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The settlement (or subsidence) of mine waste dump is likely to cause landslides, thereby
imposing threats on the safety of human beings and other local properties. Hence, it is
essential to accurately predict the settlement for the early-warning of settlement-induced
geohazards. Traditional mechanical methods require in situ mechanical parameters and
the geological structure of mine waste dump, narrowing their practical applications. In this
paper, we proposed a remote sensing-basedmethod for predicting the settlement of mine
waste dump without the requirement for field observations. Firstly, the historical settlement
and thickness of mine waste dump were measured by space-borne interferometric
synthetic aperture radar (InSAR) and photogrammetry techniques, respectively.
Secondly, the temporal evolution of the settlement of mine waste dump was described
by a secondary consolidation model. Thirdly, the parameters of the secondary
consolidation model were inverted based on the InSAR-measured historical
settlements and photogrammetry-estimated thickness. Finally, the evolution trend of
the settlement of the mine waste dump was predicted with the secondary
consolidation model and its inverted parameters. The proposed method was tested
over a mine waste dump in Weijiamao open-pit mine, China. The result shows that the root
mean square error of the predicted time-series settlement is about 0.8 cm. The presented
method will be beneficial to the assessment and early-warning of the settlement-related
geohazards of mine waste dumps over a large area.

Keywords: mine waste dump, InSAR, ground deformation analysis, consolidation settlement, secondary
consolidation model

1 INTRODUCTION

For open-pit mining activities, earth materials (e.g., rock and soil) overlying ore deposits have to be
mined. These materials are usually placed in heaps or fills (referred to as mine waste dump) over an
area where they will not restrict the exploration of underground ore. Mine waste dump, especially
associated with large open-pit mining activities, is possibly one type of the largest man-made
structure in terms of volume and mass. For instance, a mine waste dump located in the Elk Valley
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region of British Columbia, Canada associated with a large coal
open-pit mining has a cumulative height of up to 400 m and a
mass of 8.5 billion tons of earth materials (Hawley and Cunning
2017). Since mine waste dump generally consists of soil and/or
disaggregated rock (Lianhuan et al., 2018; Cho and Song 2014),
the weak and loose structure of mine waste dump would cause
settlement (or subsidence). The settlement potentially causes
geohazards like landslides and further impose threats on the
safety of human beings, mine’s equipment, and other
infrastructures around the mine (Pinto et al., 2014). Therefore,
it is essential to accurately predict the settlement of mine waste
dump for assessing and controlling the settlement-related
geohazards.

The numerical analysis is one of the most common methods
for predicting the settlement of mine waste dump and further
assessing the geohazard risks (Behera et al., 2016; Verma et al.,
2013; Ashutosh et al., 2013). In the numerical analysis, the
geotechnical parameters and material samples of the
concerned mine waste dumps are firstly in situ collected.
Then, the material properties of the collected samples (e.g.,
unit weight, cohesion, internal friction angle, and Young’s
modulus) are analyzed by laboratory tests. Finally, numerical
methods (e.g., finite element method and limit equilibrium
method) are utilized to predict the potential settlement and
assess the risk of settlement-related geohazards. The numerical
analysis methods can take the complex and irregular geometries,
various types of material properties of mine waste dumps into a
model, thus it usually could reliably assess the geohazard risks, if
the geotechnical and material parameters are accurate (Kainthola
et al., 2013). However, this, in return, implies that the numerical
analysis methods rely on the geotechnical properties and material
parameters of mine waste dump that need to be field surveyed or
laboratory tested. Limited by the high cost, labor-intensive, and
time-consuming characteristics of field surveying or laboratory
tests, the numerical analysis methods are usually used in a local
mine waste dump, rather than in numerous dumps in a large area
simultaneously.

Interferometric synthetic aperture radar (InSAR) is a useful
remote sensing technique, which is able to monitor ground
surface displacements over a wide coverage (e.g., with a swath
width of 250 km for Sentinel-1) with a high spatial resolution
(e.g., 0.25 m for TerraSAR-X) (Gabriel et al., 1989; Massonnet
et al., 1993; Massonnet and Feigl 1998; Bürgmann et al., 2000). It
has become an important alternative to terrestrial surveying
techniques for monitoring surface deformation relating to
various geohazard events, including landslides (Pierluigi et al.,
2019; Carlà et al., 2019; Li et al., 2020), earthquakes (Atzori et al.,
2019; Yu et al., 2020), volcanic eruptions (Suwarsono et al., 2019),
land settlement associated with mining activities (Chen et al.,
2020; Yuan et al., 2021; Qingsong et al., 2021), and consolidation
processing over mine waste dumps (Gong et al., 2021; Williams
et al., 2021; Juan et al., 2021). If we can predict the settlement
trend of mine waste dump based on InSAR observations of
historical settlement, the geotechnical and material parameters
required by the numerical analysis methods will be unnecessary.
In other words, the settlement of numerous mine waste
dumps over a large area can be predicted without the

requirement for field observations in theory. This cannot be
achieved by numerical analysis methods. However, to the best
of our knowledge, it is rather rare to do that to date Roland et al.,
2020.

In this paper, we proposed a new method for predicting the
settlement of mine waste dump based on multi-source remote
sensing techniques and a secondary consolidation model. More
specifically, the historical settlement and thickness of the
concerned mine waste dump were then estimated by space-
borne InSAR and high-resolution photogrammetry techniques.
A secondary consolidation model was then utilized to model the
settlement evolution of mine waste dump on a basis of pixel-by-
pixel. Thirdly, the parameters of the secondary consolidation
model were inverted in the least-square sense. Finally, the
settlement trend of the concerned mine waste dump was
predicted based on the inverted model parameters and the
secondary consolidation model. The proposed method is
theoretically able to predict ground surface settlement of mine
waste dump in a long time due to soil consolidation without in
situ surveying. Therefore, it offers a new tool for assessing the
stability risk of waste dump over a wide area (e.g., thousands of
square kilometers) that cannot be achieved by traditional
numerical analysis methods.

2 STUDY AREA AND DATASETS

2.1 Study Area
In this study, a mine waste dump located in Weijiamao open-pit
mine, China (marked by the red star in Figure 1), was selected to
test the proposed method. The mine waste dump started to
normally operate in the year of 2012 and ceased the operation
in the year 2017. Since the mine waste dump is located above
the loess plateau, and some infrastructures (e.g., industry
buildings and roads) are nearby it (see Figure 1D). Therefore,
it is essential to predict the settlement of the mine waste
dump for assessing its stability and assessing geohazards (e.g.,
landslides).

2.2 Datasets
Ninety SAR images spanning from 30 May 2017 to 14 May 2020
over the study area were firstly collected for monitoring the
historical settlement. These 90 SAR images were acquired by
the Terrain Observation with Progressive Scan imaging mode of
the C-band Sentinel-1A satellite in an ascending orbit (track 113
and frame 126). The pixel spacing of the collected Sentinel-1 SAR
images is about 2.3 and 14.1 m in the range and azimuth
directions, respectively. The mean temporal separation of the
collected SAR images is about 12 days.

In addition, two pairs of ZiYuan-3 (ZY-3) stereo images
were collected for extracting high-resolution digital elevation
models (DEMs) and further estimating terrain elevation and
its changes pattern in this study. The ZY-3 surveying satellite
was launched on 9 January 2012, and it can acquire images
from nadir, forward, and backward viewing angles with spatial
resolutions of 2.5, 3.5, and 3.5 m, respectively (Zhang et al.,
2014). In this study the collected ZY-3 image pairs were
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acquired on 10 October 2012 (close to the date of the
normal operation of the concerned mine waste dump), and
5 May 2019 (after the cease date of dumping operation),
respectively.

3 METHODOLOGY

3.1 Retrieving Historical Settlement Using
Time-Series InSAR
Time-series InSAR techniques can observe historical
displacements of Earth’s surface over time based on a series
of co-registered SAR acquisitions. In the past decades several
algorithms or toolbox have been developed for time series
InSAR processing (Osmanoğlu et al., 2016), e.g.,
Interferometric Point Target Analysis (IPTA) (Werner
et al., 2003), Small Baseline Subset (SBAS) (Berardino et al.,
2002), Permanent Scatterer InSAR (PSInSAR) (Ferretti et al.,
2001), SqueeSAR (Ferretti et al., 2011), and so on. In this

section, we take the IPTA toolbox as an example to briefly
review the main processing steps to generate time-series
displacements.

The IPTA processing begins with the stack of co-registered
SAR images for the construction of interferometric pairs. Firstly,
point targets are selected based on some indicators such as low
temporal variability of the backscatter and high coherence. Then,
the stacks of interferometric phases on those point targets are
processed by traditional differential InSAR chains (e.g., differential
interferogram generation, adaptive filtering, and phase
unwrapping). Thirdly, a stepwise iteration is conducted to
estimate linear deformation phases, height error phases, and
non-linear deformation phases at those point targets. Finally,
time-series displacements at those point targets along the line-of-
sight (LOS) direction are obtained by transforming the linear and
non-linear deformation phases. Since mine waste dump is
primarily made of soft soil, and the settlement generally
dominates the deformation; that is, the horizontal component of
deformation is generally much smaller than the settlement.

FIGURE 1 | (A,B) Location of the study area; (C,D) are optical images of the focusedmine waste dump in the years of 2012 and 2019, respectively. The red circle in
(D) represents the location of the selected reference pixel for InSAR processing.
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Consequently, we neglected the contribution of horizontalmovements
on InSAR LOS deformation and further convert the LOS deformation
to settlement by:

dv(i, j, tobs) � dLOS(i, j, tobs)/cos θ(i, j) (1)
where dv is a settlement at an arbitrary point target (i, j), tobs �
[ tobs1 tobs2 / tobsM ] is a vector of acquisition dates of the
collected M SAR images; dLOS is the deformation in the LOS
direction (positive towards the satellite, and negative away from
the satellite), and θ is the incidence angle of SAR sensor.

3.2 Modeling and Predicting Time-Series
Settlement With a Consolidation Model
The gradual reduction in the volume of soil under sustained load is
called consolidation (Terzaghi et al., 1996). Commonly, the
consolidation settlement is divided into the primary stage which
is normally expected load applied on the soil by the dissipation of
pore pressure, and the secondary consolidation stage which is
continuing under constant effective stress (Hanrahan and Barden
1968). In soft soil such as mine waste dump clearly, the primary
consolidation usually occurs in the operation period, and the
secondary consolidation will continue after the operation.
Consequently, InSAR-measured subsidence is mainly due to the
secondary consolidation, if we neglect other factors potentially
causing subsidence (e.g., rainfall) (Zhang et al., 2019).
According to (EBMEG 2006), the secondary consolidation
can be modeled by:

dv(t) � c · ΔH · log10
t

Tp
(2)

where dv(t) is the time-series settlement due to secondary
consolidation, c is the coefficient of secondary consolidation, ΔH
is the thickness of mine waste dump, t is the entire estimation time
(including the primary and secondary consolidation), and Tp is the
main consolidation completion time. Note that the settlement is
defined as positive, and uplift is defined as negative in Eq. 2.

In Eq. 2, theTp and t can be determined based on the operation
procedure and the expected period that will predict. Consequently,
the key issue for predicting time-series settlement of mine waste
dump using Eq. 2 is determining the coefficient of secondary
consolidation (namely c). As stated in Introduction Section, the
historical settlement of themine waste dump can be obtained using
time-series InSAR. In addition, the parameter c can be generally
considered as constant during the secondary consolidation. Thus,
for a point target (i, j), the coefficient of secondary consolidation
can be estimated based on InSAR observations of historical time-
series settlement using a least-square sense, i.e.,

ĉ(i, j) � (ATPA)−1APL (3)
Where

A � [ΔH(i, j) · log10tobs1Tp
ΔH(i, j) · log10tobs2Tp

/ ΔH(i, j) · log10tobsMTp
]
T

L � [dv(i, j, tobs1) dv(i, j, tobs2) / dv(i, j, tobsM) ]T; P is
a weighting matrix. Having obtained the coefficient of secondary

consolidation, the settlement in the future could be predicted
based on Eq. 2. The general methodology workflow is shown in
Figure 2.

4 RESULTS

4.1 Historical Time-Series Displacements
Retrieval Using IPTA Toolbox
In this study, the collected 90 C-band ascending Sentinel-1A
images from 30 May 2017 to 14 May 2020, were processed
using the IPTA InSAR toolbox. More specifically, the image
acquired on December 10, 2019, was selected to be the master
image, and the remaining images were co-registered with it. Then,
a threshold of the maximum perpendicular baseline of 200 m and
the longest temporal separation of 90 days was designated to
select small baseline interferograms (whose temporal-spatial
baselines are shown in Figure 3). Then, the IPTA was used to
process the formed small baseline interferograms to generate
time-series LOS displacements from 30 May 2017 and 14 May
2020 (see Supplementary Figure S1 in Supplementary
Material). In which, a pixel located in a factory that is
considered to be stable (marked by a red circle in Figure 1D)
nearby the focused mine waste dump was selected to be the
reference pixel, in order to reduce error propagation as much as
possible (Cao et al., 2021). In addition, the phase errors due to
uncertainties of the used external digital elevation model was
iteratively estimated in the IPTA processing chain. Finally, the
historical time-series settlement of the mine waste dump was
estimated using Eq. 1.

Figure 4 shows the estimated accumulative settlement and the
annual settlement velocity of the concerned mine waste dump
from 30May 2017 to 14 May 2020. Owing to the bare surface, the
mine waste dump was monitored with dense InSAR observations
(a total of 4658 coherent points). As is seen in Figure 4, the
settlement on the edge of the mine waste dump is smaller than
that on the central part. In addition, the maximum settlement rate
and accumulative settlement in the mine waste dump, which
occurred in the middle toward the south-west part of the mine
waste dump, are −0.103 m/yr and −0.369 m, respectively. Such a
large settlement is likely to cause geohazards. To analyze the
temporal evolution of mine waste dump settlement intuitively, we
plotted the time-series settlement at randomly selected three
points (P1- P3, marked by black triangles in Figure 4A). The
results are plotted in Figure 5. As is seen, the time-series
settlement from 30 May 2017 to 14 May 2020 at these three
points approximately follows an exponential growth. This is a
typical pattern associated with secondary consolidation of soil.

4.2 Estimating the Parameters of the
Secondary Consolidation Model Using
InSAR Observations and ZY-3 DEMs
4.2.1 Estimating Soil Thickness of the Mine Waste
Dump Based on ZY-3 Images
Prior to the parameter estimation of the secondary consolidation
model, the soil thickness of theminewaste dumpwas estimated using
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photogrammetry technique based on ZY-3 stereo images. The main
procedure for generating DEMs with ZY-3 stereo pairs are three
steps. Firstly, ground control points (GCPs) and tie points are
manually and/or automatically be collected from a different image
view. The block adjustment is then conducted based on the collected
GCPs and tie points. Finally, DEM is generated based on the ZY-3
stereo pairs. Readers can refer to (Yanan et al., 2012; Guo et al., 2015)

for the more detailed processing of DEM generation using stereo
images. As stated in Datasets Section, the ZY-3 satellite can acquire
stereo images from nadir, forward, and backward viewing angles.
Generally, the accuracy of the generated DEMs using the stereo pair
formedwith the forward and backward viewing images is higher than
that with other views (Cai et al., 2015; Liu et al., 2021). Thus, we
generated DEMs of the mine waste dump using the ZY-3 forward
and backward stereo pairs in the years of 2012 and 2019 for
estimating the dump soil thickness.

More specifically, to associate projection coordinates with
the location on a raw image, 20 well-distributed GCPs were
manually collected. With the increase in the number of GCPs,
it can improve the accuracy and quality of DEMs (Shen et al.,
2017). The GCPs were selected on the stable area, such as road
intersections, the corner of the road, the building, etc. The tie
points were automatically obtained by the Fast Fourier
Transform Phase matching method on overlap area in the
stereo images and achieved sub-pixel accuracy. The block
adjustment model was used based on the rational function
model. Note that, before calculating the soil thickness of the
mine waste dump, the slope and aspect-based method (Nuth
and Kääb 2011) was used to co-register the two DEMs in the
years 2012 and 2019 (shown in Figures 6A,B), in order to
ensure that the corresponding pixels in the two DEMs
represent the same geo-location.

Figure 6C shows the soil thickness of the mine waste dump
estimated by calculating the difference of these two co-registered
DEMs in the years of 2012 and 2019. In which, the positive value

FIGURE 2 | The workflow of the presented method.

FIGURE 3 | The temporal and perpendicular baseline of the formed
small baseline interferograms.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8853465

Tabish et al. Settlement Prediction of Mine Waste Dump

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


indicates increased elevation, and the negative value indicates decreased
elevation. As can be seen from Figure 6C, the maximum thickness of
the mine waste dump byMay 2019 is about 85m, which occurs in the
center-south and west-east parts. The location of the maximum
thickness that occurred is spatial coincidence with the maximum
settlement occurred. This validates again that the settlement of
mine waste dumps is related to soil thickness.

4.2.2 Estimating the Parameters of the Secondary
Consolidation Model
Since the coefficient of the secondary consolidation could be
considered as constant at the same point, we could
theoretically estimate it using the thickness of the mine
waste dump and historical settlement in any period of the
secondary consolidation. It should be pointed out that the
mine waste would be tamped using tools like road rollers after
putting them in the dump site, thus the primary consolidation
of the mine waste dump has been completed during the
tamping operation. This implies that the time-series

settlement obtained by InSAR from 2017 to 2020 were
mainly caused by soil secondary consolidation. Hence, we
estimated the coefficient of the secondary consolidation
model at each target point of the IPTA processing using
Eq. 3 based on the estimated soil thickness and the InSAR
observations of time-series settlement from 30 May 2017 to 5
May 2019 (near to the acquisition date of 14 May 2019 of the
lastest ZY-3 images in this study). Note that the time-series
InSAR observations of settlement from 5 May 2019 and 14
May 2020 were used to validate the accuracy of the predicted
settlement due to the unavailability of in situ settlements. The
estimated coefficients of the secondary consolidation model of
the mine waste dump were plotted in Figure 6D.

4.3 Predicting Settlement Trends Using the
Secondary Consolidation Model
Having obtained the coefficients of the mine waste dump,
settlement in the future can be predicted using Eq. 2. Figure 7

FIGURE 4 | Accumulative settlement (A) and the annual settlement velocity (B) over the focusedmine waste dump in the period from 30May 2017 to 14May 2020.

FIGURE 5 | (A–C): Time-series settlement at the points P1-P3 whose locations are marked by black triangles in Figure 4.
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shows the predicted settlement of the mine waste dump in the
years 2025, 2030, and 2035 (i.e., after 5, 10, and 15 years). As
can be seen, the secondary consolidation significantly
increased with increasing the timescale. The maxim
secondary consolidations after 5, 10, and 15 years of
primary consolidations are –0.4575, –0.6045, and –0.7241 m,
respectively. This, in return, suggests that the focused mine
waste dump has not been stable by now, a significant large

settlement may occur in the future, and the governor should
pay more attention to the potential geohazards.

4.4 Accuracy Evaluation of the Predicted
Settlement
As stated previously, the InSAR observations of time-series
settlement from 5 May 2019 and 14 May 2020, which did not

FIGURE 6 | (A,B) are the generated DEMs in the years 2012 and 2019; (C) Soil thickness of the mine waste dump estimated by calculating the difference of the two
co-registered ZY-3 DEMs in the years of 2012 and 2019, respectively; (D) Estimated parameters of the secondary consolidation model and its background is the
elevation difference between the years 2012 and 2019.
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be used to invert the parameters of the secondary consolidation,
were used for accuracy evaluation in this section, due to the lack
of the in situ settlement measurements. More specifically, we first
predicted the time-series settlement at the acquisition dates of the
collected Sentinel-1 images from 5 May 2019 to 14 May 2020
using the inverted coefficients and the secondary consolidation
model. Then, the time-series InSAR settlements in the same
epochs were considered as references for assessing the
reliability of the predicted settlements.

Figure 8 shows a scatterplot between the InSAR-measured
and the predicted settlements from 5May 2019 and 14May 2020.
As is seen, most of them both settlements agree well with each

other with a root mean square error (RMSE) of 0.008 m. In
addition, we fitted the relationship between both of them with a
linear function (marked by a red line in Figure 8). The results
show that the slope and intercept of the fitted line are about 1.04
and 0.003, respectively, and the R-square is around 0.93. These
results suggest that the predicted settlement using the presented
method is reliable. In order to intuitively demonstrate the
differences between the InSAR-measured and the predicted
settlement of the mine waste dump, we added the predicted
time-series settlements at the points P1, P2, and P3 in Figure 5,
where the InSAR-measured time-series settlement between 30
May 2017 and 14 May 2020 are plotted. As is shown, the InSAR-

FIGURE 7 | Predicted settlement of the mine waste dump in 2025 (A), 2030 (B), and 2035 (C), respectively, using the secondary consolidation model and its
inverted parameters.

FIGURE 8 | Scatter plot between the InSAR-measured and the predicted cumulative settlement from 5 May 2019 to 14 May 2020. The red line is the fitted linear
trend between the both.
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measured and the predicted settlements (red line) have a good
agreement with each other. This further indicates that the
presented method in this study is feasible.

5 DISCUSSION

5.1 Influence of InSAR and DEM Errors on
the Parameter Estimation of the Secondary
Consolidation Model
In this study, the coefficient of the secondary consolidation model
was estimated with historical InSAR observations of time-series
settlement and ZY-3 DEMs. Since errors are inevitably contained
in InSAR observations and ZY-3 DEMs, the accuracy of the
estimated coefficient of the secondary consolidation model would
be degraded. Simulation analyses were conducted to illustrate this
issue in detail in this section.

5.1.1 Influence of InSAR Errors on the Parameter
Estimation
We firstly assumed a real coefficient of c = 0.008 (the mean of its
common range from 0.004 to 0.012 for soil) and a dump thickness of
△H = 40m. Then, the real time-series settlement of secondary
consolidation was simulated using Eq. 1 based on the real
coefficient and dump thickness. Thirdly, InSAR observations of
the settlement were generated by adding different level Gaussian
noise (with the same mean of zero and different standard deviations
(STDs) from zero to 25mm) to the real time-series settlement.
Finally, the InSAR observations with different error levels were
used to estimate the coefficient of the secondary consolidation. To
reduce the influence of the generation of Gaussian errors, the above
steps were repeated 1000 times. The results are plotted in Figure 9A.
Note that, Gaussian noise may well not simulate the real error of
InSAR displacement observations due to its complex error sources
(e.g., decorrelation noise, unwrapping errors, and atmospheric phase

screen) (Zebker and Villasenor 1992; Li et al., 2019; Yunjun et al.,
2019; Cao et al., 2021). However, the main aim of using Gaussian
noise simulation in this section is to analyze the influence of InSAR
error magnitude on the accuracy of the estimated coefficient. In this
regard, it is unnecessary to simulate the errors of InSAR displacement
observations accurately.

It can be seen from Figure 9A that, with the error increasing of
InSAR observations, the STDs of the estimated coefficient
(calculating with the results of the 1000 repeated simulation) are
increased but below 0.001 in this simulated case. In addition, the
mean of the coefficient estimate approximately equals the real one
(i.e., 0.008), although the STD of InSAR observations increases from
zero to 25mm. This result indicates that the errors of InSAR
observations have an insignificant influence on the coefficient
estimation of the secondary consolidation. This conclusion is
theoretically expectable. According to Eq. 3, the error propagation
of InSAR observations into the estimated coefficient is inversely
proportional to the thickness of the mine waste dump.
Generally, the thickness of the mine waste dump is much
larger than the error magnitude of InSAR observations. This
implies that the errors of InSAR observations will be
dramatically mitigated when they propagate into the
estimated coefficient. Based on InSAR observation samples
over a far-field and stable area nearby the focused mine
waste dump in the real data experiment, we observed that
the statistical mean and STD of the far-field InSAR
observations were about –0.001 and 0.005 m. Such an error
level has an insignificant influence on the estimated coefficient
of the focused mine waste dump in this case.

5.1.2 Influence of Dump Thickness Errors on the
Parameter Estimation
A simulation analysis was carried out to show the influence of
dump thickness errors on the parameter estimation in this
section. More specifically, the parameters of the secondary
consolidation model were the same as those in Influence of

FIGURE 9 | Influences of InSAR observation errors (A) and dump thickness errors on the estimated coefficients of secondary consolidation (B).
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InSAR Errors on the Parameter Estimation Section. However,
InSAR observations were assumed to be error-free and the
estimation of dump thickness was designated by a range from
20 to 60 m (indicating a relative error to the real one from –50
to 50%). Then, the estimation of dump thickness with
different error levels were used to inverted the model
parameters using Eq. 3, respectively, and the result is
plotted in Figure 9B.

As can be seen from Figure 9B, the dump thickness errors have a
significant influence on the accuracy of the estimated coefficient of
secondary consolidation. For instance, about 50% of errors would be
caused when the uncertainty of the dump thickness reaches up to
50% (i.e., –20m in this study). According to the comparison of the
ZY-3-derivedDEMswith ICESat-2 elevation observations (with error
levels of centimeters, see Supplementary Figure S2 in
Supplementary Material), the accuracies of the ZY-3 DEM
products in the years 2012 and 2019 are about 6.4 and 5.3 m,
respectively. Such an error level would cause a maximum error of
about 0.0016 (occupying 20% of the real coefficient) in this
simulation case.

5.2 Error Influence of the Secondary
Consolidation Model Parameters on the
Accuracy of the Predicted Settlement
The settlement of the mine waste dump was modeled and
further predicted using the secondary consolidation model in
Eq. 2 in this study. As can be seen from Eq. 2, besides the
model inaccuracy, the reliability of the predicted settlement
primarily depends on two factors, i.e., the errors of dump
thickness and the estimated coefficient of secondary
consolidation. In this section, simulation analyses were
conducted to demonstrate the error influence of these two
parameters on the accuracy of the predicted settlement.

5.2.1 Influence of the Coefficient Errors on the
Accuracy of the Predicted Settlement
Similar to the simulation in Influence of InSAR and DEM Errors on
the Parameter Estimation of the Secondary Consolidation Model
Section, we firstly simulated the real time-series settlement of the
mine waste dump (see red line in Figure 10A) by assuming that c =

FIGURE 10 | (A,C): Examples of the influence of thickness errors and coefficient errors on the predicted settlement, respectively; (B,D): Relationship of the
predicted settlement relative errors with thickness and coefficient relative errors, respectively.
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0.008 and △H = 40m. Then, we assumed that the estimated
coefficients were 0.004–0.012, which indicates error levels from
−50 to 50%. Finally, the estimated coefficients with different error
levels were used to predict time-series settlement, and the results are
plotted in Figure 10A for comparison. It can be seen from
Figure 10A that the error of the estimated coefficient significantly
affects the reliability of the predicted settlement using the secondary
consolidation model. The larger the error of the estimated coefficient
is, the lower the reliability of the predicted settlement, and vice versa.
Even for the same error in the estimated coefficient, the error
magnitude of the predicted settlement would be increased with
the increase of the predicted time.

Figure 10B plots a comparison between the relative errors
of the predicted settlement to the maximum predicted one
(referred to as relative error of settlement) and the relative
errors of the estimated coefficient to the real one (referred to
as relative error of coefficient). As is shown, the settlement
relative error is linearly proportional to the coefficient relative
errors with an intercept of zero and a slope of about 16° in the
simulation case. In addition, it can be seen from Figure 10B
that the maximum relative error of the predicted settlement is
about 14.3% when the maximum relative error of the
coefficient reaches up to 50%.

5.2.2 Influence of the Dump Thickness Errors on the
Accuracy of the Predicted Settlement
Figure 10C shows a comparison of the dump thickness errors on the
accuracy of the predicted settlement. In which, the real parameters of
the secondary consolidationmodel were given as c = 0.008 and△H =
40m, and the estimated dump thicknesses were 20–40m (indicating
relative errors of –50–50% of the real thickness). As can be seen from
Figure 10C, the error of the estimated dump thickness imposes a
significant effect on the accuracy of the predicted settlement. The
larger the error is, the lower the accuracy is, and vice versa. In
addition, as is shown in Figure 10D where the relationship between
the relative errors of the predicted settlement and the dump thickness,
both the relative errors are linearly proportional with each other.
When the maximum relative error of the coefficient reaches up to
50%, the error of 14.3% of the maximum predicted settlement will be
caused.

6 CONCLUSION

In this study, a remote sensing-basedmethodwas proposed to predict
the time-series settlement of mine waste dump. The test over
Weijiamao open-pit mine, China, shows that the presented
method can reliably predict the time-series settlement of the mine
waste dump, with an accuracy of 0.008m. In this presented method
the coefficient estimation of the secondary consolidation is sensitive
to the error of thickness estimation but is insensitive to the error of
InSAR observations. In addition, both the errors of thickness
estimation and the estimated coefficient have a significant
influence on the predicted settlement of mine waste dump using
the secondary consolidation model. Therefore, it is important to
obtain the thickness of the concerned mine waste dumps at a high

accuracy level. In addition, it should be pointed out that the
contribution of horizontal movements of mine waste dump was
neglected when we estimated settlement from single-track
InSAR observations of LOS displacements. Such a strategy
would cause errors in the estimated settlement, and further
degrading the accuracy of the predicted settlement. This issue
will be our future research topic.
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