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Exploring the co-benefits of low-carbon tech-innovation in response to climate change on
haze pollution is an important foundation for China’s ecological construction, and also a
key path to the common goal of carbon and haze reduction. Based on the STIRPAT model
and EKC hypothesis, the dynamic spatial Durbin model (SDM) is constructed to empirically
analyze the co-benefits and the mechanism of low-carbon tech-innovation on haze
pollution in 30 Chinese provinces from 2006 to 2018. The results show that 1) haze
pollution in different regions of China shows significant temporal and spatial correlation. 2)
China’s low-carbon tech-innovation brings the co-benefits of haze pollution suppression
and long-term positive externalities between regions. 3) Environmental policy and industrial
structure play a moderating and mediating role, respectively, the former produces the
“innovation offset” effect. 4) Both types of low-carbon tech-innovation can suppress haze
pollution, but gray tech-innovation shows better haze control ability and cross-regional
diffusion ability. Therefore, a long-term mechanism for haze control and joint prevention
and control should be established to prevent the rebound and agglomeration of haze, and
balance the development of different types of low-carbon technologies to achieve
coordinated control of carbon emissions and haze.

Keywords: low-carbon tech-innovation, haze pollution, technological heterogeneity, spatial spillover effect,
dynamic spatial Durbin model

1 INTRODUCTION

Since China’s reform and opening up, the rapid industrialization process and the rise of the
manufacturing industry have promoted the rapid development of China’s economy, which has
attracted global attention. However, becoming the world’s second-largest economy has come at the
cost of severe haze pollution and a sharp decline in air quality across the country. Haze is generally an
aerosol system composed of PM2.5, NO2, and other pollutants (Peng et al., 2013). According to the
2020 China Ecological Environment Bulletin released by the Ministry of Ecology and Environment of
China1, 135 out of 337 prefecture-level cities in China exceeded ambient air quality standards,
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accounting for 40.1%. In total, 337 cities suffered from severe
pollution for 345 days, with PM2.5, O3, PM10, NO2, and SO2 as the
primary pollutant, and PM2.5 (fine particulate matter with an
aerodynamic diameter less than or equal to 2.5 μm) being the
largest. The number of days exceeding the standard with it as the
primary pollutant accounted for 51% of the total number of days,
exceeding the standard. According toWorld Health Organization
data2, around the world, seven million people die from air
pollution every year. A large amount of haze pollution will
cause serious damage to the ecological environment, climate
change, air pollution, and human health (Cai et al., 2018;
Yang et al., 2021; Usman et al., 2022a; Wang et al., 2022). At
present, severe haze pollution has brought a series of impacts on
China’s ecological environment and economic development (Gan
et al., 2021; Yan and Cao, 2021). Moreover, these adverse effects
are not only limited to one region but also affect all regions of the
world as the atmosphere flows (Usman et al., 2022b). Therefore,
how to effectively suppress haze pollution and reduce regional
PM2.5 concentration to improve air quality has been paid close

attention by various countries around the world. The Chinese
government has also issued relevant policies aimed at severe air
quality, including the Three-year Action Plan to Win the Battle
Against Blue Sky in20183. However, the haze pollution problem in
China is still severe. As far as the PM2.5 concentration of each
province in 2018 is concerned (see Figure 1), more than half of
the provinces still failed to meet the World Health Organization’s
PM2.5 concentration standards for the first and second
transitional phases (35 μg/m3 and 25 μg/m3). Overall, China
still has a long way to go to reduce haze pollution.

Compared with haze pollution, carbon emissions, which
exacerbate climate change, seem to be more important in
China and the world. In the face of the threat of global
climate change, the EU issued the EU Adaptation to Climate
Change Strategy in 2021, mainly to achieve carbon neutrality
through technological innovation and fiscal policies, and entered
the fourth stage of the carbon emissions trading system in 2021
(Anke et al., 2020). The United States has reached the peak of
carbon emissions in 2007 and actively develops and utilizes new

FIGURE 1 | PM2.5 concentration in China in 2018.

2https://www.who.int/zh/health-topics/air-pollution#tab=tab_1. 3http://www.gov.cn/fuwu/2019-12/10/content_5459931.htm.
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carbon reduction technologies to achieve carbon neutrality
(Sergey et al., 2021). In 2015, China signed a commitment
under the Paris Agreement to reduce energy intensity by
60–65% by 2030 compared with 2005, and to peak CO2

emissions around 2030 or even earlier. In 2020, China
announced new targets for its nationally determined
contributions, including peak carbon emissions and carbon
neutrality, which were included in the 14th Five-Year Plan
(2021–2025), and a large number of relevant policies were
introduced. This shows that carbon reduction has become a
top priority for China at present and in the coming decades.

A major obstacle to carbon reduction is the difficulty of
reconciling the global, long-term benefits of climate change with
the short-term local costs. However, relevant studies have
suggested that carbon emission reduction can also reduce
other emissions of air pollution, such as SO2, NOx, and
PM2.5, which can bring short-term and local health benefits
and relieve the short-term cost pressure of emission reduction
(Gehrsitz, 2017; Zhang et al., 2017; Cai et al., 2018; Wang T.
et al., 2020a). Two air pollutant treatment methods, process
management, and source control are closely related to the
realization of emission reduction targets (Qian et al., 2021).
Most of these studies focused on the assessment of air quality
and health benefits of carbon mitigation policies such as carbon
trading, carbon prices, and carbon tax (Shindell et al., 2018;
Chang et al., 2020;WangW. et al., 2020b), focus on assessing the
benefits of individual technologies such as biofuels and carbon
sequestration (CCS) for tackling climate change (Ou et al., 2018;
Wang T. et al., 2020a), balance carbon reduction and haze
reduction and the resulting high cost, and endogenous
technological progress is often given high expectations
(Acemoglu et al., 2012; Yi et al., 2020; João et al., 2022).
From the perspective of enterprises, to cope with the
government’s increasingly strict environmental policies, it
will carry out technological innovation to relieve the cost
pressure (Ouyang et al., 2020; Zhu et al., 2021; Cui et al.,
2022; Ding and Shahzad, 2022), which is consistent with
Porter’s hypothesis. According to the endogenous growth
theory, knowledge accumulation or innovation is the result
of enterprises’ “conscious” R&D investment (Romer, 1986).
Such “consciousness” at this time is reflected in alleviating
the pressure of environmental cost, which is also consistent
with the R&D model. The formation of industrial clusters
creates favorable conditions for knowledge flow, which helps
to accelerate knowledge spillover among enterprises within
clusters (Chyi et al., 2012) and stimulate the generation of
“MAR externalities,” thus improving regional innovation
capability, and such knowledge spillover itself plays an
important role in improving energy efficiency (Sun et al.,
2021). Since the 21st century, China’s crazy technological
catch-up and even technological transcendence in some fields
indicate that the China’s innovation level has been significantly
improved (Mu and Lee. 2005; Lyu et al., 2019; Jin et al., 2022). In
terms of low-carbon technologies, the number of patent
applications increased by more than 10 times during the
12 years from 2006 to 2018 (see Figure 2), and the
technological innovation level of all provinces has been

significantly improved4 (see Figure 3). Such vigorous low-
carbon tech-innovation activities will certainly have a
positive effect on carbon reduction, which has been studied
in detail (Lin and Ma, 2022a; Lin and Ma, 2022b), but whether
the increasingly large low-carbon technological innovation is
also conducive to reducing haze reduction, to play the dual role
and co-benefits of carbon reduction and haze reduction has not
been systematically discussed.

Accordingly, in the context of a growing body of research
focusing on the co-benefits of mitigating global climate change
and curbing air pollution, this article took China as an example
and used an empirical model to analyze the effect of low-carbon
tech-innovation committed to climate change on the suppression
of haze pollution. In addition, low-carbon tech-innovation is
divided into clean and gray technology to study the heterogeneity
of haze pollution prevention effects of different technologies. On
this basis, the mechanism of suppressing haze pollution by low-
carbon technological innovation is further analyzed. To improve
the rationality and reliability of the research, we integrated the
STIRPAT model and classical EKC hypothesis to construct a
spatial econometric model, including the spatial spillover effect
and used Y02 low-carbon patent data to measure low-carbon
technological innovation activities more objectively.

This study filled the gaps in the current research on the co-
benefits and positive externalities of air quality brought about by
low-carbon technological innovation and produced three research
contributions 1) we systematically studied the co-benefits of haze
reduction brought by endogenous low-carbon tech-innovation as a
whole, and expanded the research on “externalities” of low-carbon
tech-innovation; 2) heterogeneity analysis of low-carbon technology
was conducted to distinguish the difference between clean and gray
technology in the process of haze pollution suppression; 3) in the

FIGURE 2 | Patent applications and the growth rate of clean and gray
technologies in China from 2006 to 2018.

4Guangdong, Jiangsu, and Shandong have the highest number of low-carbon
patent applications.
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study of co-benefits, the spatial nature was included, and the
mechanism analysis was carried out from two aspects of
environmental policy and industrial structure. The findings of
these efforts will help China achieve its dual goals of carbon
neutrality and air quality improvement as soon as possible
through the development of low-carbon tech-innovation. The
remaining of this article is structured as follows: section 2
provides the literature review and mechanism analysis. Section 3
introduces the methods and data. The empirical results and
discussions are presented in section 4. Finally, section 5 puts
forward the conclusions, policy implications, and future research
direction. To show the author’s research ideas, we drew the following
flow chart (Figure 4).

2 LITERATURE REVIEW AND MECHANISM
ANALYSIS
2.1 Co-benefits of Air Quality and Climate
Change
Climate change and haze pollution have the same root and origin,
creating great potential for joint control (Thambiran and Diab,

2011; Vandyck et al., 2018). Studies on the co-control or co-
benefits of carbon reduction and haze reduction focus on the
reduction of local air pollutant emissions through measures
aimed at reducing greenhouse gas emissions, or the reduction
of greenhouse gas emissions through measures aimed at reducing
air pollutants in response to global climate change (Rypdal et al.,
2007; Tollefsen et al., 2009; Yeora. 2010). For the former scenario,
simulation is often used. For example, Li et al. (2019) combined
the China-TIMES model with the GAINS-China model to
simulate the synergistic effect of different carbon mitigation
strategies on air quality improvement and found that different
low-carbon development methods could further improve China’s
air quality. In the long term, it can also reduce the cost of air
pollutant control. Wei et al. (2017) used theWRF-Chemmodel to
investigate the air quality benefits brought by carbon emission
reduction strategies in four sectors in China, and found that such
benefits were particularly evident in the industrial sector,
emphasizing the importance of carbon mitigation in the
industrial sector to achieve the dual goals of carbon reduction
and haze reduction (Wei et al., 2017). In addition to air quality,
the co-benefits generated by carbon mitigation are also reflected
in the health. These benefits come from energy system

FIGURE 3 | Number of patent applications for low-carbon technologies by provinces in China in 2018.
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transformation, fuel and tech-innovation in some industries, and
carbon mitigation policies (Thompson et al., 2014; West et al.,
2013; Driscoll et al., 2015; Garcia-Menendez et al., 2015; Brian
et al., 2020; Peng et al., 2021). As an important externality of
climate change, air pollution and human health will be improved
in the implementation of climate policies, including the
transformation and upgrading of industrial sectors, and these
improvements are expected to cover the cost of policy
implementation (Shindell et al., 2016; Li et al., 2018; Vandyck
et al., 2018). Markandya et al. (2018) found that the health
synergies greatly exceed the costs of achieving the Paris
agreement targets (2°and 1.5°C) for coordinated control of
greenhouse gases and air pollutants in all cases, and China is
expected to gain a net benefit of using 0.27–2.31 trillion in the
process of achieving this goal, becoming the biggest winner. Yang
et al. (2013) calculated the co-benefits of energy-saving
technologies in the China’s cement industry. Cai et al. (2018)
estimated that 18–62% of the implementation cost of renewable
power generation in the power generation industry can be
covered by health benefits by 2030, and health benefits will
increase significantly to 3–9 times the cost by 2050. However,
based on the previously mentioned literature, we find that most of
the studies on co-benefits focus on carbon emission trading,
carbon tax, and other environmental policies, or focus on some
industrial sectors (such as the power sector, transportation sector,
automobile industry, and cement industry) and some specific
renewable energy or negative emission technologies (such as
CCUS, PV, and biomass energy) (Ou et al., 2018; Yang et al.,
2018; Wang T. et al., 2020a), the co-benefits of low-carbon tech-
innovation on air quality is neglected.

2.2 Haze Pollution and Technological
Innovation
As a global problem, how to effectively alleviate air pollution has
received urgent attention from almost all countries. Existing
studies mostly discuss how to effectively suppress haze
pollution from two aspects. The first is national environmental
policies. Zhou et al. (2021) found that appropriate environmental
regulations can help promote the upgrading of industrial
structure and energy structure to suppress haze pollution, and
there is a nonlinear relationship between the two. Zhang M. et al.
(2019) also emphasized this point, arguing that environmental
regulation changes the direction of influence of industrial
structure on haze pollution. Liu et al. (2021) clarified that
China’s emissions trading scheme (ETS) reduced PM2.5 in
China, and analyzed the social, health, and economic benefits
brought by this process. The second is the influence of economic
structure change on suppressing haze pollution. Both positive and
negative externalities may be caused by industrial agglomeration,
which is highlighted by the “scale effect” and “crowding effect.”
The latter will undoubtedly aggravate haze pollution, and there is
still no conclusion on what effect industrial agglomeration plays
(Li et al., 2021). From the perspective of urbanization, Feng and
Wang, (2019) found the relationship between urban sprawl and
haze pollution by using the dynamic spatial Durbin model
(u-shaped curve in large cities and inverted U-shaped curve in

small- and medium-sized cities). Similarly, Wang et al. (2022)
also used the dynamic spatial Durbin model to analyze the impact
of economic agglomeration in 74 cities in the Yellow River basin
of China on haze pollution, and found an N-shaped relationship
between economic agglomeration and haze pollution,
emphasizing the improvement of economic agglomeration to
improve the mechanism of haze prevention and control.

However, technological innovation plays an important role in
both environmental regulation and economic structure change
(Jahanger et al., 2022). On the one hand, according to the
endogenous growth theory, the technology progress is
endogenous, which is determined to maintain a sustained
economic growth factor (Romer, 1986), Technological
innovation can be consciously used by enterprise to improve
their production efficiency, and promote the technological level
between clusters or regions through uncontrollable knowledge
spillover, thus promoting the upgradation of the industrial
structure and energy structure, and realizing the goal of
optimizing the national economic structure (Chyi et al., 2012;
Shi and Lai, 2013). On the other hand, according to the Porter’s
hypothesis, green technological innovation, as an effective
response to government environmental regulations, can be
used by enterprises to reduce production costs and thus obtain
the power of sustainable development (Feng et al., 2021).
Therefore, technological innovation or technological progress
can be expected to achieve co-development of the economy
and environment. Acemoglu et al. (2016) pointed out that
increasing R&D investment is conducive to improving
environmental quality and curbing haze pollution to achieve
the goal of energy conservation and emission reduction.
Meanwhile, the spatial spillover effect of technological
innovation in this process has also been emphasized (Liu,
2018). Yet for all these advantages, there is still a lot of
ambiguity. For example, Jaffe et al. (2002) found that the role
of technological innovation in suppressing haze pollution is not
clear, and the process of action will be largely influenced by the
level of supervision, and environmental policies including the
level of technological diffusion. At the same time, Popp et al.
(2009) also believed that the existing technological development
could not solve the environmental problem, and to solve this
problem, a huge price must be paid, this is in line with Jaffe’s view,
and is different from Porter and other “win–win” theorists. A
large number of technological innovations will inevitably bring
high-cost input, which may promote innovation and
development and cause greater environmental pollution.
However, low-carbon tech innovation has always been faced
with “dual externality” constraints, leading to the embarrassing
situation that innovation input is difficult to recover monopoly
benefits and environmental benefits (Horbach et al., 2012). In
addition, technological innovation is not only an independent
variable but also influenced by energy price (Popp, 2002),
environmental policy (Jaffe et al., 2002; Feng et al., 2021),
income effect (Yi et al., 2020), energy rebound effect (Horace
and Robin, 2006; Yi et al., 2020), etc. For example, Yi et al. (2020)
found that due to the energy rebound effect, energy-saving
technological progress cannot effectively reduce haze pollution,
but at the same time, they also emphasize the importance of
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classifying technological innovations to explore their role in haze
pollution, while technological innovations invested without
considering emission reduction are considered to be ineffective
in curbing haze pollution (Shao et al., 2016).

To sum up, the aforementioned literature has also faced the
following problems: 1) these studies only involve environmental
policies, changes in economic structure, or the role of specific
technologies in suppressing haze pollution, and there are few
articles on technological innovation. In particular, there are very
few studies on the effect of low-carbon technologies on haze
pollution from the overall perspective of technology. The overall
changes and effects of endogenous low-carbon tech-innovation
are ignored, and the double benefits of carbon reduction and haze
reduction have not been paid attention to by the research on the
“externalities” of low-carbon technologies. 2) There is insufficient
research on the difference about common benefits of important
categories of low-carbon technologies as a whole. Low-carbon
technologies may vary in cost, reliability, and environmental
impact (Shi et al., 2017). Therefore, it is very important to
categorize low-carbon technologies as a whole. At present, the
classification of clean and gray technology5 has been emphasized
(West, 2004; Acemoglu et al., 2016; Aghion et al., 2016).
Therefore, it is necessary to use this classification method to
explore the heterogeneity of the impacts of low-carbon
technologies on co-benefits. 3) The spatial effect has not been
emphasized in the study of co-benefits. Although haze has the
characteristics of local and short-term, as an air pollutant, it must
have certain spatial spillover, especially in China, a geographically
connected country, so it is more necessary to emphasize spatial
spillover in the study of the mechanism of low-carbon
technological innovation affecting haze.

2.3 Mechanism Analysis
Considering the complexity of low-carbon tech-innovation, the
implementation of environmental policy and the change of
economic structure are likely to influence its effect on
inhibition of smog pollution of size. Therefore, it is extremely
important to combine the two and explore the mechanism of low-
carbon tech-innovation to suppress haze pollution.
Unfortunately, there is no systematic research discussion at
present. We include environmental regulation and industrial
structure, two variables that scholars generally attach
importance to, in the study to analyze the mechanism of low-
carbon tech-innovation to suppress haze pollution. There are
three main types of environmental regulation
(“command–control environmental regulation,” “voluntary
environmental regulation,” and “market–incentive
environmental regulation”). On the one hand, the Porter’s
hypothesis holds that environmental regulation can promote
enterprise technological innovation to improve environmental
quality and bring the innovation compensation effect, which has
also been widely confirmed in China (Zhu et al., 2021), but on the

other hand, in the eyes of the new classical economists, powerful
environmental regulation may bring the highest processing costs
to offset the benefits of technology innovation (Barbera and
McConnell, 1990). In addition, heterogeneous environmental
regulations themselves have internal uncertainties. Therefore,
it is extremely important to explore the combination of
environmental policies and low-carbon tech-innovation to
suppress haze pollution. It remains to be considered whether
environmental regulations magnify or inhibit the effect of low-
carbon tech-innovation. Therefore, we focus on the role of
“command–control environmental regulation” in this process
because this kind of environmental regulation has the most
obvious “compensation effect” or “offset effect” on
technological innovation (Tang et al., 2020). Meanwhile, low-
carbon tech-innovation will inevitably affect a country’s
industrial structure, and the upgrading of industrial structure
will help to the environmental quality of ascension (Shi and Lai,
2013). Therefore, it is necessary to discuss in detail whether
China’s current low-carbon tech-innovation can promote the
upgradation of industrial structures to cope with haze pollution.

Therefore, this article takes haze pollution as the explained
variable, and the total number of low-carbon tech-innovation and
its subcategories as the core explanatory variables, the STIRPAT
model and the classical EKC hypothesis were combined to
construct a dynamic spatial econometric model, which mainly
analyzes three aspects spatial spillover effect of haze pollution; the
effect and mechanism of low-carbon tech-innovation on haze
pollution; and heterogeneity of impacts of clean and gray
technologies. The innovation and improvement of the research
include the following: first, it analyzed the role and mechanism of
overall low-carbon tech-innovation and major categories of low-
carbon technological innovation on haze pollution, expanded the
research in the field of air quality benefits of current measures to
cope with climate change, and expands the scope of
“externalities” of low-carbon tech-innovation; second, the
spatial spillover of haze is included to reveal the impact of
low-carbon tech-innovation on haze pollution more accurately
and completely; and third, empirical methods based on historical
data are used to study the co-benefits of carbon mitigation
measures, which is different from the previous simulation
methods based on scenario settings.

3 MODELS AND DATA

3.1 Construction of the Spatial Econometric
Model
3.1.1 Selection of the Spatial Weight Matrix
To improve the robustness of the spatial econometric model,
scientific and reasonable spatial weight matrix design is
indispensable. This article mainly constructs the following two
common spatial weight matrices:

(1) The geographical distance spatial weight matrix (w1):
although the traditional adjacency matrix considers the
spatial relationship between geographically adjacent
regions; it ignores the interaction between two regions that

5Clean technology refers to low-carbon technologies related to zero-carbon
production or consumption, while gray technology is not absolutely carbon-
free, but has the potential to save energy or mitigate climate change.
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are not adjacent but close to each other6. Therefore, the
spatial weight matrix of geographical distance is set as
follows:

w1 � wij �
⎧⎪⎪⎨⎪⎪⎩

1
dij

, i ≠ j

0, i � j

,

where wij is the matrix element of row i and column j, and dij is
the straight-line distance between province i and province j. 1

dij
is

the reciprocal of the linear distance between the two regions, and
the greater the distance between the two provinces, the smaller
wij is. We use ArcGIS to calculate the weights according to the
center coordinates of each province and carry out standardized
processing.

(2) The economic distance spatial weight matrix (w2): there are
certain limitations in setting the matrix only considering the
interaction between geographically adjacent regions or
considering the influence between two regions only from
the geographical distance7. Therefore, we establish the spatial
weight matrix based on the characteristics of economic and
geographical distance to describe the asymmetry of the
spatial effect more accurately. The matrix form of
economic distance space is set as follows:

w2 � w1diag(Y1/Y, Y2/Y,..., Yn/Y,),
where w1 is the spatial weight matrix of geographical distance,
�Yi � 1

t1−t0+1∑t1
t�t0Yit is the average per capita GDP of province i

during the investigation period, �Y � 1
n(t1−t0+1)∑n

i�1∑t1
t�t0Yit is the

average per capita GDP of all provinces during the inspection
period, and w2 is obtained after standardization. Through the
formula, it can be found that the greater the proportion of the
mean per capita GDP of a region to the mean per capita GDP of
all regions, the greater the impact it will have on the surrounding
regions.

3.1.2 The Spatial Correlation Model
For the analysis of flow factors, the spatial spillover effect is
indispensable. Endogenous low-carbon tech-innovation will
inevitably form a spillover effect, and according to new
economic geography and new trade theory, regional proximity
is highly correlated with the technology spillover level (Krugman,
1991), and more similar the regional innovation level and the
economic development level is, the stronger the knowledge or
technology spillover will be. This similarity can help reduce
transaction costs or give play to “MAR externalities” (Sun
et al., 2021). At the same time, haze also has trans-regional
mobility, and its spatial spillover effect needs to be further

discussed. Therefore, only analyzing the impact of innovation
activities and environmental pollution in the same region will
lead to the problem of model setting bias, and a more reasonable
spatial econometric model is needed. Before building the model,
global Moran’s I and local Moran’s I were first selected to test the
spatial correlation between haze pollution (PM) and low-carbon
tech-innovation (TI). Global Moran’s I used for the global space
autocorrelation test is a common indicator, and the formula is as
follows:

Global•I � ∑n
i�1∑n

j�1wij(xi − �x)(xj − �x)
s2∑n

i�1∑n
j�1wij

,

where s2 � ∑n

i�1(xi−�x)2
n represents the sample variance, wij is the

weight value between region i and region j in the spatial weight
matrix, and ∑n

i�1∑n
j�1wij is the sum of the spatial weight value

between all regions. According to the formula, the value of I is
between −1 and 18.

The local Moran’s I scatter plot is adopted for the local spatial
correlation test, and its calculation formula is as follows9:

Local•Ii � (xi − �x)
s2

∑n

j�1wij(xj − �x).

3.1.3 Model Specification
Considering that the basic research framework of influencing
factors of environmental pollution is mainly carried out around
the STIRPAT model and the EKC hypothesis10, this article
discusses the role of low-carbon tech-innovation in reducing
haze pollution by combining the two. The STIRPAT model
based on panel data is in the form of Iit � aPb

itA
c
itT

d
ite, where I

represents environmental impact, P represents population size, A
represents per capita wealth, T represents the technological level,
and e represents error term. The natural logarithm of both sides
of the model can be written as follows:

LnIit � α + bLnPit + cLnAit + dLnTit + eit. (1)
Considering that a major advantage of the STIRPAT model is

that it can not only estimate the parameters of the model but also
appropriately improve the influencing factors of the

6For example, in addition to the influence of Beijing on Tianjin and Hebei, which
are geographically close to each other, we cannot ignore the influence of Beijing on
other regions, which are geographically close to each other.
7In real economic life, in addition to being affected by geographical proximity, a
higher level of economic development in a region will also bring a certain radiation
pull effect on the relatively low level of economic development in the region.

8When Moran’s I > 0, it indicates that the overall existence space is positively
autocorrelated. When Moran’s I < 0, it means that there is negative spatial
autocorrelation. If Moran’s I is close to 0, it indicates that there is no spatial
correlation between regions.
9When Moran’s I > 0, it indicates that there is positive spatial autocorrelation on
the whole, that is, areas with high haze pollution gather together (High–High), and
areas with low haze pollution gather together (Low–Low). When Moran’s I < 0, it
indicates that there is negative spatial autocorrelation, that is, low-value regions
usually gather around high-value regions (Low–High), or high-value regions
usually gather around low-value regions (High–Low). If Moran’s I is close to 0,
it indicates that there is no obvious aggregation between regions.
10According to EKC hypothesis, there is an inverted U-shaped relationship
between economic development and environmental pollution. In the early
stages of development, economic growth without regard to environmental
protection will exacerbate environmental pollution. When a certain level is
reached, the economic structure will be adjusted and environmental quality will
become the focus again (Usman and Jahanger, 2021).
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environment. This article will follow the classical EKC hypothesis
to make appropriate improvements to the model11, and get Eq. 2:

LnIi,t � α + bLnPi,t + cLnTi,t + d1LnAi,t + d2(LnAi,t)2 + ei,t. (2)
In the process of building the spatial panel model, Elhorst,

(2012) found that the spatial interrelationship between variables
was not only reflected among regions in the current period but
also influenced by the behaviors of regions in the previous period.
In addition, the influence relationship of spatial dependence
between regional variables is not only reflected in the region
of the current period but also is affected by the key influence of
the previous period due to the temporal inertia characteristics of
the variables. Therefore, the modeling of the regional haze
formation mechanism needs to further consider the dynamic
spatial dependence in time. In addition, the spatial Durbin model
(SDM) is a general form of spatial error (SEM) and the spatial lag
model (SAR) and can be well used to study the dynamic spatial
dependence relationship between regions. Therefore, this article
will choose the dynamic spatial Durbin model (SDM) to study the
effect of technological innovation in addressing climate change
on haze reduction. Based on Eqs. 1, 2, the model is further
improved in Eq. 3:

LnPMi,t � α + φLnPMi,t−1 + λ(WLnPMi,t) + θ(WLnPMi,t−1)
+ρ1LnTIi,t + ρ2(WLnTIi,t) + δ1Xi,t + δ2WXi,t + μi + ]t + εi,t,

(3)
where i represents province, t represents time, PM represents
haze pollution, TI represents low-carbon technological
innovation, X represents control variables12, ρ1 represents
the estimated coefficient of the core explanatory variable, δ
represents the estimated coefficient of the control variable, and
μi and ]t, respectively, represent individual effects and time
effects. εit is the residual term, ϕ, λ, and θ, respectively,
represent the previous estimate coefficient of the haze
pollution, spatial lag estimating coefficient, and time–space
lag estimation coefficient on the issue of haze pollution levels
influence on the current pollution level, regional haze pollution
levels influence on adjacent regional haze pollution, and the
influence of haze emission in the previous period on haze
pollution in neighboring areas and ρ2 is the spatial lag
estimation coefficient of low-carbon tech-innovation13.

In order to further test the mechanism of low-carbon tech-
innovation on haze pollution, two variables, environmental

policy and industrial structure, are introduced to construct the
moderating effect model and the mediating effect model,
respectively. The first is the moderating effect model Eq. 4:

LnPMi,t � α + φLnPMi,t−1 + λ(WLnPMi,t) + θ(WLnPMi,t−1) + ρ1LnTIi,t+γ1LnTIi,t × LnEPi,t + ρ2(WLnTIi,t) + γ2WLnTIi,t × LnEPi,t

+δ1Xi,t + δ2WXi,t + μi + ]t + εi,t.

(4)
We multiply the core explanatory variable TI and the

moderating variable EP, and analyze their spatial effects
simultaneously and the mediating effect model is Eqs 5–7:

LnPMi,t � ζ + ζ1LnTIi,t + ζ2Xi,t + μi + ]t + εi,t, (5)
ISi,t � ψ + ψ1LnTIi,t + ψ2Xi,t + μi + ]t + εi,t, (6)

LnPMi,t � τ + τ1LnTIi,t + τ2ISi,t + τ3Xi,t + μi + ]t + εi,t. (7)
The Causal steps approach proposed by Baron andKenny (1986)

is generally adopted for the setting of the mediation effect model.
Equation 5 is first regression and if ζ1 is significant, it indicates that
low-carbon tech-innovation significantly affects haze pollution;Eq. 6
is then regression if ψ1 is significant. Then, it indicates that low-
carbon tech-innovation can affect the industrial structure. Finally,
regression is performed on Eq. 7. If τ1 and τ2 are significant at the
same time, it indicates that the industrial structure plays a partial
mediating role; if τ1 is not significant, but τ2 is significant, it indicates
that the industrial structure plays a complete mediating role.

3.2 Data and Variables
3.2.1. Explained Variable
Haze pollution (PM): haze pollution is mainly caused by particulate
matter (PM), which is often measured by its finer particles, PM2.5.
The data used in this study were raster data from the Atmospheric
Composition Analysis Group of Washington University14 based on
the annual mean global PM2.5 concentration monitored by satellites.
ArcGIS software was used to analyze the annual average PM2.5

concentration of Chinese provinces from 2006 to 201815.

3.2.2 Core Explanatory Variable
Low-carbon tech-innovation (TI) A is measured by Y02 category
patents in the Cooperative Patent Classification System (CPC)
jointly promulgated by the European Patent Office (EPO) and the
United States Patent Office (USPTO) in 2013, using the number
of patent applications filed by Chinese in China. CPC combines
the strengths of the USPC, ECLA, and IPC to provide
information on technology, functionality, and product
applications. To subdivide low-carbon technologies into clean

11On the basis of the general model, we add the quadratic term representing the
economic level. (A) If the quadratic term coefficient is negative and the primary
term coefficient is positive after regression, it indicates that the EKC hypothesis is
established.
12Including per capita GDP, openness, population density, and energy structure.
13It reflects the impact of low-carbon tech-innovation in this region on haze
emission in the neighboring region. If the estimation result of this coefficient is
significantly positive, it indicates that the technological innovation in this region
has significantly aggravated the haze pollution level in the neighboring region. If
the estimation result is significantly negative, it indicates that the regional
technological innovation has significantly suppressed the haze pollution level in
the neighboring areas. If not significant, it indicates that the relationship between
the two variables is not obvious.

14https://sites.wustl.edu/acag/datasets/surface-pm2-5/
15The reason is that although the actual monitoring data collected by ground
observation stations with their own advantages can more truly reflect the haze
pollution situation of the stations, the distribution of the PM2.5 concentration is
not limited to a single station, and there are significant spatial differences in the
same area. Therefore, if the data of ground monitoring stations are used for
analysis, It will only provide a roughmeasurement of the haze pollution situation in
the region, which will bring a large error to the actual estimation results. By
contrast, satellite-based data on haze pollution concentrations (PM2.5) can be used
to give a more accurate picture of a region’s PM2.5 concentration.
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technologies and gray technologies, each subclass is identified
based on the concepts of clean and gray low-carbon technologies
in the existing literature, based on the class Y02 of the cooperative
patent classification (Wang W. et al., 2020b). In this study, the
whole Y02 category represents low-carbon technologies. The
patents with the CPC code in Supplementary Appendix S1
belong to clean technologies, while the rest Y02 patents belong
to gray technologies.

3.2.3 Control Variable
Control variable (X): based on the existing studies, four variables,
population density, economic growth, openness, and energy
structure, were selected as control variables 1) population
density (POP): in this article, the ratio of population to the
area of administrative division is used as a proxy index of the
population size. Based on relevant studies (Fan and Xu, 2020), it is
found that the agglomeration effect of the population usually
leads to environmental deterioration and further aggravates haze
pollution, so the coefficient of this variable is expected to be
positive. 2) The level of economic development (PGDP): in this
paper, per capita GDP is used to measure the regional economic
development level. Referring to existing studies, there are two
main views on the relationship between economic development
and environmental quality16. We include the primary and
secondary terms of economic growth into the model
respectively to test the aforementioned two views. 3) Openness
(FDI): in this article, the actual utilization of foreign direct
investment in each administrative division is used to measure
openness and convert into RMB according to the current USD to
the RMB exchange rate. Openness to the outside world plays an
important role in China’s environmental research and is an
important factor that cannot be ignored. However, relevant
research conclusions are not uniform, mainly manifested in
two hypotheses the “Pollution Heaven” hypothesis and the
“Pollution Halo” hypothesis17. 4) Energy structure (ES): in this
article, the proportion of coal consumption in total energy
consumption is used to measure the energy structure. China is
a big coal consumer, and the massive coal-burning caused by

industrialization has become an important source of haze
emission in China. Therefore, the expected coefficient is positive.

3.2.4 Moderating and Mediating Variables
Environmental Policy (EP): we choose “command–control
environmental regulation” to represent environmental
policy. Since the environmental policy is generally
considered to have a “compensation effect” or “offset effect”
on technological innovation, therefore, incorporating it into
the model to analyze the moderating effect is helpful to reveal
what effect China’s environmental policy plays in the process
of low-carbon tech innovation affecting haze
pollution—compensation or offset? According to existing
studies, the composite index of the emission of various
pollutants is used to measure the intensity of environmental
regulations. the higher the intensity of pollution discharge, the
stricter the command-and-control regulation. Detailed
calculation procedures are given in Supplementary
Appendix S2.

Industrial structure (IS): we measure the industrial structure
by the ratio of the output of the secondary industry in each
province to the GDP of the year. The secondary industry is a
typical high pollution industry, which has the greatest impact on
environmental pollution among the three industries. Therefore,
the smaller the proportion of the output value of the secondary
industry in GDP is, the more reasonable and advanced the local
industrial structure is; otherwise, the local industrial structure is
not reasonable, and the local haze pollution should be more
serious.

3.3 Data Source
In this article, the data of 30 provinces from 2006 to 2018 are
selected for research, excluding Tibet, Hong Kong, Macao, and
Taiwan, where the data is seriously missing. The original data of
all variables are from China Statistical Yearbook and China
Energy Statistical Yearbook, and the patent data measuring low-
carbon technological innovation are from the incoPat
database18. In this article, the natural logarithm of some
variables is taken to eliminate the impact of
heteroscedasticity. The descriptive statistics of variables are
shown in Table 1.

4 EMPIRICAL ANALYSIS AND DISCUSSION

4.1 Spatial Correlation Test
In this study, Stata 16.0 software was used to test the regional
spatial correlation between haze pollution and low-carbon
technological innovation in China from 2006 to 2018. The
calculation results of Moran’s I are shown in Tables 2, 3.

We found that haze pollution in all provinces in China has a
significant positive spatial correlation, that is, high pollution
provinces are adjacent to high pollution provinces, and low-
pollution provinces are adjacent to low-pollution provinces. In

16Some scholars believe that the economic scale effect is still the dominant factor
leading to environmental pollution problems in China at the present stage, so there
is a linear relationship between the two (Kearsley and Riddel, 2010). On the other
hand, the regional economic development level shows the Kuznets effect in the
process of affecting environmental pollution, that is, with the improvement of the
economic development level, environmental quality will first deteriorate and then
gradually improve in an inverted “U-shaped” nonlinear relationship (Gan et al.,
2020).
17The former generally believes that for economic development, regions will attract
foreign investment through “competition to the bottom” and export resource-
consuming products, which also aggravate environmental pollution (Kamal et al.,
2021). The latter believes that FDI can bring significant environmental
improvement, which is highlighted in three aspects: the improvement of
economic level leads to the enhancement of local environmental awareness
(Opoku et al., 2021); the stricter environmental standards of foreign-funded
enterprises reduce local environmental pollution (Luo et al., 2021); and the
emerging technologies brought by foreign-funded enterprises also help improve
local environmental quality (Wang and Luo, 2020). 18https://www.incopat.com/
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addition, according to Figure 5A,B, the scatter plot of haze
concentration distribution shows that haze pollution in most
provinces is located in the first and third quadrants (positive
spatial correlation area), indicating that haze pollution in China
presents a significant positive spatial spillover effect and
“high–high” and “low–low” agglomeration characteristics.

Meanwhile, according to Table 3, there is also a significant
positive spatial correlation between low-carbon tech-
innovation in China’s provinces, according to the scatter
diagram of Figure 5C,D, the trend line of distribution of

low-carbon tech-innovation is also located in the first and
third quadrants, and the “high–high” agglomeration areas
except Beijing and Shanghai are mostly concentrated in the
eastern coastal areas19. It shows that China’s low-carbon
tech-innovation has a strong spatial agglomeration.

4.2 Selection Test of a Spatial Econometric
Model
According to the previous test, it can be confirmed that haze
pollution and low-carbon tech-innovation have spatial
agglomeration characteristics. Therefore, the dynamic
spatial Durbin model (SDM) is constructed, and the
maximum likelihood estimation method is adopted to
calculate their coefficients. First, to reasonably select fixed
effects and random effects, the Hausman test was used to
calculate the model. The results of both spatial weight
matrices showed that the null hypothesis was rejected at
the significance level of 1%, indicating that the fixed
effects model should be selected. Second, to further prove
the rationality of choosing the spatial Durbin model, the LM
test and LR test were carried out under fixed effects20, which
further proves that it is reasonable to construct the spatial
econometric model. To ensure the robustness of the model,
the LR test is carried out, and the results show that LR values
of SAR and SEM models are 62.15 and 56.61, respectively.
Both of them passed the significance level test of 1%.
Therefore, the SDM model cannot be degraded to SAR and
SEM models.

Meanwhile, before testing, according to Eq. 3, we compared
the adjusted R2 value and the log-likelihood function value of
three types of a fixed effect in the spatial Durbin model
(including temporal fixed effect, individual fixed effect, and
spatial–temporal fixed effect), and the economic meaning of
the estimated coefficient of the explanatory variable, it is found
that the spatial–temporal fixed effect of the dynamic spatial
Durbin model is the best. Therefore, the spatial Durbin model

TABLE 1 | Descriptive statistics of variables.

Variable Symbol Variable meaning N Mean Std. Dev Min Max

Explained variable lnPM Haze pollution 390 3.803 0.399 2.754 4.513
Core explanatory variable lnTI Low-carbon tech-innovation 390 6.999 1.440 2.398 10.24

lnCT Clean technology 390 5.754 1.400 1.386 9.050
lnGT Gray technology 390 6.642 1.477 1.792 9.994

Control variables lnPGDP Per capita gross domestic product 390 10.44 0.630 8.463 12.25
lnPOP The population density 390 7.842 0.449 6.393 8.749
lnFDI Actual utilization of foreign direct investment 390 12.59 1.651 6.100 15.09
ES Ratio of coal consumption to total energy consumption 390 0.431 0.154 0.016 0.748

Moderating variable lnEP Pollutant emission intensity 390 11.84 0.981 8.178 14.16
Mediating variable IS Ratio of output value of the secondary industry to GDP 390 0.458 0.0833 0.165 0.590

TABLE 2 | Moran’s I for haze pollution.

Time I E(I) SD(I) Z p-value*

2006 0.344 −0.034 0.144 2.630 0.004***
2007 0.366 −0.034 0.145 2.762 0.003***
2008 0.393 −0.034 0.145 2.956 0.002***
2009 0.368 −0.034 0.145 2.776 0.003***
2010 0.315 −0.034 0.145 2.408 0.008***
2011 0.325 −0.034 0.145 2.479 0.007***
2012 0.328 −0.034 0.145 2.488 0.006***
2013 0.477 −0.034 0.144 3.557 0.000***
2014 0.522 −0.034 0.144 3.856 0.000***
2015 0.514 −0.034 0.145 3.791 0.000***
2016 0.451 −0.034 0.144 3.373 0.000***
2017 0.456 −0.034 0.145 3.397 0.000***
2018 0.418 −0.034 0.145 3.124 0.001***

TABLE 3 | Moran’s I for low-carbon tech-innovation.

Time I E(I) SD(I) Z p-value*

2006 0.344 −0.034 0.102 3.724 0.000***
2007 0.344 −0.034 0.102 3.720 0.000***
2008 0.355 −0.034 0.102 3.835 0.000***
2009 0.338 −0.034 0.102 3.658 0.000***
2010 0.318 −0.034 0.101 3.495 0.000***
2011 0.324 −0.034 0.100 3.571 0.000***
2012 0.329 −0.034 0.100 3.652 0.000***
2013 0.308 −0.034 0.100 3.409 0.000***
2014 0.262 −0.034 0.101 2.947 0.002***
2015 0.276 −0.034 0.102 3.048 0.001***
2016 0.259 −0.034 0.101 2.905 0.002***
2017 0.237 −0.034 0.100 2.721 0.003***
2018 0.234 −0.034 0.098 2.741 0.003***

Note：E (I) is the expected value of I, Sd (I) is the variance, and p-value represents the
significance level, *p < 0.1; **p < 0.05; and ***p < 0.01.

19Shandong, Jiangsu, Shanghai, Zhejiang and Fujian.
20The test results showed that the values of LM-lag, Robust LM-lag, LM-error, and
Robust LM-error were 180.482, 18.791, 204.195, and 23.938, respectively, p values
reject the null hypothesis at the significance level of 1%.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 89319410

Jin et al. Low-Carbon Tech-Innovation and Haze Pollution

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


under the spatial–temporal fixed effect was selected for the
next test.

4.3 Empirical Results of Dynamic SDM
In Table 4, we listed the ordinary least squares (OLS), fixed
effects model (FE), the static spatial Durbin model, and the
dynamic spatial Durbin model under two kinds of weighting
matrices. We focus on analyzing the regression results of
Models 4) and 5) because we choose a dynamic spatial
Durbin model.

4.3.1 Temporal and Spatial Effects of Haze Pollution
We find that the results of model regression under the two spatial
weight matrices of the geographical distance matrix and the
economic distance matrix are relatively consistent, including
the positive and negative coefficients and the significance level.
From the perspective of the time dimension, the first-stage lag
term coefficient of haze pollution φ is positive, which is 0.772 and
0.661, respectively, under the two spatial weight matrices, and
both are significant at the significance level of 1%, which is
consistent with the results found by Li et al. (2021) and Wang
et al. (2022). It shows that haze pollution shows a certain “path
dependence” and “snowball effect,” that is, as the haze pollution
situation in the previous period gradually deteriorates, the haze

pollution level in the current period will continue to rise,
indicating that the task of haze pollution control in China is
still urgent and difficult21. From the perspective of spatial
dimension, the spatial lag term of haze pollution is
significantly positive at the significance level of 5%, which
indicates that haze pollution has the characteristics of spatial
agglomeration. Under the influence of atmospheric flow and
trade of products and factors, regional haze pollution has a
mutual influence. In other words, haze pollution shows an
interregional correlation, which may be caused by the spatial
spillover of haze pollution or a “race to the bottom” between
regions. From the perspective of spatial–temporal lag, the
spatial–temporal lag coefficient of haze pollution is negative
and both pass the significance level of 5%, indicating that the
increase in the haze pollution level in the previous period in this
region will lead to the improvement of environmental quality in
surrounding areas. This may be due to the “warming effect”

FIGURE 4 | Author’s research ideas.

21On the one hand, the problem of environmental quality deterioration caused by
haze pollution should be paid attention to immediately, and the layout and
implementation of relevant control work should not be delayed. On the other
hand, the treatment work should be carried out for a long time to avoid the
“rebound” phenomenon of pollution after treatment.
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formed by media pressure and brain drain on neighboring
regions or other regions with similar levels of economic
development, which will take corresponding measures to
protect the environment to avoid similar situations.

4.3.2 Low-Carbon Tech-Innovation and Haze Pollution
According to Table 4, under the two spatial weight matrices, the
coefficient of low-carbon tech-innovation is significantly negative
at the significance level of 1%, indicating that low-carbon tech-
innovation has significantly inhibited haze pollution. While the
path of technological haze control is effectively supported, it also
shows that while addressing climate change, low-carbon tech-
innovation has also brought significant air quality benefits,

indicating that it has become a key path to tackle haze
pollution, and pointing out the policy direction for addressing
air pollution. Meanwhile, the spatial lag of low-carbon tech-
innovation passed the significance level test of 1% and was
negative, that is, when the low-carbon innovation activity in
the surrounding area increased by 1%, the haze pollution level in
the region would decrease by about 0.069%. On the one hand, this
shows that the environmental pollution caused by haze pollution
has gradually been paid attention to, and it has become the
consensus of all regions to invest in the treatment of
environmental quality problems through low-carbon
technological innovation activities, on the other hand, the
neighboring region alleviates haze pollution through input in
innovation activities and has a “demonstration effect” in the
region under the effect of positive externalities.

4.3.3 Control Variables
(1) Population density (POP): according toTable 4, we find that the

coefficient of population density is positive, and through the

FIGURE 5 | Haze pollution and low-carbon tech-innovation local Moran’s I scatter diagram. (A) Haze pollution (2006). (B) Haze pollution (2018). (C) Carbon
mitigation technological innovation. (D) Carbon mitigation technological innovation.22

22Note: 1-Beijing, 2-Tianjin, 3-Hebei, 4-Shanxi, 5-Neimenggu, 6-Liaoning, 7-Jilin,
8-Heilongjiang, 9-Shanghai, 10-Jiangsu, 11-Zhejiang, 12-Anhui, 13-Fujian, 14-
Jiangxi, 15-Shandong, 16-Henan, 17- Hubei, 18-Hunan, 19-Guangdong, 20-
Guangxi, 21-Hainan, 22-Chongqing, 23-Sichuan, 24-Guizhou, 25-Yunnan, 26-
Shaanxi, 27-Gansu, 28-Qinghai, 29-Ningxia, and 30-Xinjiang
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significance level of 1%, it indicates that under the fixed
administrative area of each region, more the population,
more the serious haze pollution. This is consistent with the
study of Fan and Xu. (2020), indicating that population density
mainly stimulates the generation of haze pollution through the
agglomeration effect23. (2) Economic growth (PGDP): the result
of the test shows that the per capita GDP of the primary and
secondary items are negative, and with a significant coefficient
under the 1% significance level, the inverted U-shaped
relationship between regional economic growth and haze
pollution has been verified, indicating that the regional haze
pollution level increases first and then decreases with the
continuous improvement of regional economic development
level, which is consistent with the findings of Gan et al. (2020).
(3) Openness (FDI): the results of Table 4 show that the
coefficient of openness is positive at the significance level of
5%, indicating that the amount of foreign capital directly utilized
in a region will aggravate haze pollution. “Pollution Heaven,”
which aims at the relationship between foreign direct
investment and environmental quality, is established. This
proves the findings of Kamal et al. (2021), but its spatial
effect is not obvious. (4) Energy structure (ES): coal
consumption is still the source of haze pollution, and there is
still a long way to go in China’s energy structure transformation.

Whether the energy structure improvement in one region has
not affected the improvement of haze pollution in the
surrounding areas, also shows that the energy structure of
China’s provinces is still very unreasonable and has not
reached the height of joint governance.

4.3.4 Decomposition Effects of Low-Carbon Tech-
Innovation on Haze Pollution
When there is a spatial spillover effect, the change of an
explanatory variable will not only affect the explained variable
in the local area but also the explained variable in the surrounding
area, and in turn affects the local area through the feedback effect
(Lichtenberg and Potterie, 1998; Elhorst, 2014). Therefore, the
estimated coefficient mentioned earlier is not rigorous enough to
directly reflect the marginal effect of independent variables on
dependent variables and is only effective in the direction of action
and the significance level. Therefore, this article further
decomposed the influence of various influencing factors on haze
pollution into direct and indirect effects24. As the dynamic spatial
Durbin model is adopted in this article, in terms of the time
dimension, the direct and indirect effects can be divided into short-
term effect and long-term effect, respectively, reflecting the short-
term immediate impact of various factors on haze emission and the
long-term impact considering time lag. Under the two spatial
weight matrices, the effect decomposition results of each factor
are shown in Tables 5, 6.

TABLE 4 | Empirical results of low-carbon technology innovation and haze pollution.

Variable OLS FE Static SDM Dynamic SDM
(W1)

Dynamic SDM
(W2)

(1) (2) (3) (4) (5)

lnPMt-1 — — — 0.772*** (7.42) 0.661*** (5.81)
lnTI −0.070*** (−3.21) −0.089*** (−4.10) −0.057* (−1.73) −0.052*** (−5.59) −0.054*** (−6.31)
lnPGDP 2.165*** (3.34) 0.851*** (2.83) 1.036*** (3.92) 0.893** (2.17) 0.874** (2.21)
(lnPGDP)2 −0.104*** (−3.39) −0.045*** (−2.91) −0.051*** (−3.8) −0.041* (−1.69) −0.077** (−2.28)
lnPOP 0.062*** (3.14) 0.082*** (2.73) 0.065*** (2.76) 0.04** (2.36) 0.086*** (5.38)
lnFDI 0.034 (1.05) 0.015 (1.48) 0.039* (1.09) 0.022** (2.15) 0.028** (2.31)
ES 0.959*** (7.17) 0.335** (2.55) 0.199** (2.01) 0.164** (2.02) 0.308*** (6.09)
w×lnPMt-1 — — — −0.627** (−2.28) −0.619** (−2.19)
w×lnPM — — 0.591**(2.37) 0.602** (2.48) 0.631** (2.69)
w×lnTI — — −0.021* (−1.72) −0.069*** (−3.22) −0.066*** (−3.03)
w×lnPGDP — — 0.721** (2.09) 0.417** (2.74) 0.579** (2.83)
w×(lnPGDP)2 — — −0.009 (−0.69) −0.014* (−1.71) −0.032* (−1.76)
w×lnPOP — — 0.342*** (4.99) 0.178*** (3.57) 0.221*** (3.90)
w×lnFDI — — 0.030* (1.89) 0.012 (0.85) 0.032 (1.52)
w×ES — — 0.113 (0.64) 0.167 (0.71) 0.178 (0.89)
ρ — — 0.746 0.975 0.869
Log-likelihood — — 221.271 250.094 269.723
F-test 17.28 34.33 38.43 37.29 41.81
R2 0.721 0.643 0.475 0.498 0.519

Note: z-statistics in parentheses, ***p < 0.01, **p < 0.05, and *p < 0.1.

23Agglomeration effect refers to the haze pollution caused by the demand for
housing, household appliances, and motor vehicles by people in areas with high
population density, and the concentration of pollutants generated by motor vehicle
fuel combustion due to the high residential density is not conducive to air
circulation, thus causing haze pollution. The scale effect refers to the fact that
population clustering alleviates haze pollution by improving the utilization rate of
public transportation and sharing pollution control and emission reduction
facilities.

24Direct effect refers to the influence of a factor change on haze pollution in the
region, which includes the feedback effect, but its value is small and can generally
be ignored. Indirect effect refers to the influence of the change of a local factor on
haze pollution in other regions, namely, the spatial spillover effect of an influencing
factor.
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According to Tables 5, 6, it is found that there is no significant
difference in model regression results under the two spatial weight
matrices, and the absolute value of the influence coefficient of most
long-term effects is greater than that of short-term effects, whether
direct or indirect, which indicates that each factor has a more
profound long-term impact on haze pollution. The low-carbon
tech-innovation coefficient is negative both in the short term and
the long term, indicating that low-carbon tech-innovation has
successfully restrained haze pollution, that is, the haze reduction
effect of low-carbon technology can continue to play a role, which is
conducive to China’s use of it to achieve the dual goal of reducing
carbon and haze. The direct effect of low-carbon tech-innovation
shows that it can significantly inhibit haze pollution in the region
both in the short term and the long term. The reason may be that
high-intensity low-carbon tech-innovation can bring local industrial
structure optimization and reduce the use of high carbon and high
pollution fuels to achieve the dual goals of reducing carbon and haze.
However, the indirect effect is different. In the short term, the
coefficient of low-carbon tech-innovation is negative but not
significant. In the long term, the coefficient of low-carbon tech-
innovation is negative and significant, indicating that in the short
term, the regional low-carbon tech-innovation activities are not

enough to have an impact on haze pollution in the surrounding
area, and it takes a certain time for this effect to occur. The reason
may be that a certain amount of technical innovation in the short
term can be adopted by enterprises, thus helping to suppress the fog
haze pollution in the region, but this technological innovation is not
easily spread in the short term, that is, the knowledge is
monopolized, therefore the innovation of air quality benefit is
confined to the area, there is no pull function form of radiation.
But in the long run, the diffusion of technology or spillover of
knowledge leads to technological innovation by enterprises in
surrounding areas, which helps improve local air quality.

4.4 Heterogeneity Analysis
Considering the importance of diversity and classification of
low-carbon technologies internal (Acemoglu et al., 2016;
Aghion et al., 2016), we divide low-carbon tech-innovation
into two categories — clean tech-innovation and gray tech-
innovation, and test the effectiveness of the two low-carbon
technologies in haze pollution control. See Table 7 for the
results. According to the test results, the estimate coefficients
of clean and gray tech-innovation are negative, and through a
1% significance level inspection, it shows that both clean and

TABLE 5 | Decomposition effects of low-carbon tech-innovation on haze pollution (W1).

Variable Short term Long term

Total effect Direct effect Indirect effect Total effect Direct effect Indirect effect

lnTI −0.054*** −0.042** −0.012 0.105*** −0.067*** −0.038*
(−5.74) (−2.03) (−0.30) (3.79) (−3.47) (−1.18)

lnPOP 1.428*** 0.233*** 1.195*** 1.274*** 0.972** 0.302**
(6.47) (5.96) (6.29) (3.97) (2.18) (2.52)

lnPGDP 1.719*** 1.134** 0.585** 1.945*** 0.901** 1.044**
(3.97) (2.04) (2.36) (4.15) (2.11) (2.24)

(lnPGDP)2 −0.093** −0.066* −0.027 −0.041* −0.032* −0.009
(−2.27) (−1.41) (−0.75) (−1.65) (−1.51) (−0.82)

lnFDI 0.107** 0.066** 0.041* −0.039** −0.022* −0.017*
(2.23) (2.24) (1.79) (−1.98) (−1.74) (−1.96)

ES 1.563*** 0.932* 0.631* −0.670** −0.941* 0.271**
(3.08) (1.55) (2.07) (−2.08) (1.64) (2.28)

Note: z-statistics in parentheses, ***p < 0.01, **p < 0.05, and *p < 0.1.

TABLE 6 | Decomposition effects of low-carbon tech-innovation on haze pollution (W2).

Variable Short term Long term

Total effect Direct effect Indirect effect Total effect Direct effect Indirect effect

lnTI −0.082*** −0.054*** −0.028 0.102*** −0.060*** −0.042**
(−4.02) (−3.19) (−0.37) (2.83) (−4.12) (−2.60)

lnPOP 1.253*** 0.272*** 0.918** 1.334*** 0.537** 0.797**
(3.19) (3.24) (2.37) (3.77) (1.98) (2.10)

lnPGDP 1.543** 1.069** 0.474* 1.045** 0.801* 0.244
(1.84) (2.09) (1.28) (2.15) (1.81) (0.64)

(lnPGDP)2 −0.044** −0.041* −0.003 −0.065** −0.060* −0.005
(−2.32) (−1.81) (−0.21) (−2.03) (−1.66) (−0.49)

lnFDI 0.147* 0.083 0.064* −0.110** −0.062 −0.048*
(1.70) (0.80) (1.06) (−2.20) (−0.27) (−1.63)

ES 1.851*** 1.226*** 0.625 −0.775* −0.904** 0.129*
(4.08) (6.05) (1.07) (−1.48) (−2.23) (1.72)

Note: z-statistics in parentheses, ***p < 0.01, **p < 0.05, and *p < 0.1.
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gray technologies play an important role in the prevention and
control of local haze pollution, but the role of gray tech-
innovation in the suppression of haze pollution is stronger
than that of clean tech-innovation, and there may be three
reasons. First, the number of gray technology patents in China is
much larger than that of clean technology, indicating that the
maturity of gray technology may be stronger than that of clean
technology. Second, gray technology is not carbon-free but can
reduce carbon emissions, with lower R&D costs and easy market
promotion, especially adopted by high pollution enterprises to
cope with the government’s strict environmental policies. Third,
China’s current energy structure is still not perfect, the coal
consumption is huge, the space in the use of clean energy
development also hindered the development of clean
technology at the same time, one can imagine that China’s
current low-carbon technologies are still biased toward gray
technology, and with the improvement of the economic
structure, the future of bias technology will change direction
to clean technology.

In addition, the estimation results of the spatial lag coefficient
of innovation of the two low-carbon technologies show
significant differences. Gray technology is significantly negative
at a 1% level, while clean technology, though negative, does not
pass the significance test. This difference shows that compared
with clean technology, gray technology could better cross
geographical barriers, realize interregional diffusion, and
greatly reduce the haze pollution of the surrounding areas
through the spatial spillover effect, the reason may be that the
R&D cost of gray tech-innovation is relatively low, and the
monopoly benefit is less, and lead to its high degree of
diffusion, However, clean technology, as a carbon-free or
negative emission technology, has a high cost of research and

development. Although it has good positive externalities, its
overflow channels are blocked and its diffusion effect is poor,
showing a little effect on reducing haze.

4.5 Mechanism Analysis
To test the two possible mechanisms proposed in Section 2.3, we
conducted model regression according to Eqs 4–7, respectively25.

According to the regression results of Model (1) in Table 8,
although we found that the interaction coefficient between
environmental policy and low-carbon tech-innovation is
negative at the significance level of 5%, the coefficient
decreases significantly, indicating that under the
implementation of strict environmental policy, the effect of
technological innovation is partially offset. This is consistent
with Jaffe et al. (2002) and Popp et al. (2009), environmental
policies bring about “innovation offsetting” effects, the reason
may be that the current tech-innovation itself needs a lot of costs,
and it takes a long time to develop, in the short term it cannot
meet the requirements of environmental monitoring, so some
companies may be given up technology to reduce emissions path
for industrial migration or temporarily shut down high emissions
department, this has weakened the low-carbon tech-innovation
curb haze pollution effect. Meanwhile, according to Model (2)
and Model (3), classifying the low-carbon tech-innovation and
testing the regulating effect of environmental policy, we found
that the “innovation offsetting” effect particularly on clean tech-
innovation, shows that after strict environmental policies are
implemented, enterprises will be more inclined to gray tech-

TABLE 7 | Different types of low-carbon tech-innovation on haze pollution.

Variable Dynamic SDM (W1) Dynamic SDM (W2) Dynamic SDM (W1) Dynamic SDM (W2)

(1) (2) (3) (4)

lnPMt-1 0.296*** (6.11) 0.268*** (6.08) 0.297*** (6.18) 0.278*** (6.37)
lnCT −0.054*** (−3.76) −0.055*** (−2.81) — —

lnGT — — −0.069*** (−3.23) −0.064** (−2.06)
lnPGDP 0.504** (2.14) 0.532** (2.47) 0.631*** (2.52) 0.657** (2.31)
(lnPGDP)2 −0.022** (−2.31) −0.018** (−2.08) −0.034* (−1.89) −0.029* (−1.46)
lnPOP 0.058* (1.72) 0.052** (2.53) 0.055* (1.66) 0.046 (1.35)
lnFDI 0.012* (1.86) 0.005 (0.45) 0.018* (1.51) 0.004 (0.18)
ES 0.312** (2.56) 0.305** (2.46) 0.318** (2.62) 0.304** (2.45)
w×lnPMt-1 −0.524** (−2.77) −0.539** (−2.81) −0.426*** (−2.93) −0.510** (−2.44)
w×lnPM 0.679*** (3.93) 0.651** (2.26) 0.528*** (3.42) 0.691** (2.35)
w×lnCT −0.026* (−1.72) −0.011 (−0.98) — —

w×lnGT — — −0.069*** (−2.96) −0.064*** (−3.92)
w×lnPGDP 0.685* (1.84) 0.579** (2.83) 0.532* (1.76) 0.561** (1.96)
w×(lnPGDP)2 −0.042* (−1.68) −0.051* (−1.83) −0.074* (−1.73) −0.061* (−1.68)
w×lnPOP 0.227** (2.33) 0.269*** (2.96) 0.253*** (2.62) 0.310*** (3.38)
w×lnFDI 0.001 (0.02) 0.006 (0.20) 0.004 (0.12) 0.004 (0.18)
w×ES 0.545* (1.72) 0.453 (1.10) 0.465 (1.26) 0.454 (1.32)
ρ 0.825 0.752 0.807 0.771
Log-likelihood 286.164 308.572 320.659 339.142
F-test 31.67 33.91 37.83 39.26
R2 0.520 0.541 0.562 0.646

Note: z-statistics in parentheses, ***p < 0.01, **p < 0.05, and *p < 0.1.

25The specific results are shown in Tables 8, 9. Due to space limitation, we will only
show the regression results under economic distance matrix (W2).
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innovation rather than clean technology. There are two main
reasons. First, the cost of gray tech-innovation is low, and the
effect is fast, so it can be quickly used to deal with the
government’s environmental regulation. Second, the
enterprises most affected by the government’s environmental
policies are generally highly polluting enterprises. It is
impossible to achieve a clean transformation in a short time,
so they can only seek gray tech-innovation to reduce pollution
emissions.

The spatial lag coefficients of each interaction item are all
negative and significant at the significance innovation in a region
that plays a joint role not only in the local area but also
contributes to the alleviation of haze pollution in other
surrounding regions. The possible reason is that the
implementation of environmental policies in one region has a
warning effect on enterprises in other regions, and local
enterprises will immediately take countermeasures to avoid
future changes in local environmental policies. But the
spillover effect will decrease with the emergence of
environmental policy, the possible reason is that the
strengthening of local environmental policies increases the cost
of tech-innovation of enterprises and the marginal benefit of
technological monopoly, which will lead to technology spillover
difficulties and blocked knowledge flow, thus affecting the

innovation activity of other surrounding areas and weakening
the effect of low-carbon tech-innovation in curbing haze
pollution.

According to Table 9, we found that low-carbon tech-
innovation can promote the upgrading of industrial structures
to suppress haze pollution; in addition, CT and GT also help
promote the development of the industrial structure upgrade, in
the long run, will help control haze pollution. A large number of
tech-innovations will drive the improvement of regional
innovation levels. On the one hand, it will help to form an
innovation cluster network, promote industrial integration,
reduce the living space of high pollution enterprises, and
promote the green transformation of regional industrial
structure. On the other hand, the positive externalities of
technological innovation contribute to the formation of
knowledge spillover and technology diffusion, improve the
level of technological innovation in the surrounding region,
and form the trend of innovation spread. In the long term, it
will contribute to the upgrading of the overall industrial structure
inside and outside the region. Further analysis of the
heterogeneity of low-carbon tech-innovation shows that gray
tech-innovation helps reduce enterprise pollution emissions
and is easy to spread, which will contribute to the positive
externalities of technological innovation and help the whole
industry gradually form the concept of green production,
energy-saving production, and resource protection, and clean
tech-innovation as no carbon or negative carbon technology,
represents the future direction of low-carbon technology, a large
number of clean technology innovations are conducive to the
emergence and development of new sectors or industries, such as
the new energy automobile industry. In the long run, this is
bound to bring about the upgrading of the entire industry and
fundamentally change the original traditional production forms
or production technologies.

4.6 Robustness Test
In Section 3.1, we construct two spatial weight matrices, namely
the geographical distance matrix and the economic distance
matrix. To comprehensively reflect the dual characteristics of
spatial geographical distance and economic attributes, we
construct the spatial economic distance matrix W3 by referring
to Fingleton and Gallo (2008). The specific expression is Eq. 11:

W3 � Wij � 1∣∣∣∣PGDPj − PGDPi + 1
∣∣∣∣ × e−di , (11)

whereWij is the spatial economic distance matrix, PGDPj and
PGDPi, respectively, represent the per capita GDP of province
j and province i, and dij is the geographical distance between
the two provinces. Under this matrix, we re-conducted the
model regression and found that the positive and negative
situations and significance levels of each explanatory variable
had no significant differences from those in W1 and W2. In
addition, we replaced the explained variable PM2.5

concentration in this study. Considering that in addition to
PM2.5, SO2 emission from industrial production is also an
important factor leading to haze pollution, we adopt the

TABLE 8 | Moderating effect of environmental policy.

Variable Dynamic SDM Dynamic SDM Dynamic SDM

(1) (2) (3)

lnPMt-1 0.253*** (5.72) 0.254*** (5.76) 0.261*** (5.92)
lnEP −0.056** (−1.85) −0.050* (−1.95) −0.050* (−1.79)
lnTI −0.172*** (−3.18) — —

lnEP×lnTI −0.025** (−2.26) — —

lnCT — −0.145*** (−3.23) —

lnEP×lnCT — −0.011*** (−2.36) —

lnGT — — −0.172*** (−2.90)
lnEP×lnGT — — −0.107** (−2.23)
lnPGDP 0.383* (1.89) 0.287* (1.66) 0.396 (1.17)
(lnPGDP)2 −0.019 (−0.88) −0.015** (−2.06) −0.025 (−1.17)
lnPOP 0.051* (1.93) 0.052 (1.52) 0.046 (1.36)
lnFDI 0.007 (0.59) 0.006 (0.49) 0.007 (0.63)
ES 0.388*** (3.05) 0.382*** (3.01) 0.389*** (3.06)
w×lnPMt-1 −0.502* (−1.59) −0.439** (−2.01) −0.511** (−2.04)
w×lnPM 0.621** (2.33) 0.603** (2.07) 0.613** (2.12)
w×lnEP 0.128* (1.77) 0.097 (1.62) 0.128* (1.87)
w×lnTI −0.028** (−2.57) — —

w×lnEP×lnTI −0.019** (−1.98) — —

w×lnCT — −0.026** (−2.72) —

w×lnEP×lnCT — −0.018* (−1.83) —

w×lnGT — — −0.034*** (−3.01)
w×lnEP×lnGT — — −0.020* (−1.98)
w×lnPGDP 1.493** (2.03) 1.197* (1.69) 1.446* (1.95)
w×(lnPGDP)2 −0.066* (−1.79) −0.054 (−1.51) −0.063* (−1.95)
w×lnPOP 0.297*** (3.27) 0.270*** (2.97) 0.314*** (3.43)
w×lnFDI 0.012 (0.43) 0.017 (0.59) 0.010 (0.35)
w×ES 0.277 (1.27) 0.231 (0.83) 0.269 (0.92)
ρ 0.774 0.607 0.741
Log-likelihood 374.220 373.475 373.267

F-test 49.86 52.28 51.21
R2 0.655 0.646 0.654

Note: z-statistics in parentheses, ***p < 0.01, **p < 0.05, and *p < 0.1.
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industrial SO2 emission of each province to measure the haze
pollution level of each province and use the previous three
spatial weight matrices to perform regression. We found that
the positive and negative signs and significance levels of each
core explanatory variable were the same as the previous results,
indicating that the index changes of the core explained variable
did not change the previous research conclusion, that is, the
research results are robust.

5 CONCLUSION AND POLICY
IMPLICATIONS

In this study, the STIRPAT model and the classical EKC
hypothesis were combined to construct a dynamic spatial
econometric model to study the spatial spillover effects of
haze pollution and low-carbon technological innovation; the
co-benefits and internal mechanism of low-carbon
technological innovation to tackle climate change on haze
pollution control; and the heterogeneity and synergy of
clean technology and gray technology on haze pollution
control, the following conclusions, and policy implications
are obtained.

(1) Both haze pollution and low-carbon technological
innovation in China show significant spatial agglomeration
characteristics and spatial spillover effects. The polluted areas
are mainly concentrated in the Beijing–Tianjin–Hebei region
and energy-consuming provinces. From the perspective of
time, haze pollution has “path dependence,” showing a
“snowball effect;” from the perspective of space, haze
pollution shows an obvious spatial spillover effect,
showing the situation of “both prosperity and loss,” which
is consistent with the conclusion of Wang et al. (2022). From
the perspective of spatial–temporal dimensions, the haze
pollution in one region in the previous period can
effectively suppress the haze pollution in other

surrounding areas, indicating that the good warning
function of regions has been played, which supports the
findings of Feng and Wang. (2019). Low-carbon tech-
innovation is mainly concentrated in East China,
including Beijing and Guangzhou. In addition, China’s
current low-carbon tech-innovation has become an
important path to alleviating haze pollution, and
technology spillover plays an important role in curbing
haze pollution.

(2) The positive externalities of low-carbon tech-innovation in
haze treatment have been expanded, and the long-term co-
benefits of haze reduction have been clarified. On the one
hand, low-carbon tech-innovation to address climate change
also brings co-benefits to local air quality, and the path of
technology to cure haze has been clarified. On the other hand,
regional long-term knowledge accumulation, knowledge
spillover, and diffusion of low-carbon technologies will
lead to such co-benefits not only locally but also help curb
haze pollution in surrounding areas and give play to the
positive externalities of technological innovation. In addition,
industrial structure and environmental policy play a
mediating and moderating role respectively in this process,
but environmental policy shows an obvious “innovation
offset” effect, which weakens the role of low-carbon tech-
innovation, especially in clean technology innovation.
Contrary to what supporters of the Porter hypothesis
believe, our findings support the views of Jaffe et al.
(2002) and Popp et al. (2009).

(3) There are obvious differences between clean tech-innovation
and gray tech-innovation in suppressing haze pollution.
Heterogeneity analysis shows that gray tech-innovation
has a stronger effect on haze pollution suppression than
clean tech-innovation, and gray tech-innovation can better
overcome geographical barriers to achieve cross-regional
diffusion, while clean tech-innovation is more vulnerable

TABLE 9 | Mediating effect of industrial structure.

Variable lnPM IS lnPM lnPM IS lnPM lnPM IS lnPM

(1) (2) (3) (4) (5) (6) (7) (8) (9)

lnTI −0.089***
(−4.10)

−0.035***
(−6.42)

−0.081***
(−3.51)

— — — — — —

lnCT — — — −0.084***
(−4.21)

−0.024***
(−4.66)

−0.077***
(−3.74)

— — —

lnGT — — — — — — −0.070***
(−3.46)

−0.032***
(−6.41)

−0.061***
(−2.84)

IS — — 0.248** (2.13) — — 0.305** (2.01) — — 0.295** (1.98)
lnPGDP 0.851*** (2.83) −0.036 (−0.48) 0.842*** (2.80) 0.554*** (2.81) −0.054 (−0.70) 0.570*** (2.83) 0.936*** (3.06) 0.078 (1.04) 0.913*** (2.99)
(lnPGDP)
2

−0.045***
(−2.91)

0.005 (1.31) −0.044**
(−2.17)

−0.030**
(−2.01)

0.001 (0.18) −0.030*
(−1.89)

−0.050***
(−3.19)

0.007* (1.88) −0.048***
(−3.04)

lnPOP 0.082*** (2.73) 0.008 (1.04) 0.084*** (2.79) 0.084*** (2.81) 0.008 (1.08) 0.087*** (2.89) 0.080*** (2.64) 0.008 (1.07) 0.082*** (2.72)
lnFDI 0.015 (1.48) 0.012*** (4.26) 0.008 (0.66) 0.005 (0.40) 0.012*** (4.09) 0.008 (0.71) 0.005 (0.44) 0.012*** (4.25) 0.009 (0.73)
ES 0.335** (2.55) 0.033** (2.01) 0.327** (2.48) 0.355*** (2.71) 0.043** (2.30) 0.342*** (2.61) 0.342*** (2.59) 0.034* (1.91) 0.332** (2.51)
N 390 390 390 390 390 390 390 390 390
R2 0.643 0.739 0.645 0.645 0.726 0.647 0.639 0.739 0.641
F-test 34.33 54.05 32.62 34.46 50.34 32.86 33.61 54.02 32.01
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to environmental policies. However, both of them can
promote the upgrading of China’s industrial structure and
thus improve air quality.

(4) Both population density and coal-based energy
consumption structure are the important ways of haze
pollution, the research of Fan and Xu. (2020) has been
verified. Economic development and environmental
pollution show an inverted U-shaped trend, that is, the
haze pollution level increases first and then decreases with
the improvement of the economic development level, this is
consistent with Kearsley and Riddel, (2010) and Gan et al.
(2020). Foreign direct investment has brought obvious haze
pollution, and the “Pollution Heaven” hypothesis has been
verified and is consistent with the findings of Kamal et al.
(2021).

According to the aforementioned conclusions, the following
policy implications can be obtained:

(1) It is necessary for policymakers to strengthen the top-level
policy design and establish a long-term mechanism for haze
control and joint prevention and control mechanism. As a
systematic and long-term project, haze control requires an
overall concept and comprehensive strategic deployment.
First of all, dealing with the spatial agglomeration of haze
pollution needs to focus on key provinces with haze
outbreaks, namely, high–high agglomeration areas such as
the Beijing–Tianjin–Hebei region. Second, the higher level
government should strengthen guidance, while focusing on
regional rectification, quickly establish trans-regional
departments and institutions, strengthen regional
cooperation, establish coordination mechanisms such as
information sharing and joint law enforcement to ensure
the smooth progress of joint prevention and control and
coordinated governance, and take into account all factors.
Additionally, in this process, it is necessary to strengthen
supervision and improve relevant laws and regulations to
avoid the emergence of free-riding behavior in some regions
and the rebound of haze pollution.

(2) The government should make comprehensive use of
environmental policy means and market means to guide
enterprises to develop low-carbon technologies and give
full play to the co-benefits of low-carbon tech-innovation
in reducing haze. High-profile low-carbon tech-innovation as
a key means to respond to climate change caused by the air
quality in co-benefits must be fully effective mining. First,
local governments should actively guide low-carbon
innovation activities into a consensus. In addition to the
implementation of relatively strict environmental
regulations, relevant preferential measures should be
developed to encourage enterprises to carry out low-
carbon tech-innovation, reverse the “innovation offset”
effect caused by environmental policies on enterprises,
reduce compliance costs of enterprises, and increase the
marginal benefits of technological innovation. Second, the
concentration regions of haze pollution and low-carbon tech-
innovation are not consistent, which shows that each region

should improve the market mechanism, speed up the
implementation of talent introduction strategy and create
a better innovation environment, guide the optimization and
integration of industrial structure to promote the rational
allocation of factors, and accelerate knowledge spillover and
low-carbon technology diffusion between regions, to
improve the efficiency of technology in haze treatment.

(3) Short-term encouragement of gray tech-innovation and
long-term support for clean tech-innovation should be
combined to promote biased low-carbon technical
change and green upgrading of industrial structure step
by step. First, the government should comprehensively
consider the heterogeneity of low-carbon technology
innovation, establish a low-carbon technology
development plan, and handle the relationship between
gray technology and clean technology. On the one hand,
effective environmental policies and market means should
be adhered to promote the sustainable and stable
development of gray technology innovation. On the other
hand, flexible environmental policy should be focused on
minimizing its impact on clean technology innovation.
Second, technical cooperation and exchanges between
regions should be encouraged, especially for clean
technologies such as renewable energy technologies and
negative emission technologies. Governments in heavily
polluted areas should not only strengthen the gray
technology innovation capacity within the region but also
actively encourage enterprises to introduce clean
technology innovation outside the region to improve the
local industrial structure and reverse the long-term path
dependence. Enterprises in regions with strong innovation
capacity should actively fulfill their corporate social
responsibility to help neighboring regions develop clean
technologies and form a win–win situation of interregional
cooperation. Finally, decision-makers should correctly
guide the direction of technology development, change
the competitive relationship between clean and gray
technologies into a complementary relationship, and
create a good innovation environment to increase the
intensity of talent introduction and R&D investment to
bring breakthrough technology innovation output, and
orderly guide technology transition to the clean
technology track.

(4) It is essential for the government to properly control the entry
of foreign investment and improve the entry threshold of
industries producing high energy consumption by
strengthening the “clean” screening of foreign investment,
to change the “Pollution heaven” phenomenon of foreign
direct investment in haze control. In addition, the local
government should optimize the urban spatial structure,
pay attention to urban green design, and improve urban
transportation infrastructure (such as high-speed rail and
subway) to prevent the excessive concentration of
population from causing more serious haze pollution. On
this basis, regional coordination should be strengthened to
promote win–win cooperation and cooperation mechanism
for haze pollution control, prevent a “race to the bottom”
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among governments, and gradually reduce the proportion of
coal in energy consumption and optimize the energy structure
to promote green economic growth.

According to the findings of this study, we believe that there
are three directions for future research:

(1) The study of co-benefits between climate change and air
pollution is one of the priorities in the field of
environmental science and environmental economics. In the
future, policy evaluation and technical methods for addressing
climate change can be used to evaluate the co-benefits of air
quality, or even to study carbon reduction and haze reduction
simultaneously, that is, “shooting two hawks with one arrow.”

(2) Low-carbon tech-innovation is not only a key means to
alleviate global climate change but also can produce many
other benefits. Therefore, the research on actively broadening
the externalities of low-carbon tech-innovation will become
one of the hot spots in the future. Under the theory of
endogenous growth, it is necessary to analyze the
environmental, health, and economic benefits of
endogenous technological innovation systematically, and it
is not limited to low-carbon and green technologies.

(3) Low-carbon tech-innovation can be studied from dynamic
and spatial perspectives, but it is not deep enough. In the
future, the analysis of the environmental, economic, and
health benefits of the diffusion of carbon reduction
technologies should be more potential and detailed than
innovation. Moreover, technology diffusion and knowledge
spillover are not limited to one country, but often take most
countries in the world as the research target, which is a global
network. Meanwhile, it is essential to combine technology
heterogeneity analysis with biased technology change.
Exploring or changing the direction of carbon mitigation
or other environment-friendly technology is of great

significance for improving national industrial and energy
structure and promoting green economic growth.
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