cause large impact on source parameters
inversion. However, up to now, the systematic comparative
investigations on the application evaluations of different BIOs
in source inversion have not been carried out. Meanwhile, the
study of Cui et al. (2019) demonstrated that the atmospheric
dispersion conditions had remarkably influence on the
performance of the algorithms. Therefore, the performance
differences of source inversion caused by selecting different
BIOs may also vary for different atmospheric conditions.
Additionally, BIOs generally come with some control
parameters that have to be set before the algorithm can be
used in applications. Thereinto, the population size is one of
key control parameters in BIOs (Alanis et al., 2018). A mass of
studies have shown that the population size can greatly influence
the solving performance of BIOs in real engineering applications
(Jansen et al., 2005; Diaz-Gomez and Hougen, 2007; Brest and
Maucec, 2008; Mora-Melià et al., 2016; Castelli et al., 2017).
Therefore, a prerequisite evaluating objectively estimation
performance of algorithms in source inversion is to clarify
the influence law of the population size in algorithm on source
inversion. However, almost all past studies have ignored the
impacts of population size on source parameters inversion.
This limits our understanding of the role of population size in
BIOs in the applications of source inversion. These
deficiencies above of the existing studies limit our
understanding of the impacts of BIOs on source inversion.
Thus, more researches into the inversion performances are
necessary to enhance the understanding of the factors
influencing source inversion, and allow for the selection of
appropriate bio-inspired algorithms and the reasonable
setting of population size parameter for source inversion in
practices.
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The purpose of this study is to identify the impacts of different
BIOs on source inversion performance in real world. Six typical
bio-inspired algorithms (BFO, CSO, DE, GA, PSO, and SOA)
were evaluated based on the classical Prairie Grass experimental
dataset including 68 experiments (Barad, 1958), which comprises
atmospheric stability categories (A, B, C, D, E, and F). The
estimation performance (i.e., accuracy and robustness) of
population sizes from 10 to 100 for different algorithms were
firstly evaluated in order to identify the influence laws of
population size for each algorithm in source inversion. Then,
the inversion performance of different BIOs under different
atmospheric dispersion conditions (stability classes A to F)
was analyzed and discussed. This study can enhance the
understanding of the role of population size in the
applications of source inversion for the BIOs and the influence
of BIOs on source inversion performance. The conclusions
facilitate obtaining source information accurately by selecting
the bio-inspired algorithms and setting the population size
parameter more reasonably than in the literature for the
practical environmental management, especially the
considering the varied atmospheric conditions.

2 METHODS

2.1 Source Inverse Model
Many forward dispersion models have been proposed to simulate
the dispersion of atmospheric pollutants. The Gaussian
dispersion model has been widely used in source inversion
because of its advantages of high prediction efficiency, simple
implementation, and low time cost (Lushi and Stockie, 2010;
Stockie, 2011; Ma et al., 2017). In this study, the Gaussian model
was also selected to construct the source parameter inverse model.
According to the dispersion theory of the Gaussian model
(Pasquill and Smith, 1983), the simulated concentration of the
Gaussian model at any monitoring point in the downwind
direction can be expressed as follows:

C(x, y, z) � Q0

2 · π · u · σy(x−x0 ) · σz(x−x0 )
exp⎛⎝ − (y − y0)2

2 · σ2y(x−x0 )
⎞⎠⎡⎢⎢⎣exp⎛⎝ − (z − z0)2

2 · σ2z(x−x0 )
⎞⎠ + exp⎛⎝ − (z + z0)2

2 · σ2z(x−x0 )
⎞⎠⎤⎥⎥⎦, (1)

where Q0 is the pollutant emission rate of the source (or source
strength), (g/s); C (x, y, z) is the pollutant concentration at
monitoring point (x, y, z) in the downwind (g/m3); (x0, y0)
and z0 represent the source horizontal location coordinate
parameter (m) and the pollutant release height parameter (m),
respectively; u is the average wind speed (m/s) near the ground
during the sampling period; σy and σz are the dispersion
coefficients in the horizontal and vertical directions,
respectively (m), which are the functions of downwind
distance (x-x0) and the Pasquill stability (A, B, C, D, E, and
F). The dispersion coefficients were computed based on the
BRRIGS scheme as Eq. 2 and Eq. 3 (Mao et al., 2020).

σy � a1 · (x − x0) · [1 + b1 · (x − x0)]r1 (2)

σz � a2 · (x − x0) · [1 + b2 · (x − x0)]r2 (3)
where a1, a2, b1, b2, r1, and r2 are the parameters for calculating the
dispersion coefficients and vary with the Pasquill atmospheric
stability classes (Table 1). Note that the Gaussian model is
suitable for flat and open terrains and the pollutants
dispersion is assumed to be a uniform process. Thus, the
forward dispersion model should be selected flexibly according
to the specific application scenarios in practice.

Optimization source inversion methods can be treated as to
find the optimal fitness between the simulated and observed
concentrations. According to the previous studies (Zheng and
Chen, 2010; Ma et al., 2013; Cui et al., 2019), the objective
function expression of source inversion model in this study is
as follows:

min f � ∑n
n�1

[Ci
mes − Ci

sim(Q0, x0, y0, z0)]2 (4)

where Ci
mes is the measured concentration at sampling point i, (g/

m3); Ci
sim is the simulated concentration of dispersion model

[i.e., Eq. (1)] at the sampling point i, (g/m3); and n is the number
of sampling points in the downwind. In this study, the pollutant
emission source information, namely source strength (Q0),
horizontal coordinate position (x0, y0), and release height (z0),
are unknown. The optimal solution obtained by minimizing the
objective function (i.e., source inversion model) with the bio-
inspired algorithm is the estimated value of unknown source
parameters.

2.2 Bio-Inspired Algorithms
2.2.1 Bacterial Foraging Optimization Algorithm
The BFO has been widely accepted as a population-based
algorithm of current interest for distributed optimization and
control and is inspired by the social foraging behavior of
Escherichia coli. A bacterium always tends to migrate toward
the highest nutrient source by swim or tumble via rotating whip-
like flagella (i.e., chemotaxis movement). The reproductive phase
of the bacteria is then initiated followed by the final dispersal or
elimination. Thus, the BFO comprises three steps: chemotaxis,
reproduction, and elimination—dispersal (Passino, 2002). The
BFO has been applied successfully to some engineering problems,
such as optimal control, harmonic estimation, and transmission
loss reduction (Mishra, 2005; Tripathy et al., 2006).

TABLE 1 | Constants for calculating dispersion coefficients in BRIGGS scheme
(Mao et al., 2020).

Pasquill stability
class

σy (m) σz (m)
a1 b1 r1 a2 b2 r2

A 0.22 0.0001 −0.5 0.20 — —

B 0.16 0.0001 −0.5 0.12 — —

C 0.11 0.0001 −0.5 0.08 0.0002 −0.5
D 0.08 0.0001 −0.5 0.06 0.0015 −0.5
E 0.06 0.0001 −0.5 0.03 0.0003 −1.0
F 0.04 0.0001 −0.5 0.016 0.0003 −1.0
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2.2.2 Chicken Swarm Optimization Algorithm
The CSO algorithm is a bio-inspired algorithm based on a
population that mimics the behaviors of a chicken swarm
(Meng et al., 2014). The whole swarm can be divided into
several groups, each comprising one rooster and many hens
and chicks. Different chickens follow different laws of motion.
In a particular hierarchy order, the various subgroups compete.
The CSO algorithm has the advantages of fast convergence speed
and high solving accuracy, but only very limited researches (Chen
et al., 2021) have been conducted on leakage source parameter
inversion using the CSO.

2.2.3 Differential Evolution Algorithm (DE)
The DE algorithm is a floating point encoding evolutionary
algorithm for global optimization over continuous spaces
(Feoktistov, 2006), which can also work with discrete variables.
DE creates new candidate solutions by combining the parent
individual with several other individuals of the same population.
A candidate replaces the parent only if the former has a better
fitness value than the latter. Many studies on the application of
DE in the optimization inversion problem have been conducted
(Moll et al., 2004; Gao et al., 2016), but source parameter
inversion in atmospheric pollution scenarios requires further
research.

2.2.4 Genetic Algorithm
A GA uses principles inspired by the fields of genetics and
evolution to optimize the solution to a non-linear problem. A
GA works with a population of trial solutions called
chromosomes that are manipulated by operations called
mating and mutation to create the next generation of
offspring. Many studies on source parameter inversion and
dispersion model parameter optimization have been conducted
using GA and good results have been achieved (Haupt, 2005,
2007; Ma et al., 2013; Mao et al., 2022).

2.2.5 Particle Swarm Optimization (PSO)
PSO is an intelligent optimization algorithm inspired by the social
behavior of bird foraging (Chen and Chen, 2014). A flock of birds
is regarded as a group of particles. Speed and position which are
the inherent attribute characteristics of each particle. In contrast
with GAs, all particles of PSO are retained as members of the
population through the entire search process (Zahara and Kao,
2009). The optimal solutions of these particles can be recorded
and shared, so that all particles can search in the direction of
feasible solutions. PSO simulates the movement of these particles
and explores various regions in the search space for global
optima.

2.2.6 Seeker Optimization Algorithm (SOA)
The SOA is based on the concept of simulating the act of humans’
intelligent search with their memory, experience, and uncertainty
reasoning. In this sense, the individual of this population is called
a seeker or searcher, from which the new algorithm name is
derived. After a given start point, search direction, search radius,
and trust degree, every seeker moves to a new position (next

solution) based on his social learning, cognitive learning, and
uncertainty reasoning based on a simple Fuzzy rule and finally the
solving of optimization problem is completed (Dai et al., 2006;
Dai et al., 2009; Hu et al., 2021).

Supplementary Figures S1–S6 show the flow charts of
optimization steps to six tested BIOs. Note that each
algorithm used by this study was a standard implementation.
Additionally, except for the parameter of population size that this
study focused on, the remaining control parameters that have to
be set before the algorithm can be used in applications. The
remaining parameters were set based on the empirical values
from the previous studies. The specific control parameters of the
test algorithms and the corresponding empirical constant values
were summarized in Table 2. One thousand independent
calculations of source inversion were performed for each field
experiment under each algorithm in order to reduce the influence
of randomness of algorithm itself on inversion results. The mean
values of the inversion results of all experiments were used for the
final analysis of this study.

2.3 Performance Evaluation Method
The absolute value of the relative deviation (ARD) and absolute
value of deviation (AD) are calculated to characterize the
inversion accuracy of source strength and source location,
respectively.

ARD � ∣∣∣∣(EQ,I − RQ,I)∣∣∣∣/RQ,I, (5)
AD � ∣∣∣∣EL,I − RL,I

∣∣∣∣, (6)
where letters E and R represent the estimation value and real
value, respectively; letters Q and L represent the source strength
(Q0) and location parameters (i.e., x0, y0, and z0); letter I
represents the serial number of the test experiment. The
average of ARDs or ADs of inversion results for 1,000
independent solvings was taken as the result of each field
experiment, and the average of ARDs or ADs of all
experiments for each atmospheric stability class was taken as
the final result of each atmospheric stability class in this study.

The coefficient of variation (CV) is calculated to evaluate the
estimation robustness of BIOs in source inversion. The formula is
as follows:

CV � μ(Q,L)/m(Q,L) (7)
where μ(Q, L) represents the standard deviation of ARD for source
strength (Q0) or AD for source location parameters (x0, y0, and
z0), andm represents the average value of the inversion deviations
(ARDs or ADs) of source strength or location parameter. In
this study, the CV of each field experiment was calculated
based on the ARDs or ADs of 1,000 independent solvings.
Average of CVs of all experiments for each atmospheric
stability class was taken as the final result of each
atmospheric stability class. The value of CV ranges from 0
to 1. The smaller the CV value is, the better the estimation
robustness is. A small CV value less than 0.15 is regarded to
have small data discreteness (Luo and Wei, 2011), namely, it
represents an excellent estimation robustness.
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Both inversion accuracy (ARD or AD) and robustness (CV)
are essential indices for inversion performance. However, they
were not consistent in dimension. Thus, according to the previous
studies (Cui et al., 2019; Mao et al., 2020), the performance of the
algorithm in source inversion is comprehensively scored, and the
comprehensive score index is further calculated based on all
statistical indices of ARD, AD and CV in this study, which is
detailed as follows:

2.3.1 Range Standardization

X′J,K � [XJ,K −min(XJ,K)]/[max(XJ,K) −min(XJ,K)] (8)
where letter K represents the different source parameters (Q0,
x0, y0, z0); letter J represents the evaluation indexes (ARD, AD,
CV), and XJ, K and X′J,K are the original values and standardized
values.

2.3.2 Comprehensive Scores for Source Strength

SQ0 � ω1p1/Np∑N

i�1X′Q0 ,ARD,+ω2p1/Np∑N

i�1X′Q0 ,CV, (9)
comprehensive score of source location:

SL � ω3p[ω1p1/Np∑N

i�1X′X0 ,AD,+ω2p1/Np∑N

i�1X′X0 ,CV]
+ ω4p[ω1p1/Np∑N

i�1X′Y0 ,AD,+ω2p1/Np∑N

i�1X′Y0 ,CV]
+ ω5p[ω1p1/Np∑N

i�1X′Z0 ,AD,+ω2p1/Np∑N

i�1X′Z0 ,CV]
(10)

comprehensive score of all source parameters (strength and
location):

SR � ω1pSR + ω2pSL (11)

where X′(Q0, x0, y0, z0) is the standardized value of different
source parameters, N is the number of test experiments, and ω is

the weighting coefficients for the standardized indices (ω1~2 = 1/2,
ω3~5 = 1/3).

2.4 Field Experimental Data
Search algorithms were applied to identify the characteristics of
the source based on the Prairie Grass field experiments (Barad,
1958). The experiments were conducted in the relatively open
area of northern central Nebraska in the summer of 1956, which
comprised of 68 consecutive releases of trace gas SO2 of 10 min
each from a single source, and six atmospheric dispersion
conditions (i.e., Pasquill stability classes) (Pasquill and Smith,
1983): extremely unstable (A), unstable (B), slightly unstable (C),
neutral (D), stable (E), and extremely stable (F). The number of
field experiments for each stability class (A—F) were 5, 5, 10, 31,
5, and 12, respectively (Cervone and Franzese, 2011). The gas
release height of experiments No. 1–62 was 0.46 m from the
ground, and experiments No. 63–68 were 1.5 m from the ground.
The mean concentration of 20 min was measured at sensors
positioned along arcs radially located at distances of 50 m,
100 m, 200 m, 400 m, and 800 m from the source. The
downwind sample collection adopted a semicircular
arrangement of points (Figure 1). The coverage area of each
layer was 180°; the first four layers of sampling points were
arranged at intervals of 1°; each layer had 180 sampling points;
and the fifth layer was arranged at intervals of 2°, with a total of 90
sampling points.

3 RESULTS

3.1 Impacts of Population Sizes in BIOs on
Source Inversion
In this section, the impacts of different population sizes (10–100)
in BIOs on source inversion were evaluated. The inversion results
of source parameters (i.e., source strength and locations) under
different BIOs were calculated for each experiment in the Prairie
Grass dataset. Figure 2 shows the mean ARD with a 95%
confidence limit and the mean CV of the source strength

TABLE 2 | Empirical constant values of the remaining control parameters in optimization algorithms.

Algorithms Values of control parameters for different test algorithm

BFO Niu et al. (2015) Chemotaxis step
length (C)

Chemotactic
step (Nc)

Number of reproduction
steps (Nre)

Number of elimination—dispersal
events (Ned)

Probability of
elimination—dispersal (Ped)

— 0.1 1,000 5 2 0.25
CSO (Yu et al. (2019b) Following

coefficient (FL)
Proportion of
roosters (Pr)

Proportion of hens (Ph) Proportion of chick (Pc) Maximal value of generation
(Tmax)

— 1 0.2 0.6 0.2 100
DE Ronkkonen et al.
(2005)

Mutation scale
factor (F)

Crossover rate (Cr) — — —

— 0.9 0.9 — — —

GA Haupt, (2005) Mutation rate (Mr) Crossover rate (Cr) — — —

0.2 0.5 — — —

PSO Jiang et al. (2007) Inertia weight (ω) Acceleration constants (c1, c2)
— 0.6 (1.7, 1.7)
SOA Ketabi and
Navardi, (2012)

Inertia weight (ω) Minimum/Maximum membership degree (μmin,

μmax)
— —

— 0.9 (0.011, 0.97) — —
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(i.e., parameter Q0) inversion results. In terms of accuracy, the
population size has a remarkably effect on the accuracy of the
source strength for the tested BIOs. All BIOs presented the
consistent feature that the estimation deviations showed a
certain degree of value fluctuation when the population size
was smaller than a certain value and then reached a relatively
stable state. This characteristic indicated that the increase of
population size has little contribution on the estimation
accuracy of these algorithms when the population size was
larger than a certain value. Specifically, the fluctuation ranges
of ARDs of the BFO, CSO, and DE were relatively greater
(66.2–77.8%, 73.1–87.2%, and 83.1–192.2% for BFO, CSO, and

DE, respectively) when the population size was less than 50. The
ARDs of the GA, PSO, and SOA showed greater fluctuations
(44.6–79.5%, 64.0–83.8%, and 85.3–92.7%, respectively) when the
population size was less than 30 and reached stable when the
population size was greater than 30. Comparing the ARD of each
algorithm when it reaches the stable state, BFO performed best in
accuracy with lowest ARD (74.5%), DE performed worst with
largest ARD (98.6%), and the other algorithms performed
similarly with comparable ARDs (82.6 ± 5.8%). In terms of
robustness, the population size also shows obviously effects on
the performance of source inversion for each algorithm. The CVs
of all algorithms except for SOA showed a nonlinearly downward

FIGURE 1 | Sketch of the field experiment monitoring points’ setting pattern.

FIGURE 2 | Inversion performance (ARDs and CVs) of different BIOs (BFO, CSO, DE, GA, PSO, SOA) for estimations of source strength Q0 under tested population
sizes for different atmospheric conditions (A–F).
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trend as the population size increased and eventually tended to a
relatively stable value. However, the SOA performed best with the
remarkably lowest value (<0.10) of the CV for each tested

population size. Comparing the CV of each algorithm when it
reaches the stable state, the statistical analysis of one-way variance
(ANOVA) indicated there were significant difference between

FIGURE 3 | Inversion performance (ADs and CVs) of the BIOs (BFO, CSO, DE, GA, PSO, SOA) for estimations of source locations (x0, y0, z0) under all tested
population sizes for different atmospheric conditions (A–F).
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SOA and most algorithms including BFO (p = 0.003), CSO (p =
0.00001) and GA (p = 0.002). This indicated that SOA had the
best inversion robustness.

Figure 3 shows the inversion results for the source locations
(x0, y0, z0). For horizontal location coordinate parameter x0, the
sensitivity of estimation performances of different algorithms to
population size varied greatly. For the algorithms of CSO, DE,
GA, and PSO, like the source strength parameter, they showed the
consistent feature that the estimation deviations showed a certain
degree of value fluctuation when the population size was smaller
than a certain value and then reached a relatively stable state.
Specifically, the ADs of the CSO and DE showed obviously great
fluctuations (20.9–31.3 m and 38.2–99.8 m, respectively) when
the population sizes were smaller than 50 and 30, respectively; the
ADs of the GA, and PSO showed a fluctuation (21.6–35.3 m and
29.6–36.1 m, respectively) when the population size was smaller
than 20. However, there is no distinct difference between the BFO
and SOA in the inversion results for population sizes from 10 to
100. Of the BIOs, the BFO and CSO performed similarly in
accuracy with the comparable ADs (29.7 and 31.3 m) when
algorithms reached a relatively stable source inversion, and
were slightly better than other algorithms. In robustness, the
CVs of all BIOs showed a clearly downward trend as the
population size increased, and the robustness of SOA
performed distinctly better than that of the others, with the
lowest CV (<0.003) for each population size. For horizontal
location coordinate parameter y0 and release height coordinate
parameter z0, from the value of ADs, the variation of population
size in BIOs had little influence on the inversion accuracy.
Comparing the estimation results of different algorithms, all
algorithms showed high estimation accuracy due to the
extremely low AD (<8 and 6 m for parameters y0 and z0,
respectively). Meanwhile, all algorithms performed similarly in
accuracy due the comparable ADs. In robustness, the CV of all

BIOs showed an obvious downward trend with an increase in
population size. Additionally, the CVs of the SOA remained in a
steady state with low CVs as the population size increased.

Above analysis indicated that the population size of the BIOs
obviously affected the performance of the algorithm in the
application of source parameters inversion. However, the
influence laws of population size on the BIOs varied in the
different source parameters and performance evaluation
indicators. Thus, the comprehensive scores based on all
statistical indices of ARD, AD and CV for all BIOs were
further calculated to help comprehensively evaluate the impact
of population size in BIOs on inversion performance. Figure 4
shows the results of the comprehensive scores for the inversion
performance of all the source parameters (Q0, x0, y0, z0). The
comprehensive scores under all BIOs gradually declined as the
population size increased and tended to be stable when the
population size reached a certain value. This phenomenon
indicated that the inversion performance of BIOs was
obviously improved and tended to be stable when the
population sizes were up to a certain value. Notably, the SOA
had the lowest scores (<0.07) under all population size
conditions. Furthermore, the deviation of comprehensive
scores under the two adjacent population sizes was less than a
certain small enough value (e.g., 0.005) as the condition for the
source inversion to achieve a stable state in this study. According
to the standard, the population sizes required to reach a stable
state were 20, 30, 50, 30, 30, and 10 for the BFO, CSO, DE, GA,
PSO, and SOA, respectively.

3.2 Evaluation of Source Inversion
Performance Among Different BIOs
Section 3.1 investigated the impacts of population size in BIOs on
source inversion and identified the minimum population size
required for stable inversion performance of different BIOs. The
past studies (Cui et al., 2019; Shen et al., 2019) have found that
atmospheric dispersion conditions have a remarkable influence
on estimation performance of optimization algorithms in source
parameters inversion. To understand the impacts of atmospheric
conditions on the performances of different BIOs in source
inversion and improve the technical guidance for real
application scenarios, we further analyzed the inversion
performance of BIOs under different atmospheric stability
classes (A–F). Therefore, combined with the study results of
Section 3.1, the inversion results of BIOs under the population
size of 50 were used to avoid the interference of population size on
the inversion performance of the algorithms. Figure 5 shows the
inversion results for the source parameters (Q0, x0, y0, z0). In
terms of source strength Q0, the inversion accuracy of all BIOs
showed obvious fluctuations under all atmospheric conditions.
The accuracy was the worst under stability classes A and B.
Comparing the inversion results of different BIOs, the BFO had
the best accuracy with lower ARDs under stability classes A
(136.0%), B (187.7%), and C (88.7%), respectively; whereas, the
SOA had the worst accuracy with relatively larger ARDs under
stability classes A (177.1%), B (238.2%), and C (116.1%),
respectively. The accuracy of all BIOs were comparable with

FIGURE 4 | Comprehensive scores of different BIOs for all source
parameters (Q0, x0, y0, z0) under different tested population sizes.
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similar ARD (67.4 ± 2.1%) under neutral atmospheric condition
(stability class D). CSO performed slightly better than other
algorithms due to the relatively lower ARD (26.7%) and PSO
performed worst (33.6%) under stable condition (stability class
E). Under extremely stable condition (stability class F), BFO and
CSO had the comparable ARDs (23.2 and 24.3%) and performed
relatively better than other algorithms, and the SOA showed
obviously worse accuracy with a larger ARD (48.3). Overall, the
accuracy of the BFO was relatively better than that of other BIOs,
owing to its better performance under most atmospheric
conditions. As for robustness, SOA performed better than the
others because the CVs of the SOA were maintained at a low level

(CVs <0.15) under all atmospheric conditions. The remaining
BIOs showed great fluctuations in CV under different
atmospheric conditions. CSO was worst with a highest CV
(>0.15) under almost all atmospheric conditions.

In terms of horizontal location parameter x0, the ADs of the
BFO were relatively lower than those of other BIOs under
stabilities A (11.7 m), B (64.7 m), and F (56.7 m). DE
performed better than other algorithms under stability class C
with a lower AD (12.2 m), whereas there was no obviously
difference in accuracy among BIOs under stability classes D
and E, owing to the comparable ADs. For robustness, the CVs
of the SOA and DE were comparable under each stability class

FIGURE 5 | Accuracy (mean ARD or AD with 95% confidence limits) and robustness (CV) of different BIOs for the estimation of source parameters (Q0, x0, y0, z0)
under different stability classes (A–F).
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and clearly lower (<0.05) than those of other BIOs. CSO
performed worst in robustness with the high CVs (the range
of CV from 0.21 to 0.58) under all atmospheric conditions.
Additionally, from the large fluctuation of CVs under different
stability classes, the inversion robustness of CSO and PSO were
more sensitive to the variation of atmospheric dispersion
condition than other BIOs. In terms of horizontal location
parameter y0, the accuracy of different BIOs showed little
difference and the inversion deviations was small (AD <10 m)
under different atmospheric conditions. This indicated that all
BIOs performed consistently well in estimation accuracy.
However, the robustness of different BIOs was distinctly
different. The CVs of all BIOs except for SOA fluctuated
largely with atmospheric conditions, whereas the CVs of the
SOA remained at an extremely low level (<0.04) under each
atmospheric condition. In terms of release height parameter z0,
similar to the horizontal location parameter y0, all BIOs showed
extremely small estimation deviations (AD < 5 m) and there was
little difference among different algorithms. The CVs of the SOA
and DE under stability classes A, C, D, and E were lower. GA and
PSO had the better robustness with the relatively lower CVs (0.27
and 0.24) under stability B. However, in stability F, DE and SOA
had the better robustness with the lower CVs (0.03 and 0.05).
Overall, atmospheric conditions had a remarkably impact on the
estimation accuracy of location x0 and on the robustness of all
location parameters. The BFO performed relatively better than
other BIOs in the estimation accuracy of source locations,
whereas the SOA was obviously better in estimation
robustness and was less sensitive to atmospheric conditions.

Comprehensive scores based on all statistical indices of ARD,
AD and CV were further calculated to evaluate the overall
estimation performance of different BIOs. According to the
results of comprehensive scores (Figure 6), the DE and GA
performed best with the lowest scores under stability classes A

(0.1659) and B (0.1928), respectively. The SOA had the best
performance under stability classes C, D, E, F with the scores of
0.1345, 0.0469, 0.0580, and 0.0705, respectively.

4 DISCUSSION

Performance of the various optimization algorithms differ greatly
in source parameters inversion (Ma et al., 2013; Shen et al., 2019).
Several bio-inspired algorithms (BIOs) have been successfully
applied to the source parameters inversion in atmospheric
pollutions recently. However, knowledge regarding the impacts
of the different BIOs on source inversion performance is lacking.
Additionally, the setting of population size (a control parameter
shared by BIOs) have been proved a key factor influencing the
solution quality of BIOs in the applications of treating real issues,
but this parameter has not received enough attention in the
researches of source inversion applications. This study analyzed
and compared the performance of six BIOs (i.e., BFO, CSO, DE,
GA, PSO, SOA) in source inversion applications based on the
field experiments which covers different atmospheric conditions
(i.e., atmospheric stability classes A to F). In order to objectively
evaluate the estimation performance of the tested algorithms, the
influence law of the population size of each algorithm on source
inversion performance was first investigated.

Section 3.1 showed that population size had a substantial
influence on source inversion accuracy and robustness of all
tested BIOs. In terms of accuracy, as for source strength Q0, the
accuracy of all BIOs fluctuated greatly when the population size
was small, whereas, with the increase of population size, the
estimation deviations tended to be stable when the population
size was larger than a certain value. The required minimum
population size to reach a stable source inversion was different for
the bio-inspired algorithms, 50 for BFO, CSO, and DE, and 30 for
GA, PSO, and SOA. Comparing the ARD of each algorithm when
it reaches the stable inversion state, a big gap of relative deviation
(24.1%) between the best algorithm BFO (74.5%) and the worst
algorithm DE (98.6%) indicated that the selection of bio-inspired
algorithm affected the performance of source strength inversion.
As for location parameters, population size had obviously large
influences on the horizontal location parameter x0. The sensitivity
of estimation accuracy of different algorithms to population size
varied greatly. Thereinto, the accuracy of CSO, DE, GA and PSO
in parameter x0 showed the similar features to that in source
strength inversion that the estimation deviations tended to be
stable as the increase of population size. However, there is no
distinct difference in accuracy under different population sizes for
BFO and SOA. Comparing the accuracy of all algorithms, the
BFO performed slightly better than others with the lowest AD
(29.7 m). In terms of robustness, the CVs of all algorithms except
SOA, showed a nonlinearly downward trend as the population
size increased. The reason for this characteristic may be that the
more population size in these bio-inspired algorithms improves
the ability of obtaining global optimization solution in each
independent calculation in source inversion. Therefore, the
estimation results of all independent calculations are closer for
each algorithm in each field experiment. However, SOA showed

FIGURE 6 |Comprehensive scores of the BIOs for all source parameters
(Q0, x0, y0, z0) under different atmospheric dispersion conditions (stability
classes (A–F).
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remarkably less sensitivity to the population size variation than
other algorithms because it was always at a prettily low level (CV
< 0.3) for each tested population size for all source parameters.
This indicated that SOA had more advantages on the robustness
of source inversion than the other algorithms. This excellent
estimation robustness may be attributed to the difference of
optimization mechanism of algorithms, for instance, Dai et al.
(2009) has reported the method in SOA determining the search
direction and step length based on the Fuzzy rule that can make
itself more superior to the PSO, GA and DE in optimization
robustness. Comprehensive scores for the inversion performance
of all the source parameters (Q0, x0, y0, z0) indicated that the
population sizes required to reach a stable state in source
inversion for different BIOs differed, with sizes of 20, 30, 50,
30, 30, and 10 for the BFO, CSO, DE, GA, PSO, and SOA,
respectively. On the whole, BFO showed the best source inversion
accuracy and SOA had the best source inversion robustness.

Section 3.2 revealed that the atmospheric dispersion conditions
distinctly affected the estimation performance of BIOs in source
inversion. The estimation accuracy of each algorithm in source
parameters inversion varied greatly in different atmospheric
conditions and the optimal algorithm was not unique. The
conclusions are similar to the inversion results of Shen et al.
(2019) where the source inversion performances of three hybrid
algorithms were compared under unstable, neutral, and stable
atmospheric conditions. The reason is that, in addition to the
algorithm itself, source inversion performance can also be affected
by the atmospheric conditions by influencing the field measured
errors and the simulation abilities of forward dispersion models
(Cantelli et al., 2017; Cervone and Franzese, 2011; Mao et al., 2020).
Additionally, in Figure 5, the inversion accuracy of source strength
Q0 for all algorithms were distinctly worse under stability classes A
and B, and source location x0 for all algorithms under stability class F
than the others. The results were basically consistent to that of the
previous studies of (Cervone and Franzese, 2011; Cui et al., 2019)
where the same dataset was used to test the source inversion
performance of the novel proposed algorithms. However, an
interesting picture is that, unlike parameter x0, all algorithms
performed well in the estimation accuracy for parameter Q0

under stability class F. This phenomenon indicated that the
solving ability of the optimization algorithms for source location
parameter and source strong was different in the practical
applications. The difference of solving ability for different source
parameters may be attributed to the nonlinear of inversion problems.
These results in section 3.2 illustrated that the reasonable selection of
BIOs had the important significance on the accurate estimation of
source parameters in practices due to the varied atmospheric
conditions. Notably, although the SOA may not be the best in
inversion accuracy, its robustness of inversion results for source
strength or locations always maintained an excellent level under
all atmospheric conditions. This remarkable feature means that the
SOA algorithm can obtain stable source inversion results with the
fewer runs than other algorithms.

The findings above can enhance the understanding of the role
of population size in the applications of source inversion for the
BIOs and the impacts of BIOs on source inversion. The
conclusions can provide a certain reference for the selection of

appropriate bio-inspired algorithms and the reasonable setting of
population size parameter in algorithm for source inversion in
practical environmental management, especially considering the
varied atmospheric conditions. However, the study has
limitations; for instance, the basic data of Prairie Grass
experiments are from flat terrain and a short range (<1 km), and
the atmospheric dispersion model is a simple Gaussian plume
model; thus, further validation tests for the BIOs may be
necessary in complex source inversion scenarios (e.g., complex
urban terrains) to improve the support for real world
applications. Additionally, the finding that the algorithm selection
can cause great estimation difference in source inversion accuracy
implies that further improving the source inversion performance by
developing a more excellent optimization algorithm is a well
potential approach. This study has demonstrated the outstanding
robustness and the relatively mediocre accuracy of SOA in source
inversion. The previous study (Cui et al., 2019) proved that it was an
effective way to improve source inversion accuracy by combining the
global algorithm with the local optimization algorithm. Thus,
developing a hybrid algorithm by combining the SOA with a
local optimization algorithm (e.g., Nelder–Mead simplex search
method) may be a feasible approach to solve the problem of
accurate source inversion.

5 CONCLUSION

Bio-inspired optimization algorithms (BIOs) are important methods
for inversing source parameters (e.g., source strength and location) in
atmospheric pollution events. The control parameter of population
size in BIOsmay also affect the source inversion performance due the
optimization mechanism of BIOs. However, the impacts of different
BIOs on source inversion and the role of their shared parameter of
population size in BIOs in the applications of source inversion have
not been revealed. This study first investigated the impacts of
population size in typical BIOs (i.e., BFO, CSO, DE, GA, PSO,
and SOA) on source inversion and then compared the differences
of six intelligent optimization algorithms in inversion performance
based on field datasets under different atmospheric conditions.
According to the inversion result of 68 SO2 leakage experiments,
the population size of all tested BIOs has substantial influence on
source inversion accuracy and robustness. The accuracy of all BIOs in
source strength Q0 fluctuated greatly when the population size was
small, whereas, tended to be stable when the population size was
larger than a certain value. The accuracy of CSO, DE, GA and PSO in
parameter x0 showed the similar features to that in source strength
inversion, however, the accuracy of BFO and SOAwere insensitive to
the population size variation. The CVs of all algorithms except SOA,
showed a nonlinearly downward trend as the population size
increased, whereas SOA showed remarkably less sensitivity to the
population size variation. Comprehensive scores for the inversion
performance of all the source parameters (Q0, x0, y0, z0) indicated
that the population sizes required to reach a stable state in source
inversion for different BIOs differed, with sizes of 20, 30, 50, 30, 30,
and 10 for the BFO, CSO, DE, GA, PSO, and SOA, respectively.
Comparing the results of source inversion of different BIOs indicated
that overall, BFO had the best accuracy with the lowest deviations
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(74.5% for source strength and 29.7 m for location parameter x0),
whereas SOA had the best estimation robustness due a low level of
CV (<0.3) for all source parameters. Atmospheric dispersion
conditions had an obvious influence on the source inversion
performance of the BIOs. The estimation accuracy of each
algorithm in source parameters inversion varied greatly in
different atmospheric conditions and the optimal algorithm
was not unique. The BFO performed the best (137.5%) in
unstable conditions (A, B, and C), all algorithms were
comparable with similar errors (67.4 ± 2.1%) in neutral
condition (D), CSO performed slightly better than other
algorithms due to the relatively lower ARD (26.7%) under
stable condition (E), and BFO and CSO had the comparable
ARDs (23.2 and 24.3%) and performed relatively better than
other algorithms under extremely stable condition (F). The
results of this study can be used to improve the understanding
of the role of population size in the applications of source
inversion for the BIOs and the impacts of bio-inspired
algorithms on source inversion. The conclusions provide a
reference for the selection of appropriate bio-inspired
algorithms and the accurate setting of population size
parameter in algorithms for source inversion in practical
environmental management, especially considering the varied
atmospheric condition.
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