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A comprehensive understanding of the influence of earthworms on the growth and Pb
accumulation of leafy vegetables is significant for soil management and human health. This
study was aimed to evaluate the different influences of two ecological earthworm species
on the growth and Pb accumulation of Brassica campestris in a Pb-contaminated soil and
their relationship with soil physico-chemical properties. In a 30-day microcosm
experiment, the anecic and native earthworm species Amynthas aspergillum and the
epigeic species Eisenia fetida were inoculated in soil artificially contaminated with Pb at
different levels (i.e., 0, 100, 500, and 1,000mg kg−1), and B. campestriswas grown. With a
survival rate of 81%–100%, A. aspergillum was more tolerant to Pb contamination than E.
fetida with 46%–84%. At the same time, earthworm inoculation significantly increased soil
Pb bioavailability (p < 0.05). At the 500 and 1,000mg kg−1 Pb levels, the treatments with
earthworm inoculation showed higher plant biomass, leaf area, and chlorophyll
concentration than the treatments without earthworm. The principal component
analysis (PCA) showed that earthworm inoculation exerted a stronger effect on soil
properties than Pb contamination, but the latter had a stronger effect on plant growth
and Pb accumulation. Compared with A. aspergillum, E. fetida had a greater effect on soil
cation exchange capacity, available Pb, and plant growth and Pb accumulation. In
contrast, A. aspergillum had a greater effect on soil C and N contents than E. fetida.
The co-inertia analysis revealed that plant Pb accumulation was positively correlated with
soil available Pb and CEC. The leaf chlorophyll concentration was closely related to soil Eh,
pH, and Dissolved organic carbon. The findings of this study showed that in the Pb-
contaminated soils, earthworm inoculation exerted a strong effect on soil physicochemical
properties and the growth and Pb accumulation of the leafy vegetable B. campestris. Both
the epigeic earthworm species E. fetida and the anecic species A. aspergillum were
associated with higher Pb accumulation or concentration in B. campestris, which may
bring a possible risk to food security.
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1 INTRODUCTION

Soil Pb contamination has a detrimental impact on soil health and
functionality, and it also poses a risk to humans and other living
organisms due to biomagnification via the food chain (Zulfiqar et al.,
2019; Kumar et al., 2020). Brassica campestris is one of the most
widely consumed and grown leafy vegetables in Asia; meanwhile, it
is a significant route for Pb to enter the food chain. When B.
campestris is cultivated in Pb-contaminated soils, Pb is absorbed by
the roots and translocated to the edible organs (Liu et al., 2020; Ali
et al., 2022), which causes concern for vegetables by highlighting a
potential food safety problem. Therefore, information regarding Pb
accumulation and possible risks in leafy vegetables is urgently
needed to raise public awareness.

When it comes to the bioavailability of Pb, the total
concentration in the soil does not always indicate how Pb is
readily accessible to plants. The bioavailable Pb is the fraction of
Pb taken up by plants, useful in accessing potential metal
bioaccumulation in plants. However, some studies have shown
that Pb uptake by B. campestris is related to Pb bioavailability in
soil (Yang et al., 2016; Liu et al., 2019). Many factors influence the
transformation of Pb from unavailable to available forms. Soil
attributes such as pH, redox potential (Eh), organic matter
content, cation exchange capacity (CEC), and competing
cations govern the bioavailability of Pb in soil (Romero-Freire
et al., 2015; Xiao et al., 2017a; Xiao et al., 2017b). Xiao et al.
(2020b) found that soil microbial properties (e.g., soil microbial
biomass, soil respiration, soil enzyme activities) significantly
affect the accumulation of Pb in brassica leaves. So far, few
studies have focused on the effect of soil macrofauna on Pb
accumulation in leafy vegetables, especially earthworms, which
are keystone species in the soil ecosystem (Gluhar et al., 2021).

Pb bioavailable fraction in soil reflects Pb accumulation in
plants. Earthworm activities such as feeding, digging, and
metabolite excreting strongly influence soil properties and Pb
availability (Porfido et al., 2022; Zhang et al., 2022), hence
enhancing soil Pb participation in the food chain. The abilities
of earthworms to regulate soil properties and Pb bioavailability
are intimately connected to the diverse ecotypes of earthworms
that differ in lifestyles, digestive systems, and feeding behaviors
(Jeyanthi et al., 2016; Sinkakarimi et al., 2020). There are two
distinct processes in which various ecological earthworms can
mediate the fate of Pb. First, the intake of soil Pb incorporated in
mineral particles or organic staff ingested by earthworms varies
with the feeding habits of earthworms, resulting in varying Pb
bioavailability and accumulation. Second, earthworm activities
such as borrowing, casting, and composting influence soil
physicochemical properties, leading to changes in Pb
bioavailability (Wang et al., 2018; Richardson et al., 2020).
Therefore, a new insight to be gained is how earthworm
ecotypes affect the chemical behavior of Pb to involve the
food chain of vegetable-soil systems. In previous studies,
different ecological earthworm species have been
investigated for their influences on metal accumulation in
plant leaves, stems, and roots (Du et al., 2014; Wang et al.,
2020; Guo et al., 2022). However, there is still a lack of
knowledge on how earthworms of different ecotypes

influence the soil physicochemical properties and Pb
bioavailability in the vegetable-soil system.

Based upon the above argument, a microcosmic experiment
was set up with two ecological earthworm species. The anecic
species Amynthas aspergillum feeds on a mixture of soil and little-
decomposed organic debris, showing an exceptional soil-
ingesting ability. The epigeic species Eisenia fetida, which is a
composting earthworm, lives on high quality organic matters
(compost or manure heaps) (Zhang et al., 2020; Paul et al., 2022).
Most previous studies relied on the impact of E. fetida on
vermicompost. So far, few studies have focused on the effects
of these two ecological earthworm species on Pb accumulation,
the growth of leafy vegetables, and the underlying physico-
chemical mechanism. In this study, firstly, we expected that
Pb accumulation and the growth of B. campestris are sensitive
to the presence of earthworms. Secondly, we hypothesized that
the anecic species Amynthas aspergillum would be more efficient
in Pb transformation and accumulation than E. fetida because Pb
is bound to soil particles and has a high affinity to organic matter
and different ecological earthworm species have different feeding
habits. Last but not the least, we hypothesized that Pb
transformation in the soil-plant system and the growth of B.
campestris would be influenced by the changes in soil physico-
chemical properties caused by earthworms and/or Pb input levels.

2 MATERIALS AND METHODS

2.1 Soil, Earthworm Species, and Plant
The soil was collected from the 0–20 cm layer of a fallow vegetable
field located at 23°54′ N and 113°27′ E in Qingyuan City,
Guangdong Province, China. After plant residues and stones
were removed, the soil was air-dried and sieved to <2 mm. The
soil pH, organic C, total N, and C: N ratio were 6.06, 16.6 g·kg−1,
1.30 g·kg−1, and 12.7, respectively, and Pb content was 20mg·kg−1.

Earthworms of A. aspergillum and E. fetida were purchased
from a biofertilizer company in Qingyuan, Guangdong Province,
China. Before the experiment, the earthworms were cultured in
uncontaminated soil with a moisture content of 40%–60% of field
water capacity at 25°C, and organic matter was added for better
growth.

Seeds of B. campestris were provided by the Guangdong
Academy of Agricultural Sciences.

2.2 Experimental Design
A total of 96 pots (18.5 cm × 12 cm × 16 cm) were used in this
experiment. Each pot was filled with 1 kg soil, which had been spiked
with PbCl2 to set up 4 Pb contamination levels of 0, 100, 500, and
1,000 mg·kg−1 (OECD, 2000) and had been aged for 10 months. Six
treatments were further set up in four replicates for each Pb level: 1)
no plant or earthworm (S), 2) B. campestris (SP), 3) A. aspergillum
(SA), 4) E. fetida (SE), 5)B. campestris+A. aspergillum (SPA), and 6)
B. campestris + E. fetida (SPE). In each pot of the SP, SPA, and SPE
treatments, three seedlings of B. campestriswere transplanted, and to
each pot of SA, SE, SPA, and SPE, 23 ± 1 g of healthy clitellate adult
earthworms were introduced. The transplanted seedlings were
healthy and uniform in size. Similarly, the introduced
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earthworms were uniform in weight, 5.73 ± 0.4 g individual−1 for A.
aspergillum and 0.4 ± 0.1 g individual−1 for E. fetida.

During the experiment, the temperature was maintained at
25°C, and the light intensity was 400–800 lx. The earthworms
were prevented from escaping according to Zhou et al. (2016) and
Chen et al. (2017). Soil moisture in each pot was maintained at
field capacity. The day before harvesting, leaf chlorophyll
concentration was measured on the newest fully expanded leaf
using a Konica Minolta SPAD-502 chlorophyll meter (Alordzinu
et al., 2021). After 30 days, plant height, shoot diameter, and the
number of branches were recorded. The plants were harvested,
washed, and oven-dried. The earthworms in each pot were
collected, counted, and weighed before being cultured for
7 days at 25°C to empty the guts. The soil in each pot was air-
dried and passed through 2-mm and 0.149-mm sieves for
chemical analysis.

2.3 Laboratory Analyses
Soil pH and Eh were measured at 1:2.5 soil: water ratio. Soil total
N was quantified by Kjeldahl digestion, organic C was determined
by the dichromate digestion method, and CEC was estimated by
the ammonium acetate (1 mol L−1, pH 7.0) method (Sparks et al.,
1996). Dissolved organic carbon (DOC) was quantified according
to Dai et al. (2004). Available N was measured by the alkaline
diffusion method (Cornfield, 1960).

Soil total Pb was determined by flame atomic absorption
spectroscopy (FAAS) after soil samples were digested with
HCl–HF–HNO3–HClO4 in an electrically heated block digester
(Amacher, 1996). Soil bioavailable Pb was extracted with pH 7.3
diethylenetriaminepentaacetic acid (DTPA) extractant consisting
of 0.005M DTPA, 0.1M triethanolamine (TEA), and 0.01M
calcium chloride (CaCl2) at a soil: solution ratio of 1:2 for 2 h,
centrifuged at 4,000 g for 20 min, then filtered. Finally, Pb was
quantified by FAAS (Lindsay and Norvell, 1978).

For Pb concentration in earthworms, 0.20 g of dried and
crushed (0.2 mm) earthworm sample was homogenized with
8 ml concentrated HNO3 and 2 ml concentrated HClO4 for
12 h and digested at 250°C for 2 h. After cooling, the solution
was diluted to a final volume of 50 ml using deionized water, and
Pb concentration was quantified by FAAS. Using a microwave
digestion system, 0.20 g of plant sample was wet-digested with
aqua regia solution (4 ml HNO3 and 1 ml HCl), and Pb
concentration was quantified using FAAS (Moral et al., 1996).

2.4 Calculations
Leaf area was calculated according to the Montgomery equation
(Shi et al., 2019; He et al., 2020):

LA (cm2) � MP(LL × LW)
Where LA is leaf area (cm2), LL is leaf length (cm), LW is leaf
width (cm), and MP is Montgomery coefficient, which is 0.68.

The transfer factor (TF) of Pb was calculated as (Gupta et al.,
2008):

TF � Pb content in the aboveground parts
Pb content in the belowground parts

The survival rate (SR) of earthworms (%) was calculated as (Wu
et al., 2020a):

SR(%) � Number of earthworms at the end of the expeirment
Number of earthworms at the start of the experiment

× 100

2.5 Statistical Analysis
Data were processed using the SPSS statistical software and
analyzed using one-way ANOVA, followed by Duncan’s
multiple range test and t-test. Data are presented as mean ±
standard deviation, and the significance level was set at p <
0.05. Principal component analysis (PCA) and co-inertia
analysis were performed using the Ade-4 package in R to
explore the influences of earthworms on soil properties, Pb
bioavailability in soil, and Pb accumulation in the plant
(Thioulouse et al., 1997).

3 RESULTS

3.1 Earthworm Biomass, Survival Rate, and
Pb Accumulation
In all treatments, A. aspergillum tolerated Pb contamination
better than E. fetida (Table 1). At the 0 and 100 mg kg−1 Pb
contamination levels, the biomass of A. aspergillum was
decreased by 16% and 5%, respectively, and at the 500 and
1,000 mg kg−1 Pb levels, it was increased by 11% and 2%,
respectively, in SPA at the end of the experiment compared
with at the beginning of the experiment (p > 0.05). At the 0
and 1,000 mg kg−1 Pb contamination levels, the biomass of A.
aspergillum was reduced by 12% and 13%, respectively, and at
the 100 and 500 mg kg−1 Pb levels, it was increased by 2% and
18% (p < 0.05), respectively, in SA at the end of the
experiment compared with at the start of the experiment.
The survival rate of A. aspergillum was high in all treatments,
ranging from 81% to 100% (Table 1).

The biomass of E. fetidawasmarkedly decreased at the end of the
experiment compared with at the beginning of the experiment. At
the 100, 500, and 1,000 mg kg−1 Pb contamination levels, the
biomass of E. fetida was significantly decreased by 54% (p <
0.05), 47% (p < 0.01), and 38% (p < 0.01), respectively, in SPE at
the end of the experiment compared with at the start of the
experiment. It decreased significantly by 22% (p < 0.05), 21%
(p < 0.05), 22% (p < 0.05), and 24% (p < 0.05) in SE at the 0,
100, 500, and 1,000 mg kg−1 Pb levels, respectively. Generally, E.
fetida survived better in the SE treatments, with the survival rates
ranging from 77% to 79% across the Pb contamination levels. It
displayed lower survival rates in the SPE treatments at the 100, 500,
and 1,000 mg kg−1 Pb levels, which were 46%, 53%, and 62%,
respectively (Table 1). At the higher Pb contamination levels, the
earthworms accumulated more Pb in their bodies (p < 0.05,
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Figure 1). At the 500mg kg−1 Pb level, E. fetida accumulated
significantly more Pb in SE than A. aspergillum in SPA (p < 0.05).

3.2 Soil Properties and
DTPA-Extractable Pb
3.2.1 Soil Properties
At the end of the experiment, soil pH ranged from 5.20 to 6.27,
with the highest values in SP and the lowest in SE (p < 0.001,

Table 2). At the 0, 100, 500, and 1,000 mg kg−1 Pb levels, the
inoculation of A. aspergillum alone (i.e., the SA treatment)
substantially decreased soil pH by 0.3, 0.2, 0.4, and 0.4 units,
respectively, the inoculation of E. fetida alone (i.e., the SE
treatment) significantly decreased soil pH by 0.5, 0.7, 0.8, and
0.7 units, respectively, while the growth of plant alone (i.e., the SP
treatment) increased soil pH by 0.3, 0.3, 0.3, and 0.1 units,
respectively, compared with the respective S treatments
(p < 0.05).

TABLE 1 | Biomass and survival rate of the two earthworm species, Amynthas aspergillum and Eisenia fetida, in the treatments with different soil Pb concentrations.

Earthworm species Soil Pb Treatment Biomass Survival rate

mg·kg−1 Day 0 Day 30 %

g·pot−1

A. aspergillum 0 SA 22.8 ± 1.22ANS 20.2 ± 3.81A 87.5 ± 14.4A
SPA 22.8 ± 1.93ANS 19.2 ± 4.62A 81.3 ± 12.5A

100 SA 23.6 ± 1.61A 24.1 ± 2.46ANS 93.8 ± 12.5A
SPA 22.8 ± 1.84ANS 21.7 ± 4.43A 87.5 ± 14.3A

500 SA 22.6 ± 1.71A 26.6 ± 2.37A* 100 ± 0.00A
SPA 22.3 ± 1.88A 24.7 ± 2.52ANS 100 ± 0.00A

1,000 SA 21.8 ± 1.81ANS 19.1 ± 8.10A 81.3 ± 37.5A
SPA 24.5 ± 1.07A 25.1 ± 4.47ANS 87.5 ± 14.4A

E. fetida 0 SE 23.0 ± 0.00A 18.0 ± 2.38A* 78.2 ± 10.3A
SPE 23.0 ± 0.00ANS 19.3 ± 4.02A 84.0 ± 17.5A

100 SE 23.0 ± 0.00A 18.1 ± 3.54A* 78.6 ± 15.4A
SPE 23.0 ± 0.00A 10.6 ± 5.28B* 46.1 ± 23.0B

500 SE 23.0 ± 0.00A 17.9 ± 3.16A* 78.0 ± 13.8A
SPE 23.0 ± 0.00A 12.1 ± 3.35B** 52.6 ± 14.6B

1,000 SE 23.0 ± 0.00A 17.6 ± 2.53A* 76.5 ± 11.0A
SPE 23.0 ± 0.00A 14.3 ± 2.38AB** 62.3 ± 10.4AB

Abbreviations: SA, A. aspergillum was inoculated; SPA, Brassica campestris was grown and A. aspergillum was inoculated; SE, E. fetida was inoculated; SPE, B. campestris was grown
and E. fetida was inoculated.
Different letters indicate significant difference between the different Pb levels for a same treatment at p < 0.05. The t-test was used to compare the biomasses at days 0 and 30 for a same
treatment and a same Pb level, with ***p < 0.001: **p < 0.01: *p < 0.05: ns p > 0.05.

FIGURE 1 | Pb accumulation in the two earthworm species, Amynthas aspergillum and Eisenia fetida, under different Pb contamination conditions. *SA: A.
aspergillum was inoculated, SE: E. fetida was inoculated, SPA: Brassica campestris was grown and A. aspergillum was inoculated, SPE: B. campestris was grown and
E. fetida was inoculated. Different uppercase letters indicate significant differences for a same treatment between different soil Pb levels at p < 0.05; different lowercase
letters indicate significant differences between treatments for a same soil Pb level at p < 0.05.
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In contrast, soil Eh (36.25–102.75 mV) showed its lowest
values in SP and the highest in SE (Table 2). Earthworm
inoculation alone (i.e., the SA and SE treatments) significantly
increased soil Eh in comparison with the S and SP treatments.
The growth of B. campestris alone (i.e., the SP treatment)
substantially lowered soil Eh as compared with the S
treatment except at the 1,000 mg kg−1 Pb level (Table 2). At
the 0, 100, 500, and 1,000 mg kg−1 Pb levels, the inoculation of E.
fetida alone (i.e., the SE treatment) significantly increased soil Eh
by 39, 38, 43, and 39 mV, respectively, while the growth of B.
campestris alone (i.e., the SP treatment) substantially decreased
soil Eh by 16, 19, 18, and 8 mV, respectively, compared with the
respective S treatments. Soil Eh was generally higher in the SPE
treatment than in the SPA treatment except at the 1,000 mg kg−1

Pb level.
The treatments with earthworm inoculation generally

increased soil organic C content compared with the
earthworm-free treatments except at the 500 mg kg−1 Pb level,
where soil organic C content in the SP treatment was higher than
those in the E. fetida addition treatments (Table 2). The
treatments with inoculation of A. aspergillum (i.e., SA and
SPA) generally had higher contents of soil organic C than the
treatments with inoculation of E. fetida (i.e., SE and SPE), with
significant differences at the 100 and 500 mg kg−1 Pb levels (p <
0.05). At the 100 mg kg−1 Pb level, soil organic C was 24%, 19%,
43%, and 18% higher in SA, SE, SPA, and SPE, respectively, than
in S. At the 500 mg kg−1 Pb level, soil organic C was 39%, 12%,

40%, and 15% higher in SA, SE, SPA, and SPE, respectively than
in S (Table 2).

Soil DOC was higher in SA, SE, SPA, and SPE than in S and SP
(p > 0.05) and had the lowest values in SP (Table 2). The SPE
treatment had a higher DOC than the SPA treatment regardless
of Pb contamination level (p > 0.05). At the 0 and 500 mg·kg−1 Pb
levels, SPE exhibited the highest DOC among all treatments,
which was 84% and 56%, respectively, higher than that in S, but a
significant difference was only observed between SPE and SP at
the 0 mg·kg−1 Pb level (p < 0.05). However, at the 100 and
1,000 mg·kg−1 Pb levels, the highest DOC was found in the SE
treatment, which was 50% and 101%, respectively, higher than
that in S, but significant differences were only observed between
SE and S, SE and SP, and SPE and SP at the 1,000 mg kg−1

Pb level.
Earthworm activity generally increased soil total N content

(Table 2). At the 0 mg kg−1 Pb level, soil total N was increased by
20% and 22% (p < 0.05) in SA and SE, respectively, compared
with S. At the other Pb levels, soil total N was also increased in SA
and SE except at the 500 mg kg−1 level where total N was
considerably lower in the SE treatment than in the S
treatment. The SPA and SPE treatments had close values of
soil total N at all Pb contamination levels except at 100 mg kg−1

Pb levels where SPA had amuch higher total N. At the 0, 100, 500,
and 1,000 mg kg−1 Pb levels, soil total N in SPA was 11%, 13%,
18%, and 11%, respectively, higher than that in the respective S
treatment. At the 0, 500, and 1,000 mg kg−1 Pb levels, soil total N

TABLE 2 | Effects of earthworm inoculation and plant growth on soil chemical properties under different Pb contamination conditions.

Soil Pb Treatment pH Eh Organic C DOC Total N Available N CEC

mg·kg−1 mV g·kg−1 mg·kg−1 g·kg−1 mg·kg−1 cmol·kg−1

0 S 6.01 ± 0.07Aab 56.5 ± 3.70Ac 13.8 ± 2.35Aa 65.8 ± 17.9Aab 0.65 ± 0.09Ac 64.8 ± 3.50Aa 3.80 ± 0.19Aa
SP 6.29 ± 0.07Aa 40.8 ± 3.59Bd 14.0 ± 0.52Aa 61.7 ± 16.6Ab 0.69 ± 0.03Abc 61.3 ± 6.70Aa 3.59 ± 0.18Ba
SA 5.71 ± 0.24Abc 73.5 ± 13.7Ab 15.6 ± 0.42Aa 75.1 ± 39.0Bab 0.78 ± 0.04Aa 70.0 ± 8.08Aa 3.63 ± 0.11Aa
SE 5.56 ± 0.53Ac 95.8 ± 9.67Aa 14.2 ± 0.91Aa 80.5 ± 35.4Aab 0.79 ± 0.04Aa 64.8 ± 3.50Aa 3.65 ± 0.09Ba
SPA 5.82 ± 0.24Abc 67.5 ± 13.9Abc 14.5 ± 1.38Ca 101 ± 7.48Aab 0.72 ± 0.05ABabc 68.3 ± 6.70ABa 3.66 ± 0.41Aa
SPE 5.62 ± 0.13Bbc 78.8 ± 7.46Ab 14.6 ± 0.66Aa 121 ± 62.5Aa 0.74 ± 0.05Aab 63.0 ± 5.72Aa 4.01 ± 0.48Aa

100 S 6.04 ± 0.05Ab 54.8 ± 2.87Bc 12.1 ± 0.71Ac 54.3 ± 2.99Aa 0.67 ± 0.02Ab 63.0 ± 0.00Aab 3.78 ± 0.19Aa
SP 6.37 ± 0.02Aa 36.3 ± 1.50Bd 12.5 ± 0.89Ac 46.6 ± 13.2Ba 0.53 ± 0.02Bc 61.3 ± 3.50Ab 3.77 ± 0.17ABa
SA 5.71 ± 0.17Ac 73.3 ± 9.39Ab 15.0 ± 0.56Ab 61.0 ± 42.6ABa 0.73 ± 0.13Aa 59.5 ± 7.00Bb 3.94 ± 0.30Aa
SE 5.37 ± 0.10Ad 92.8 ± 5.80Aa 14.4 ± 0.59Ab 81.2 ± 27.4Ba 0.73 ± 0.03Aa 64.8 ± 3.50Aab 3.67 ± 0.25Ba
SPA 5.91 ± 0.13Ab 61.8 ± 7.41Ac 17.3 ± 1.11Aa 73.4 ± 14.1Aa 0.76 ± 0.03ABa 68.3 ± 3.50ABa 3.89 ± 0.21Aa
SPE 5.66 ± 0.15ABc 76.5 ± 8.43ABb 14.3 ± 0.83Ab 80.7 ± 19.4Ba 0.52 ± 0.02Bc 59.5 ± 4.04Ab 3.97 ± 0.21Aa

500 S 5.95 ± 0.03Ab 59.5 ± 1.73Ac 11.7 ± 0.36Ac 58.4 ± 3.45Aa 0.67 ± 0.03Abcd 64.8 ± 3.50Aa 3.74 ± 0.49Aa
SP 6.27 ± 0.03Aa 41.5 ± 1.91Bd 14.1 ± 1.11Ab 55.8 ± 9.25ABa 0.66 ± 0.02Acd 66.5 ± 7.00Aa 3.89 ± 0.05Aa
SA 5.73 ± 0.06Ac 72.5 ± 3.79Ab 16.3 ± 0.89AAa 58.6 ± 22.8ABa 0.75 ± 0.02ABab 66.5 ± 4.04ABa 3.94 ± 0.19Aa
SE 5.20 ± 0.14Ad 102 ± 8.10Aa 13.1 ± 1.27Abc 86.8 ± 5.89Ba 0.60 ± 0.11Bd 66.5 ± 4.04Aa 4.01 ± 0.09Aa
SPA 6.05 ± 0.12Ab 54.0 ± 6.83Ac 16.4 ± 0.31ABa 83.5 ± 24.3Aa 0.79 ± 0.03Aa 70.0 ± 0.00Aa 3.98 ± 0.29Aa
SPE 5.92 ± 0.24Ab 61.3 ± 13.8Bc 13.4 ± 2.11Abc 91.0 ± 51.5Ba 0.72 ± 0.03Aabc 66.5 ± 9.04Aa 3.88 ± 0.19Aa

1,000 S 5.99 ± 0.05Aab 57.5 ± 2.65Acd 13.2 ± 1.65Aa 47.9 ± 21.1Bbc 0.62 ± 0.06Ab 61.3 ± 3.50Aa 4.02 ± 0.11Aa
SP 6.13 ± 0.10Ba 49.8 ± 5.50Ad 12.9 ± 1.77Aa 29.1 ± 24.3Bc 0.68 ± 0.07Aab 63.0 ± 0.00Aa 3.96 ± 0.06Aab
SA 5.62 ± 0.11Ac 78.0 ± 6.06Ab 15.6 ± 1.91Aa 58.1 ± 10.4Aabc 0.74 ± 0.03Ba 64.8 ± 3.50ABa 3.76 ± 0.12Ab
SE 5.31 ± 0.09Ad 96.3 ± 5.38Aa 13.3 ± 0.76Aa 96.5 ± 53.3Ba 0.69 ± 0.01Aab 64.8 ± 3.50Aa 4.00 ± 0.21Aab
SPA 5.88 ± 0.16Ab 64.0 ± 9.06Ac 14.9 ± 0.92BCa 69.6 ± 16.3Aabc 0.69 ± 0.08Bab 63.0 ± 0.00Ba 3.81 ± 0.20Aab
SPE 5.89 ± 0.12ABb 63.3 ± 6.95Bc 13.2 ± 0.27Aa 87.7 ± 27.6Bab 0.71 ± 0.04Aa 63.0 ± 5.72Aa 3.91 ± 0.16Aab

Abbreviations: DOC, dissolved organic carbon; CEC, cation exchange capacity; S, without earthworm or plant; SP, Brassica campestris was grown; SA, Amynthas aspergillum was
inoculated; SE, Eisenia fetida was inoculated; SPA, B. campestris was grown and A. aspergillum was inoculated; SPE, B. campestris was grown and E. fetida was inoculated.
Different uppercase letters indicate significant differences between different soil Pb levels for a same treatment at p < 0.05; different lowercase letters indicate significant differences
between treatments for a same soil Pb level at p < 0.05.
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in SPE was increased by 14%, 7%, and 15%, respectively,
compared with the respective S treatments (Table 2).

At both the 100 and 500 mg kg−1 Pb levels, the highest soil
available N was found in SPA (Table 2). For the SA treatments,
soil available N was 70.0 mg kg−1 at the 0 mg kg−1 Pb level but
decreased significantly to 59.9 mg kg−1 at the 100 mg kg−1 Pb
level. For the SPA treatments, soil available N was 70.0 mg kg−1 at
the 500 mg kg−1 Pb level but decreased significantly to
63.0 mg kg−1 at the 1,000 mg kg−1 Pb level.

For the same Pb contamination level, there were no significant
differences in soil CEC between the treatments except at the
1,000 mg kg−1 Pb level, where the CEC in S was significantly
higher than that in SA.

3.2.2 DTPA-Extractable Pb
For a same treatment, there were significant differences (p < 0.05)
in soil DTPA-extractable Pb content between the 4 Pb
contamination levels (Figure 2). At the end of the experiment,
soil DTPA-extractable Pb was generally higher in the treatments
with inoculation of earthworms than in S and SP, and the
differences were significant at the 0 mg kg−1 Pb level (p <
0.05). At the 100 mg kg−1 Pb level, soil DTPA-extractable Pb
was significantly higher (p < 0.05) in SPE than in S, SP, SE, and
SPA. At the 500 mg kg−1 Pb level, soil DTPA-extractable Pb was
significantly higher (p < 0.05) in SA and SPA than in SP and SE.
At the 1,000 mg kg−1 Pb level, soil DTPA-extractable Pb was
significantly higher (p < 0.05) in SA and SPA than in S and SPE.
Compared with SP, soil DTPA-extractable Pb in SPE was
increased by 22% (p < 0.05), 13% (p < 0.05), and 8% (p >
0.05) at the 0, 100, and 500 mg kg−1 Pb levels, respectively, but
was decreased by 0.8% at the 1,000 mg kg−1 level. Similarly,
compared with SP, soil DTPA-extractable Pb in SPA was
raised by 26% (p < 0.05), 12% (p < 0.05), and 2% (p > 0.05)

at the 0, 500, and 1,000 mg kg−1 Pb levels, respectively, but was
decreased by 2% at the 100 mg kg−1 Pb level.

3.2.3 PCA Analysis of the Soil Properties
PCA analysis revealed significant differences in soil properties
between treatments at the same Pb pollution level (Figures
3A,B). The first factor extracted (36.3% of the variance
explained) indicated the effects of earthworm inoculation and
plant growth on soil pH, Eh, and C and N forms across all
treatments (Figure 3A). The presence of earthworms and plants
increased the contents of different soil C and N forms and soil Eh
but decreased soil pH (Figure 3B, p < 0.05). The second factor
extracted (23.3% of the variance explained) characterized the
influence of Pb contamination level on soil CEC and available Pb
content (Figure 3C). The high Pb contamination levels resulted
in high soil CEC and available Pb content. Compared with A.
aspergillum, the inoculation of E. fetida led to greater increases in
soil CEC and DTPA-extractable Pb at the 1,000 mg kg−1 Pb level
and smaller decreases in soil pH. The distance between SPA and
SPE was longer than that between SA and SE, indicating greater
interspecific differences in the plant + earthworm treatments than
in the earthworm alone treatments.

3.3 Plant Growth, Pb Accumulation, and TF
3.3.1 Plant Growth
Generally, the plant growth was not much affected by the Pb
contamination levels. Only at the 500 and 1,000 mg kg−1 Pb
levels, yellow leaves of B. campestris were observed in the
treatment without earthworms (i.e., SP), indicating that plant
growth was impaired (Table 3).

The addition of earthworms mitigated Pb phytotoxicity and
markedly improved plant growth, which was evident by the
increases in plant biomass, leaf chlorophyll concentration, and

FIGURE 2 |Diethylenetriaminepentaacetic acid (DTPA)-extractable Pb contents in different treatments at 0, 100, 500, and 1,000 mg kg−1 Pb contamination levels.
*S: without plant or earthworm, SP: Brassica campestris was grown, SA: Amynthas aspergillum was inoculated, SE: Eisenia fetida was inoculated, SPA: B. campestris
was grown and A. aspergillum was inoculated, SPE: B. campestris was grown and E. fetida was inoculated. Different uppercase letters indicate significant differences
between different Pb levels for a same treatment at p < 0.05; different lowercase letters indicate significant differences between treatments for a same soil Pb level at
p < 0.05.
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leaf area at the end of the experiment across all Pb contamination
levels (p < 0.05,Table 3). Compared with plants alone (i.e., SP), the
addition of E. fetida in SPE increased plant biomass by 55% (p <
0.05), 36% (p > 0.05), and 138% (p < 0.05) at the 100, 500, and
1,000 mg kg−1 Pb levels, respectively, and the addition of A.
aspergillum in SPA increased plant biomass by 17% and 30% at
the 500 and 1,000 mg kg−1 Pb levels, respectively. At the 500 and

1,000 mg kg−1 Pb levels, the introduction of A. aspergillum
significantly increased leaf chlorophyll concentration by 95%
(p < 0.05) and 199% (p < 0.05), respectively, and the
introduction of E. fetida significantly increased leaf chlorophyll
concentration by 118% (p< 0.05) and 228% (p< 0.05), respectively.
Also, at the 500 and 1,000 mg kg−1 Pb levels, the introduction of A.
aspergillum increased leaf area by 21% (p > 0.05) and 51% (p <

FIGURE 3 | Principal component analysis of soil characteristics in the different treatments. (A): Correlation circle of the soil properties; projection of experimental
points according to treatments; (B) Treatments with or without earthworms. (C) Treatments at different Pb contamination levels of 0, 100, 500, and 1,000 mg·kg-1 Pb.
DOC: dissolved organic carbon; CEC: cation exchange capacity. S: without plant or earthworm, SP: Brassica campestris was grown, SA: Amynthas aspergillum was
inoculated, SE: Eisenia fetidawas inoculated, SPA: B. campestris was grown and A. aspergillumwas inoculated, SPE: B. campestriswas grown and E. fetidawas
inoculated.

TABLE 3 | Effects of the two earthworms species, Amynthas aspergillum and Eisenia fetida, on the growth of Brassica campestris.

Soil Pb Treatment Plant height Shoot
diameter

Number of
branches

Leaf
chlorophyll

concentration

Leaf area Aboveground fresh
biomass

mg·kg−1 cm mm SPAD Value cm2 g

0 SP 24.8 ± 8.60ABa 5.12 ± 0.67ABa 8.25 ± 2.22ABa 37.5 ± 3.47Aa 23.3 ± 10.9ABa 24.1 ± 10.1ABa
SPA 11.7 ± 3.40Bb 5.04 ± 1.34ABa 7.25 ± 1.23Aa 38.1 ± 5.01Ba 21.5 ± 4.01Ba 15.2 ± 6.98Ca
SPE 19.9 ± 8.24Aab 4.68 ± 1.13a 8.25 ± 0.96Ba 36.5 ± 5.14Ca 26.9 ± 15.8Aa 25.3 ± 13.2Ba

100 SP 18.2 ± 3.11Bb 5.41 ± 0.62ABa 9.00 ± 1.41ABa 37.1 ± 3.83Aa 31.5 ± 4.03Aa 20.8 ± 3.85ABb
SPA 19.3 ± 3.65Ab 5.17 ± 1.09ABa 7.00 ± 1.41Aa 40.5 ± 7.31ABa 23.5 ± 7.82Ba 21.0 ± 4.06BCb
SPE 29.8 ± 6.22Aa 4.96 ± 0.77Aa 9.00 ± 1.41ABa 43.7 ± 4.02Ba 34.2 ± 11.9Aa 32.1 ± 7.13ABa

500 SP 28.3 ± 9.62ABa 5.78 ± 0.26Aa 10.0 ± 1.41Aa 23.9 ± 4.11Ab 28.2 ± 1.68Ab 30.2 ± 1.42Aa
SPA 25.9 ± 1.64Aa 6.14 ± 0.80Aa 8.50 ± 1.73Aa 46.6 ± 4.89Aa 34.1 ± 5.40Aab 35.2 ± 3.32Aa
SPE 26.2 ± 1.57Aa 6.41 ± 0.94Aa 10.3 ± 1.26Aa 52.1 ± 5.24Aa 41.5 ± 12.3Aa 40.9 ± 11.1ABa

1,000 SP 28.8 ± 9.38Aa 4.84 ± 0.41Bab 7.00 ± 1.15Ba 15.7 ± 7.85Bb 17.4 ± 2.06Bc 19.3 ± 4.51Bb
SPA 24.2 ± 7.08Aa 4.42 ± 0.44Bb 10.8 ± 5.74Aa 47.1 ± 2.08Aa 26.1 ± 2.00ABa 25.1 ± 4.40Bb
SPE 29.3 ± 6.90Aa 6.36 ± 1.58Aa 10.3 ± 0.96Aa 51.6 ± 2.09Aa 40.4 ± 7.72Ab 45.8 ± 14.4Aa

Abbreviations: SP, B. campestris was grown; SPA, B. campestris was grown and A. aspergillum was inoculated; SPE: B. campestris was grown and E. fetida was inoculated.
Different uppercase letters indicate significant differences between different Pb contamination levels for a same treatment at p < 0.05; different lowercase letters indicate significant
differences between treatments for a same Pb contamination level at p < 0.05.
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0.05), respectively, and the introduction of E. fetida increased leaf
area by 47% (p < 0.05) and 133% (p < 0.05), respectively (Table 3).

3.3.2 Pb Accumulation in the Plants
The plants treated with E. fetida addition (i.e., SPE) had higher
Pb accumulation in both the belowground and aboveground
parts than the plants in SP and SPA regardless of Pb
contamination level (Table 4). Compared with SP, Pb
accumulation in the aboveground plant parts increased by
257% (p < 0.05), 70%, and 13%, and that in the belowground
plant parts increased by 118% (p < 0.05), 17%, and 0.5% in SPE
at the 100, 500, and 1,000 mg kg−1 Pb levels, respectively. In
contrast, at the 0 mg kg−1 Pb level, Pb accumulation in the
aboveground and belowground plant parts was reduced by 22%
and 48%, respectively, in SPE compared with SP. For the SPA
treatments, Pb accumulation was decreased in the belowground
plant part regardless of Pb contamination level but was decreased
in the aboveground plant parts only at the 500 and 1,000 mg kg−1

Pb levels as compared with the SP treatments.
The concentration of Pb in aboveground plant parts was

higher in SPA than in S and SPE regardless of Pb
contamination level (Table 4). Compared with SP, the Pb
accumulation in SPA was increased by 262% (p < 0.05), 102%
(p < 0.05), 74% (p > 0.05), and 40% (p > 0.05) in the aboveground
plant parts and by 111% (p > 0.05), 19% (p > 0.05), 43% (p > 0.05),
and 39% (p > 0.05) in the belowground plant part at the 0, 100,
500, and 1,000 mg kg−1 Pb levels, respectively.

3.3.3 TF of Pb
The TF index reflects the distribution of Pb between the
aboveground and belowground plant parts (Table 4). The TF
ranged from 2.65 to 0.41, with significantly higher values at the
0 mg kg−1 Pb level as compared with at the other Pb levels. At
the 0 mg kg−1 Pb level, high TF values of 0.98, 2.52, and 2.65
were obtained for SP, SPA, and SPE, respectively. In contrast,
the TF values at 100, 500, and 1,000 mg kg−1 Pb were notably
low, indicating that a larger proportion of Pb was kept in the
roots and prevented from being transferred to the aboveground
edible parts when B. campestris was grown in the Pb-
contaminated soils.

3.3.4 PCA Analysis of the Plant Parameters
The results of PCA analysis indicated significant differences
in the plant growth properties between treatments at the
different Pb pollution levels (Figures 4A–C). The first
factor extracted (44.4% of the variance explained) showed
the influence of Pb addition on plant biomass, leaf area, shoot
diameter, plant height, and Pb accumulation and
translocation (Figure 4A). Higher Pb contamination levels
showed higher plant biomass, leaf area, and Pb accumulation
but lower TF values (p < 0.05, Figure 4C). The second factor
extracted (20.8% of the variance explained) characterized the
influence of earthworm introduction on leaf area, chlorophyll
concentration, and Pb accumulation of plants (Figure 4B),

TABLE 4 | Accumulations and contents of Pb in the aboveground (AG) and belowground (BG) parts of Brassica campestris.

Soil Pb Pb content Pb accumulation

Treatment AG-Pb BG-Pb %
variation

%
variation

AG-Pb BG-Pb %
variation

%
variation

TF

mg·kg−1 mg·kg−1 mg·kg−1 AG-Pb BG-Pb mg·plant−1 mg·plant−1 AG-Pb BG-Pb

0 SP 9.62 ± 6.47Bb 9.43 ± 5.27Ca - - 12.2 ± 4.08Ba 12.3 ± 3.29Ca - - 0.98 ±
0.12Aa

SPA 34.8 ± 17.4Ba 19.9 ± 15.9Ca 262 111 16.8 ± 7.32Ca 9.44 ± 8.19Ba 37.4 −23.1 2.52 ±
1.44Aa

SPE 7.28 ± 2.66Cb 3.97 ± 2.98Ba −24.3 −57.9 9.43 ± 4.46Ba 6.45 ± 6.18Ba −22.7 −47.5 2.65 ±
2.06Aa

100 SP 11.9 ± 4.70Bb 31.7 ± 19.7Ca - - 14.5 ± 2.74Bb 38.6 ± 21.3BCb - - 0.50 ±
0.33Aa

SPA 24.0 ± 4.56Ba 37.8 ± 8.10Ca 102 19.4 20.0 ± 4.98Cb 33.5 ± 15.4Bb 38.7 −13.4 0.65 ±
0.16Ba

SPE 22.2 ± 8.86BCa 41.3 ± 20.5Ba 86.8 30.5 51.6 ± 29.9Ba 84.1 ± 26.0Ba 257 117.6 0.62 ±
0.28Ba

500 SP 47.2 ± 26.9Ba 122 ± 38.4Ba - - 153 ± 56.9Ba 424 ± 157ABa - - 0.41 ±
0.21Aa

SPA 82.0 ± 38.6Ba 175 ± 67.2Ba 73 8 42.8 130 ± 32.7Ba 289 ± 98.5Aa −15.3 −32.0 0.47 ±
0.14Ba

SPE 73.5 ± 57.1ABa 141 ± 54.4Aa 55.7 14.7 261 ± 222ABa 498 ± 227Aa 70.1 17.3 0.55 ±
0.35Ba

1,000 SP 121 ± 55.9Aa 230 ± 94.0Aab - - 404 ± 302Aa 729 ± 484Aa - - 0.70 ±
0.62Aa

SPA 170 ± 92.2Aa 321 ± 86.4Aa 40.3 39.2 164 ± 20.7Aa 356 ± 137Aa −59.4 −51.5 0.52 ±
0.20Ba

SPE 112 ± 41.5Aa 182 ± 43.3Ab −7.54 −21.1 456 ± 222Aa 733 ± 265Aa 12.9 0.53 0.60 ±
0.10Ba

Abbreviation: TF, transfer factor. The different uppercase letters indicate significant differences between the different Pb contamination levels for a same treatment at p < 0.05; different
lowercase letters indicate significant differences between treatments for a same Pb level at p < 0.05.
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showing that earthworm introduction increased leaf area and
chlorophyll concentration compared with the respective
earthworm-free treatments. The two earthworm species E.
fetida, and A. aspergillum showed their interspecific
difference in their influences on the growth and Pb
accumulation of B. campestris.

3.4 Co-Inertia Analysis of the Soil and Plant
Growth Properties
The co-inertia analysis showed that the first axis explained
34.2% of the total variation, and the second axis explained
18.6% of the total variation (Figure 5). Soil bioavailable Pb
and CEC were significantly positively correlated with plant Pb
accumulation, biomass, leaf area, height, and shoot diameter
(Figures 5A,B), which clearly distinguished the treatments
between high and low Pb contamination levels (Figure 5C).
Compared with the treatments with low Pb contamination
levels, those with high Pb contamination levels exhibited
higher soil CEC, available Pb content, plant biomass, leaf
area, and plant Pb accumulation. In addition, soil Eh was
positively correlated with leaf chlorophyll concentration,
while soil pH was negatively correlated with leaf chlorophyll
concentration. The treatments with earthworm inoculation
(SPA and SPE) were separated from those without
earthworm inoculation (SP), with the former associated with
higher projected values of soil Eh and leaf chlorophyll
concentration but a lower projected value of soil pH.

4 DISCUSSION

4.1 Earthworm Survival and Pb
Accumulation
Previous studies concern the effects of metals on earthworms
in terms of loss of weight, mortality, and metal accumulation
in tissue (Xiao et al., 2020a; Zhang et al., 2022). until
yet, few studies have focused on the differential survival
and Pb accumulation between the anecic species A.
aspergillum and the epigeic species E. fetida in Pb-
contaminated soils.

At all the testedPb contamination levels in our study, the earthworm
speciesA. aspergillum exhibited a higher survival rate thanE. fetida. This
earthworm species have been commonly found to survive well in
stressful environments. According to Wu et al. (2020b), A. aspergillum
survived against soil acidification and aluminum toxicity with a survival
rate of 85.8% and an extremely low weight loss rate of 13.4%. In
contrast, the biomass and survival rate of E. fetidawere low at the tested
Pb levels, especially the high Pb levels. Similar findings were reported by
Nahmani et al. (2007a) and Sizmur et al. (2011) that the population,
biomass, sexual development, and cocoon production of E. fetida were
dramatically reduced when the concentrations of heavymetals (e.g., Zn,
Cd, Cu, and Pb) in soil exceeded acceptable levels. However, E. fetida
had a lower survival rate in treatments that contained plants than those
without plants. Our findings could be explained by the possibility that
soil Pb and certain compounds in plant root exudates interact to
generate toxic molecules that impair E. fetida. For better survival of E.

FIGURE 4 | Principal component analysis of the plant growth properties in the different treatments. (A) PCA projection of plant growth properties and Pb uptake;
(B) Treatments with or without earthworms; (C) Treatments at different Pb contamination levels of 0, 100, 500, and 1,000 mg·kg-1 Pb; SP: Brassica campestris was
grown, SPA: B. campestris was grown and Amynthas aspergillum was inoculated, SPE: B. campestris was grown and Eisenia fetida was inoculated.
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fetida in highly polluted soils, organicmatter is often added as a nutrient
and energy source (Nahmani et al., 2007b; Zhang et al., 2016;Wu et al.,
2020a; Raiesi et al., 2020).

In this study, both earthworm species accumulated Pb in their
bodies and accumulated more Pb in the more heavily polluted soils.
Studies show that earthworm species differ in feeding preference,
behavioral characteristics, and metal bioaccumulation (Hickman and
Reid, 2008; Butt and Lowe, 2011; Zhang et al., 2022). Compared with
A. aspergillum, E. fetida accumulated more Pb at the 500 and
1,000mg kg−1 Pb levels. The reason may be because Pb is readily
bound to organic matter, and E. fetida requires a large amount of
organic matter for food. Therefore, more Pb was accumulated by E.
fetidawith the ingestion of organicmatter. Other researchers reported
similar results that E. Veneta, an epigeic species, accumulated
significantly more Pb than Lumbricus Terrestris, an anecic species,
and Allolobophora chlorotica in 112 days (Sizmur et al., 2011).
Earthworm bioaccumulation of Pb can be a useful indicator of soil
bioavailable Pb for Pb risk assessment and remediation strategy
development (Xiao et al., 2020a; Oorts et al., 2021).

4.2 Effect of Earthworm Introduction on
Plant Growth
Pb deactivates critical enzymes, inhibits enzyme activities,
detrimentally affects various physiological and biochemical

processes, impairs photosynthesis, causes cell death, and leads
to leaf chlorosis and stunted growth of plants (Zulfiqar et al.,
2019). Earthworm introduction has improved plant growth in
Pb-contaminated soils (Wang et al., 2006; Yu et al., 2005a). In a
Pb/Zn mine tailings-polluted soil with Pb at 1,202 mg·kg−1, the
shoot biomass of Leucaena leucocephala was improved from 30.0
to 34 g after the addition of Pheretima guillelmi (Ma et al., 2006).
Similarly, E. fetida was reported to considerably promote the
growth of maize (Zea mays) and barley (Hordeum vulgare) in soil
contaminated with Cu, Cd, Pb, and Zn (Ruiz et al., 2009). With
the introduction of Pontoscolex corethrurus, an endogeic and
geophagous earthworm species, to a Pb-contaminated soil
(1,000 mg·kg−1 Pb), the shoot biomass of Lantana camara
increased from 21.52 to 31.77 g, and its root biomass increased
from 19.11 to 24.21 g (Jusselme et al., 2013; Jusselme et al., 2012).
In this study, the introduction of earthworms significantly
increased the biomass, leaf chlorophyll concentration, and leaf
area of B. campestris at the high Pb contamination levels (Table 3;
Figure 4). Chlorophyll, a primary pigment of green leafy
vegetables, was most affected by earthworm inoculation
(Figure 4). The significant relationships between leaf
chlorophyll concentration and the soil properties of pH, Eh,
and DOC (Figure 5) indicate that the earthworms influenced

FIGURE 5 | Co-inertia analysis between soil properties and plant characteristics in the different treatments. (A) Co-inertia projection of plant growth and Pb uptake
properties; (B) Co-inertia projection of soil properties; (C) Score plot of treatments; The squares and arrows represent the projected coordinates of soil physio-chemical
properties and plant growth parameters and Pb accumulation of each pot. DOC: dissolved organic carbon; CEC: cation exchange capacity. SP: Brassica campestris
was grown, SPA: B. campestris was grown and A. aspergillum was inoculated, SPE: B. campestris was grown and E. fetida was inoculated. Pb contamination
levels include 0, 100, 500, and 1,000 mg kg−1 Pb.
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leaf chlorophyll concentration by increasing soil Eh and DOC
content and decreasing soil pH. Soil Eh is an indicator of soil
aeration status. Earthworm activity in soil improves soil aeration
(higher Eh), which improves plant growth and quality (higher
chlorophyll concentration) (Noh and Jeong, 2021). The digestion
process of earthworms speeds up the decomposition of soil
organic matter (higher DOC) (Zhang et al., 2016), which
provides more nutrients for plant growth and results in better
plant growth with a higher chlorophyll concentration. Soil
microorganisms strongly influence the forming and
decomposition of soil organic matter (Sokol et al., 2022).
Further studies should be performed to elucidate the
underlying mechanism of how earthworms affect plant growth
at the molecular level (Jacquiod et al., 2020).

4.3 Effect of Earthworm Introduction on
Plant Pb Uptake
The Pb uptake of B. campestris is affected by biotic and abiotic
environmental factors (Kaur et al., 2018; Xu et al., 2018; Farahat
et al., 2021).

In this study, Pb contamination was the deciding factor in Pb
accumulation in the plants (Figure 4).When B. campestriswas exposed
to high levels of Pb, more Pb was accumulated in the roots, and less Pb
was translocated to the aboveground organs (Table 4; Figure 4),
consistent with the finding of Zhang Z. et al. (2020). The
earthworms affected Pb bioavailability and plant accumulation as
well by altering soil properties, increasing DOC, and reducing pH
(Figure 5). Some studies indicated the association between the increased
bioavailable Pb and the influences of earthworms on soil pH, organic
carbon, and DOC (Lemtiri et al., 2016; Nannoni et al., 2014;Wen et al.,
2004). The possible explanation is that earthworms may release soluble
organic acids, which are responsible for soil pH decrease (Sizmur et al.,
2011). Earthworm activities stimulate metal transformation. It was
found that available Cd and Zn concentrations in A. morrisi casts
were higher than those in the bulk soil, and E. fetida increased the
organically bound Pb (Zhang C. et al., 2020). In this study, the
inoculation of earthworms significantly affected soil CEC and
available Pb content, resulting in higher Pb accumulation in B.
campestris and higher biomass and leaf area (Figure 5). Wu et al.
(2020b) also foundmore exchangeable base cations in earthworm casts
than in the no-ingested soil. High soil CEC implies high concentrations
of such exchangeable base cations asK,Ca, andMg,which contribute to
the increase of plant biomass (Cui et al., 2021). In addition, these cations
compete with Pb for binding sites on soil organic matter and oxides,
resulting in Pb release into the soil solution and absorption by the plants
(Costa et al., 2017; Zhou et al., 2020).

E. fetida increased Pb accumulation in the aboveground and
belowground parts of B. campestris by 12.9%–257% and
0.53%–118%, respectively (Table 4). This is mainly due to the
increase in plant biomass (Table 3). Kaur et al. (2018) also showed
that E. fetida addition mitigated the harmful effects of metals on
plant growth, improved photosynthetic efficiency, and boosted
metal uptake. Moreover, numerous studies have demonstrated that
geophagous earthworms significantly increase Pb uptake of plants
by improving Pb availability and plant growth (Ruiz et al., 2011;

Ardestani et al., 2019; Zhang C. et al., 2020). In contrast, the
introduction of A. aspergillum mainly increased the Pb
concentration instead of its accumulation in plants (Table 4).
This is due to the higher DTPA-extractable Pb concentration and
lower plant biomass in SPA compared with SPE (Figure 2;
Table 3). The higher DTPA-extractable Pb concentration in the
soil led to higher Pb uptake by the plants, which resulted in the
higher Pb concentration in the plants with lower plant biomass.
The mechanisms of how different earthworm species influence
metal accumulation in plants demand further studies.

5 CONCLUSION

In this study, the anecic and native earthworm speciesA. aspergillum
presented a higher Pb tolerance than the epigeic species E. fetida,
which is crucial for the operation of earthworm-assisted
bioremediation techniques in the future. E. fetida had a greater
effect on soil CEC and available Pb, while A. aspergillum had a
greater effect on soil C andN contents. Inoculation ofA. aspergillum
mainly increased the Pb concentration rather than total
accumulation in plants. These results revealed that different
ecological earthworm species have different effects on the
biogeochemical cycle of Pb and soil physico-chemical properties.
Further studies are required to elucidate the mechanism of how
different earthworm species influence soil properties and plant
growth under heavy metal contamination conditions. Moreover,
the high Pb concentration and accumulation in B. campestris in this
short-term (30 days) experiment causes a concern. A
hyperaccumulator plant may need to be introduced together
with earthworms to heavy metal-contaminated leafy vegetable
fields for safe production, which should focus on future studies.
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