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Phase unwrapping (PU) is an important bottleneck restricting the practical application of
the interferometric synthetic aperture radar (InSAR) technique. In view of the similarity
between solving the ambiguity number of integral cycles in PU for dual-baseline InSAR and
pure integer programming (PIP) problem in science of overall planning, a new branch and
bound PIP-PU algorithm for dual-baseline InSAR is proposed. A PIP-PU model with the
intercept on the vertical axis as the objective function and a ray as the constraint condition
is first constructed. Then, how to solve the ambiguity number is given in detail by graphical
means. Finally, the axis symmetry theory is introduced to further improve PU efficiency. The
proposed algorithm has the advantages of better unwrapping ability even in phase under-
sampling areas and abrupt topographic change areas and lower requirement of the
baselines. Through two sets of simulated data and one set of real data experiments, the
feasibility, effectiveness, and practicability of this proposed algorithm are verified,
respectively. In addition, compared with the branch-cut method, quality-guided
method, least square method, and minimum cost flow method, the proposed method
has the highest accuracy and suboptimal unwrapping efficiency.

Keywords: interferometric synthetic aperture radar, pure integer programming, phase unwrapping, dual-baseline,
slack problem, branch and bound method

INTRODUCTION

The interferometric synthetic aperture radar (InSAR), characterized by the advantages of all-
time, all-weather, and high-resolution, has been developed as an indispensable weapon for
measuring topography and ground deformation. However, phase unwrapping (PU), an
irreversible problem, is an important bottleneck restricting the practical application of the
InSAR technique (Wang et al., 2002; Liao and Lin,. 2003; Tang et al., 2018; Liu et al., 2019). The
traditional single-baseline PU algorithms can be roughly divided into path-following type
(Goldstein et al., 1988; Flynn 1997; Zhong et al., 2011), minimum norm type (Takajo and
Takahashi, 1988; Long et al., 2008; Chen et al., 2012), and optimal estimation type (Costalltilli,
1988; Liu et al., 2011; Liu et al., 2017; Xie et al., 2020) according to different strategies. The path-
following algorithms are difficult to set a suitable integration path and even form an isolated area
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that the integration path cannot reach when there are many
phase residual points in the interferogram, thereby resulting in
a decrease in unwrapping accuracy or even failure. There is no
global error in the minimum norm algorithms, but they may
have a local error in the unwrapping result at any point (Jin
et al., 2014). However, the single-baseline algorithms are based
on the assumption of phase continuity, the real terrain
undulations usually cannot meet the requirement of terrain
continuity. Therefore, the predecessors later proposed the
multibaseline PU technique (Yu and Lan,. 2016; Yu et al.,
2020; Yu and Hu. 2021), which can overcome the limitations of
terrain factors by adding multiple interferometric phases and
reduce the influence of phase under-sampling and spectrum
aliasing, thereby improving the accuracy and reliability of PU.
The multibaseline PU algorithms mainly include the Chinese
remainder theorem method (Wei et al., 1994; Zhang et al.,
2011a; Jiang et al., 2019), the difference filtering method
(Zhang et al., 2011b; Jin et al., 2012; Liu and Xu. 2018), the
maximum likelihood method (Si et al., 2017; Dong et al., 2018;
Ma et al., 2020), the cluster-analysis method (Yu et al., 2011;
Liu. 2015; Jiang et al., 2017), and the minimum norm method
(Ge et al., 2013; Yu and Bao. 2013; Liu H et al., 2015; Gao et al.,
2019). The Chinese remainder theorem method regards PU as
the problem of solving congruence equations and uses the
extended Euclidean algorithm to solve the ambiguity numbers.
The difference filtering method introduces the idea of
difference filtering into the multibaseline PU and guides the
unwrapping for long-baseline interferogram through the
unwrapping result of the short-baseline interferogram,
which solves the problem of phase under-sampling of long-
baseline interferogram. The maximum likelihood method uses
multiple complex SAR images and maximum likelihood
estimation criteria to obtain the long-baseline unwrapping
phase. The cluster-analysis method first clusters all pixel
into different groups and then unwraps phases of pixels
group by group using the information of the cluster center.
The minimum norm method uses the phase gradient of each
baseline interferogram and the idea of difference to improve
the accuracy of long-baseline unwrapping. In recent years, Yu
et al. (2019) and Zhou et al. (2021) proposed to use artificial
intelligence methods to solve the phase unwrapping problem
for single-baseline or multibaseline.

However, whether it is a single-baseline or multi-baseline
algorithm, the essence of PU is to solve the number of integral
cycles between interferometric phases in one entire
interferogram (Jin et al., 2014), to restore the interferometric
phase information from interval [−π, π) to interval [−mπ,mπ).
Pure integer programming (PIP) is a discrete optimization
problem in which all decision variables are integers. From
the point of seeking integer solutions, both have similarities
in common. Integer programming (IP) was formed in 1958 as
an independent branch. It mainly solves the derivative problems
of the original problem step by step and determines the
destination of the source problem through the solution of the
slack problem, until there are no more unsolved derivative
problems (Levitin and Tichatschke.1998). This theory has
been widely used in the fields of transportation and

computer communication (Ikram et al., 2020; Omer et al.,
2020), but it is rarely studied in the InSAR field. The term IP
was mentioned in Liu H T et al. (2015); in fact, this theory is not
used to solve the problem, but the minimum norm method is
used. Open source software SYMPHONY was used to solve the
integer linear programming (ILP) problem related to PU in
Markus, (2016); but in fact, it is built on the basis of the
minimum cost flow (MCF) method, and it just generalized
the MCF method. Two-stage programming approach (TSPA)
algorithm uses a single-baseline ambiguity number integer
programming model in the second step, but it actually uses
the L1 norm idea to unwrap the phase (Yu and Lan,. 2016). A
mixed-integer programming model is constructed by setting the
inclined plane equation based on the idea of sharing an
ambiguity number in a local area in Jin et al. (2018).
However, this local area assumption itself limits the
practicability of the algorithm, and it is impossible to obtain
the ideal unwrapping effect in difficult unwrapping areas such as
phase under-sampling. At present, there is still no literature on
solving the PU problem using PIP algorithm. In this article, the
PU problem is transformed into a PIP problem. The PIP–PU
model is constructed, the axis symmetry theory is introduced,
and a new branch and bound PIP–PU algorithm is proposed
based on the basic principles of dual-baseline InSAR.

The remainder of this article is organized as follows: Section 2
proposes the new idea of constructing the PIP–PU model.
Section 3 describes the branch and bound PIP–PU algorithm.
Section 4 shows the performances of the proposed method using
three sets of examples from simulated data to real data and
compares with four mainstream algorithms of commercial
software including the branch-cut method, quality-guided
method, least squares (LS) method, and MCF method. Finally,
a concise conclusion is drawn in Section 5.

FIGURE 1 | Geometry of dual-baseline InSAR.
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THE PRINCIPLE OF PURE INTEGER
PROGRAMMING PHASE UNWRAPPING

The geometry of dual-baseline InSAR is shown in Figure 1.
Assuming that the antenna phase centers A1, A2, and A3 are on
the same straight line, two baselines B1 and B2 can be formed. The
horizontal angle of the baseline is α. The incidence angle and slant
distance of the interested point P are θ and R, respectively.

Assuming that the wrapped phases corresponding to the dual-
baseline InSAR are φ1 and φ2, respectively, the same relative
elevation dZ and each interferometric phase differential
dφi(i � 1, 2) have the following relationship (Zhang et al., 2011a):

dZ � 1
2π

· λR sin θ
B cos(θ − α) (dφi + 2kiπ), (1)

where λ is the radar wavelength and ki is the ambiguity number of
dφi. Let B0 � [B1, B2] be the least common multiple of the two
baselines B1 and B2, andmi � B0/Bi(i � 1, 2) be the modulus, we
can obtain the following:

2πB0 cos(θ − α)
Rλ sin θ

· dZ � dφi ·mi + 2πkimi. (2)

If X � B0 cos(θ−α)
Rλ sin θ · dZ, ai � dφi ·mi

2π , the equations of the
ambiguity numbers k1 and k2 of the wrapped phase
differential for dual-baseline InSAR can be established:

{X� a1 + k1m1,
X� a2 + k2m2,

(3)

where a1 and a2 are the wrapped phase differential functions of
interferograms, m1 and m2 are the modulus, and X can be
regarded as an unknown parameter.

In view of the similarity between solving the ambiguity
number of 2π integral cycles and PIP problem, the dual-

baseline InSAR PU problem can be transformed into a PIP
problem. Figure 2 shows the branch and bound PIP–PU
process for dual-baseline InSAR.

Adding the two equations in Eq. 3:

2X � a1 + a2+k1m1 + k2m2. (4)
There are infinitely many solutions for the two equations

corresponding to three unknown parameters. For the phase
ambiguity number that needs to be solved, it is a set of minimum
integer solutions that satisfy the equation system, which just
corresponds to the fundamental solution system in the general
solution of a homogeneous system of equations in linear algebra
(Department ofMathematics of Tongji University. 2003). That is, the
absolute value of the corresponding X is the smallest. After the phase
difference dφi and the modulusmi being determined, a1 and a2 can
be calculated. Therefore, solving the minimum value of X is
equivalent to finding the minimum value of Eq. 5:

Y � |k1m1 + k2m2|. (5)
Eqs 3–5 can be transformed into the IP model as follows:

min Y � |k1m1 + k2m2|,
IP s.t. k1m1 − k2m2 � a2 − a1,

k1, k2 ∈ integer.
(6)

A NEW BRANCH AND BOUND PIP–PU
ALGORITHM

To solve the integer programming problem, it is necessary to first
remove the integer constraints and convert it into a linear
programming (LP) model to solve the slack problem (Eq. 7).
The solution process of the branch and bound PIP–PU algorithm
for dual-baseline InSAR is shown in Figure 3:

FIGURE 2 | Branch and bound PIP–PU process for dual-baseline InSAR.
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min Y � |k1m1 + k2m2|,
LP s.t. k1m1 − k2m2 � a2 − a1.

(7)

As can be seen from Figure 3, the basic idea of the branch
and bound PIP–PU algorithm is as follows: using the
relationship of ai as the judgment condition, first ensure
that the optimal solution falls on the positive axis of the
Cartesian coordinate system, and set it as the critical point.
Then, take one of the ambiguity numbers as an integer
variable, add a step size every time to both sides of the
coordinate axis to traverse, and use the constraint condition
as an equation to solve the value of the number to verify
whether the integer condition holds, until the two ambiguity
numbers are both integer which stops traversing. Since the
principle of simultaneous traversal of ambiguity numbers on
both sides of the coordinate axis is the same, for simplicity of
discussion, the following part only shows the case in which the
traversal of the ambiguity number to positive direction of the

coordinate axis and traversal in the negative direction can
solve the ambiguity number in the same way.

Ambiguity Number Solving Method
The solution of the ambiguity number can be divided into basic
model and auxiliary model according to the relationship of
between a1 and a2 . Figure 4A shows the basic model with
positive intercept of constraint condition and horizontal axis
when a2 > a1 . Figure 4B shows the auxiliary model with positive
intercept of constraint condition and vertical axis when a2 < a1.

The equation that k1 as the independent variable and k2 as the
dependent variable can be set up, and the constraint condition is:

k2 � k1m1

m2
+ a1 − a2

m2
. (8)

The optimal solution of the basic and auxiliary models can be
solved, respectively:

FIGURE 3 | Solution process of branch and bound PIP–PU algorithm for dual-baseline InSAR.
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basic model

⎧⎪⎪⎨⎪⎪⎩
kp1 �

a2 − a1
m1

,

kp2 � 0,
auxiliary model

⎧⎪⎪⎨⎪⎪⎩
kp2 �

a1 − a2
m2

,

kp1 � 0.

(9)
According to the intersection of the constraint condition and

the ki axis, we branch the ambiguity number variable. For the
basic and auxiliary models, ki or k2 component is branched,
respectively, denoted as LP1 and LP2 models.

basic model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(LP1)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(LP)

k1 ≤[a2 − a1
m1

]

(LP2)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(LP)

k1 ≥[a2 − a1
m1

] + 1

auxiliary model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(LP1)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(LP)

k2 ≤[a1 − a2
m2

]

(LP2)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(LP)

k2 ≥[a1 − a2
m2

] + 1

(10)

where [] is the rounding function. As shown in Figure 4, whether
it is the basic model or the auxiliary model, if only the traversal of
the ambiguity number to positive direction of the coordinate axis
is considered, only the LP2 models need to be considered.

According to Eq. 5, the objective function expression can be
changed:

k2 � −k1m1

m2
+ Y

m2
. (11)

The initial values of the ambiguity numbers k1 and k2 for the
two models can be set:

basic model
⎧⎪⎨⎪⎩

k1 � [a2 − a1
m1

] + 1,

k2 � 0,

auxiliary model
⎧⎪⎨⎪⎩

k2 � [a1 − a2
m2

] + 1,

k1 � 0.

(12)

The traversal path is determined by the slope. If m1/m2 > 1,
then k1 is traversed. If m1/m2 < 1, then k2 is traversed.

In case of m1/m2 > 1, as shown in Figure 5, k1 is incremented
by one unit length in turn, and then it is determined whether k2
satisfies an integer according to Eq. 13, until the integer solution

corresponding to the minimum objective function value under
this following condition is found:

k2 � k1m1

m2
+ a1 − a2

m2
. (13)

For the basic model, because ofm1/m2 > 1, the initial value has
the following restrictions: k1 is traversed sequentially from 1. For
the auxiliary model, k1 is traversed directly from 0.

0< a2 − a1
m1

< a2 − a1
m2

< 1. (14)

In case of m1/m2 < 1, as shown in Figure 6, k2 is incremented
by one unit length in turn, and then it is determined whether k1
satisfies an integer according to Eq. 15, until the integer solution
corresponding to the minimum objective function value under
this following condition is found.

k1 � k2m2

m1
+ a2 − a1

m1
. (15)

For the basic model, k2 is traversed directly from 0. For the
auxiliary model, because of m1/m2 < 1, the initial value has the
following restrictions: k2 is traversed sequentially from 1.

0< a1 − a2
m2

< a1 − a2
m1

< 1. (16)

So far, the positive traversal of determining the ambiguity number
ki based on the relationship between a1 and a2 has ended. The
negative traversal can solve the corresponding negative ambiguity
number according to the aforementioned theories.

Ambiguity Number Solving in a Special Case
In case of a1 � a2, as shown in Figure 7, the intercept between
the constraint condition and horizontal axis becomes 0, and the
optimal solution can start from the point (0,0). In this situation,
the ambiguity numbers have all satisfied the integer condition, so
there is no need to traverse. The corresponding optimal integer
solution are as follows:

FIGURE 4 | (A) Schematic diagram of objective function and constraint conditions in case of a2 > a1. (B) Schematic diagram of objective function and constraint
conditions in case of a2 < a1.
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k1 � k2 � 0. (17)
It can be seen from the aforementioned analysis that after

transforming the dual-baseline InSAR phase unwrapping
problem into the PIP problem, we only need to find the
corresponding algorithm to solve the integer K, and there is
no requirement for the adjacent interferometric phase
difference to be less than half a period. Therefore, the
proposed method can extend the non-ambiguity interval to
[−mπ,mπ) and also has a better unwrapping ability in the
phase under-sampling region. In addition, the ratio of m1 and
m2 determines the slope of the straight line, and the pure
integer programming phase unwrapping method also weakens
the baseline requirement of interferometric pairs. As long as
the two baselines have different lengths, the unwrapping phase
can be effectively solved.

Optimized Algorithm Using the Axis
Symmetry Theory
In order to further improve unwrapping efficiency, the axis
symmetry theory is also introduced in this proposed method.
As shown in Figure 8, if a1 and a2 and m1 andm2 in the optimal
solution parameters are interchanged, the auxiliary model can be
transformed into the basic model. Just as that the black line
represents the basic model, and the blue line represents the
auxiliary model; the two models are symmetric about the line
k1 � k2. Therefore, in this case, the corresponding ambiguity
number can be solved by repeating the aforementioned steps. The
axis symmetry theory can optimize the four traversing
approaches to be considered into two traversing approaches
(Figure 9), which reduces the storage space of traversing
variables and improves operating efficiency.

FIGURE 5 | (A) Schematic diagram of k1 increasing sequentially when a2 > a1 andm1/m2 > 1.(B) Schematic diagram of k1 increasing sequentially when a2 < a1 and
m1/m2 >1.

FIGURE 6 | (A) Schematic diagram of k2 increasing sequentially when a2 > a1 andm1/m2 <1. (B) Schematic diagram of k2 increasing sequentially when a2 < a1 and
m1/m2 <1.
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RESULTS AND DISCUSSION

Results and Discussion of Simulation Data
In order to verify the feasibility of the branch and bound PIP–PU
algorithm for dual-baseline InSAR, the first experiment is
performed on the simulated data using the sinc function.
Figures 10A,B show the three-dimensional (3D) and two-
dimensional (2D) digital elevation model (DEM), respectively.
Figures 10C,D, respectively, show the interferograms of the short
and long baselines.

After unwrapping by the branch and bound PIP–PU method,
the 3D map of the solved ambiguity numbers, unwrapping
results, and phase errors are shown in Figure 11. The solved
ambiguity numbers are similar to the integer layer of 3D DEM.
The longer the baseline, the denser the solved ambiguity
numbers, and the closer the 3D map is to the 3D DEM. This
is because the baseline length is proportional to the absolute
phase, and the larger the absolute phase, the larger the solved
ambiguity numbers. The unwrapping results show that the
overall phases have good continuity; the phase errors are not
only concentrated around 0, but also the order of magnitude can
reach 10̂–15, which prove that this proposed algorithm based on
PIP mathematical ideas can effectively guarantee the accuracy of
unwrapping.

Results and Discussion of Noisy
Dual-Baseline Interferogram
In the second experiment, we select Isolation Peak National Park
data to verify the effectiveness and noise robustness performance
of this proposed method. Figures 12A,B show 2D and 3D DEM.
Figures 12C,D show simulated noisy interferograms with 105 m

baseline and 189 m baseline, respectively, in which we added a
random phase noise with a mean value of 0 and a variance of
0.1 rad2. The main parameters are shown in Table 1.

There exists phase under-sampling area in the red frame of the
aforementioned interferograms. The unwrapping results of 105 m
and 189 m baseline interferograms using the branch and bound
PIP–PUmethod are shown in Figures 13A,C, respectively, which
are in good agreement with Figure 12A. By further making the
difference between the unwrapping result and the original
reference phase, the phase error distribution map is as shown
in Figures 13B,D. Better unwrapping results can be obtained
even in phase under-sampling areas and abrupt topographic
change areas. Compared with Figures 11C,F, although the
phase error is distributed around 0, the order of magnitude
becomes significantly large. It shows that this proposed
algorithm is relatively sensitive to the noise. The next step
should be to improve the noise robustness ability of this
algorithm. But even so, the unwrapping accuracy of the
proposed algorithm is still optimal, which will be proved in
the following quantitative analysis.

To further verify the effectiveness of the proposed method, the
branch-cut method, quality-guided method, LS method, and
MCF method are used to unwrap the 105 m baseline
interferogram. Figures 13E,F show the unwrapping results of
the branch-cut method. There exist obvious phase errors in the
phase under-sampling area of the red frame, and the unwrapping
effect is also poor in the abrupt topographic change area. Figures
13G,H show the unwrapping results of the quality-guided
method. There is no excessive deviation, but the unwrapping
effect is also poor in the phase under-sampling area and the
abrupt topographic change area. Figures 13I,J show the results of
the LS method. From the overall point of view, the phase
continuity is guaranteed. However, the unwrapping result has

FIGURE 7 | Schematic diagram in case of a1 � a2.
FIGURE 8 | Schematic diagram of the axis symmetry idea.
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FIGURE 9 | Simplified schematic diagram of the ambiguity number traversal path.

FIGURE 10 | Sinc function. (A) 3D DEM (m). (B) 2D DEM (m). (C) Simulated short-baseline interferogram (rad). (D)Simulated long-baseline interferogram (rad).
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FIGURE 11 | (A) 3Dmap of the solved ambiguity numbers for short-baseline interferogram. (B)Unwrapping results for short-baseline interferogram (rad). (C) Phase
error distribution map for short-baseline interferogram (rad). (D) 3D map of the solved ambiguity numbers for long-baseline interferogram. (E) Unwrapping results for
long-baseline interferogram (rad). (F) Phase error distribution map for long-baseline interferogram (rad).

FIGURE 12 | Isolation Peak National Park, United States (A) 2D DEM (m). (B) 3D DEM (m). (C) Simulated interferogram with 105 m baseline (rad). (D) Simulated
interferogram with 189 m baseline (rad).

TABLE 1 | Main parameters of the interferograms.

Orbit altitude/km Image
size/pixel×pixel

Incidence angle/(°) Wavelength/m Baseline 1/m Baseline 2/m

600 458 × 157 30 0.057 105 189
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FIGURE 13 | (A) Unwrapping results of the PIP method based on 105 m baseline (rad). (B) Phase error distribution map of the PIP method based on 105 m
baseline (rad). (C) Unwrapping results of the PIP method based on 189 m baseline (rad). (D)Phase error distribution map of the PIP method based on 189 m baseline
(rad). (E) Unwrapping results of the branch-cut method based on 105 m baseline (rad). (F) Phase error distribution map of branch-cut method based on 105 m baseline
(rad). (G) Unwrapping results of the quality-guided method based on 105 m baseline (rad). (H) Phase error distribution map of the quality-guided method based on
105 m baseline (rad). (I) Unwrapping results of the LS method based on 105 m baseline (rad). (J) Phase error distribution map of the LS method based on 105 m
baseline (rad). (K) Unwrapping results of the MCF method based on 105 m baseline (rad). (L) Phase error distribution map of the MCF method based on 105 m
baseline (rad).

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 89034310

Liu et al. PIP Phase Unwrapping Algorithm

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


too much phase deviation. Most of the data are almost 10 rad
different from the original phase, and some even reach 20 rad.
The main reason is that the discrete phase gradient estimation
cannot reflect the true phase gradient, which introduces the large
error. Figures 13K,L show the results of the MCF method. The
number of error points is greatly reduced, especially in the left
area. The PU effect has been greatly improved but is still not ideal
in phase under-sampling areas and abrupt topographic
change areas.

Taking into account the randomness of the noise generated by
the simulation experiment, five groups of repeated experiments
were performed by adding the same level of noise to the
interferograms. Figures 14, 15 show the scatter plots of the
mean and standard deviation of phase errors. Different
algorithms focus around a different number. Both the error
indicators of this proposed algorithm are always the smallest,
followed by theMCFmethod, quality-guidedmethod, branch-cut
method, and LS method. Table 2 gives the average values of the
five groups of repeated experiments. The branch-cut method has
a large phase error mean and standard deviation, so the

unwrapping effect is poor, but the unwrapping efficiency is
higher. Compared with it, the quality-guided method has a
lower mean and standard deviation, but the unwrapping
efficiency is the worst. The LS method has the highest
unwrapping efficiency, but the mean and standard deviation
are the largest, and the unwrapping effect is also the worst.
The error indicators of the MCF method are obviously
smaller, and the unwrapping effect is better, but the diversity
of network planning results in its low efficiency. For the PIP–PU
method, the mean and standard deviation of phase errors are
greatly reduced, and the unwrapping efficiency is sub-optimal.
The reason is that the PIP–PU method uses rigorous
mathematical expressions to accurately solve the ambiguity
number, which is equivalent to realize the point-by-point
unwrapping of the four neighborhoods of each reference
point. Even in the phase abrupt change area, the ambiguity
number can also be accurately solved, so the unwrapping
accuracy is the highest. In addition, the traversal method
adopts four-neighborhood expansion, which is similar to the
branch-cut traversal method, so the time cost is not much

FIGURE 14 | Mean scatter plot for phase errors of five groups of repeated experiments.

FIGURE 15 | Standard deviation scatter plot for phase errors of five groups of repeated experiments.
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different from the branch-cut method. Therefore, according to
the overall performance evaluation, the unwrapping effect is
relatively better, which verifies the effectiveness of the
proposed method.

Results and Discussion of Real
Dual-Baseline Interferogram
In the third experiment, we take the real Etna ERS-1/2
interferogram data (5,186 × 1998 pixels) to evaluate the
practicality of this proposed method, which are shown in
Figure 16.

Figures 17A,C show the 3D maps of the solved ambiguity
numbers corresponding to different baseline interferograms. It
can be seen that the terrain has an extreme value of the ambiguity
number in the left area, so there may exist a towering terrain.
Compared with the unwrapping results in Figures 17B,D, the

phase distribution regularity is also consistent with that of the
solved ambiguity number. Figure 17E shows the re-wrapped
result of the long-baseline unwrapping phase, which is highly
consistent with the original interferogram (Figure 16B), then the
difference between the two can get the phase error distribution
map as shown in Figure 17F, and the errors are almost 0. Finally,
the inverted DEM using the long-baseline unwrapping result is
shown in Figure 17G. Compared with the 3D maps of the solved
ambiguity numbers (Figures 17A,C), the distribution regularity
of the three are also highly consistent, which is sufficient to prove
the effectiveness and practicality of the proposed algorithm.

The representative algorithms were selected from the path-
following type, the minimum norm type, and the optimal
estimation type for this long-baseline unwrapping experiment.
The unwrapping results of the branch-cut method, LS method,
and MCF method are shown in Figures 18A–C, respectively.
Since the integral path fails to bypass the residual point, the error

TABLE 2 | Evaluation of different phase unwrapping methods.

Phase unwrapping method Mean/rad Standard deviation/rad Unwrapping efficiency/s

Branch-cut method 0.3145 2.3045 3.46
Quality-guided method 0.0745 1.8014 43.52
LS method 8.4385 7.7512 1.42
MCF method 0.0413 1.4145 6.37
PIP method 0.0278 0.8701 3.04

FIGURE 16 | Real Etna ERS-1/2 interferograms. (A) Short-baseline interferogram (rad). (B) Long-baseline interferogram (rad).
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FIGURE 17 | Unwrapping results of real data. (A) 3D map of the solved ambiguity numbers for short-baseline interferogram. (B) Unwrapping results for short-
baseline interferogram (rad). (C) 3D map of the solved ambiguity numbers for long-baseline interferogram. (D) Unwrapping results for long-baseline interferogram (rad).
(E) Re-wrapped results of long-baseline (rad). (F) Phase errors between re-wrapped results and original interferogram (rad). (G) Inverted DEM (m).
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FIGURE 18 | Unwrapping results of real data. (A) Branch-cut method (rad). (B) LS method (rad). (C)MFCmethod (rad). (D) Re-wrapped results of the branch-cut
method (rad). (E)Re-wrapped results of the LSmethod (rad). (F) Re-wrapped results of the MFCmethod (rad). (G) Phase errors between re-wrapped results and original
interferogram of the branch-cut method (rad). (H) Phase errors between re-wrapped results and original interferogram of the LS method (rad). (I) Phase errors between
re-wrapped results and original interferogram of the MFC method (rad).
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propagation leads to a large number of wrong unwrapped points
in the whole row of unwrapped results of the branch-cut method.
The results of the LS method are similar to the unwrapping effect
of the Isolation Peak National Park in the second experiment.
Although the phase continuity is guaranteed, the phase errors are
relatively large. The results of the MCF method are particularly
good visually.

Figures 18D–F show the re-wrapped results of long-baseline
unwrapping phase, and Figures 18G–I show the phase error
between re-wrapped results and original interferogram.
Comparing Figures 17E,F, the re-wrapped results of the
branch-cut method still show a large number of wrong
unwrapped points in the whole row, and phase errors from
the original interferogram exhibit a ring-shaped distribution.
The re-wrapped results of the LS method appear as sparser
fringes, missing details of the original interferogram, so phase
errors are so large that they also exhibit a more obvious ring-
shaped distribution. The re-wrapped results and phase error of
the MCF method are highly consistent with the original
interferogram (Figure 16B), and there are some differences
only in the right area. Therefore, from the visual effect of
unwrapping results for real data, the proposed algorithm in
this article also has the highest accuracy.

CONCLUSION

According to the similarity between PIP problem and solving the
number of integral cycles in PU, the former is applied to the PU
for dual-baseline InSAR. Taking the intercept on the vertical axis
as the objective function and a ray as the constraint condition, the
PIP–PU model is constructed, and a new branch and bound
PIP–PU algorithm is deduced and described in detail by graphical
means. This algorithm not only expands the non-ambiguity
interval but also weakens the requirement of the baseline. As
long as the two baselines have different lengths, the PU can be
effectively solved. Finally, the two sets of simulated data by the
sinc function and Isolation Peak National Park DEM and one set
of real data from Etna volcano are used to conduct PU
experiments. Compared with the branch-cut method, quality-
guided method, LS method, and MCF method, this proposed
method has more advantages in phase under-sampling areas and
abrupt topographic change areas. Both visual effects and
quantitative results prove the feasibility, effectiveness, and
practicability of the PIP–PU algorithm. In the follow-up

research, it is necessary to further verify the noise robustness
ability of the PIP–PU algorithm.
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