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1 INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and/or mutagenic chemicals found in the
environment (Yang et al., 2017; Cheng et al., 2019). They can be produced from a variety of emission
sources, including natural sources such as volcanic eruptions, forestfires, and diagenesis (Ali, 2019;
Bao et al., 2019; Deelaman et al., 2021); anthropogenic sources, for example, traffic sources, domestic
heating, industrial processes, and biomass burning; and some unique sources such as shipping
emissions and firework display (Tobiszewski and Namiesnik, 2012; Pongpiachan et al., 2015; Abdel-
Shafy and Mansour, 2016; Pongpiachan et al., 2017), in which the incomplete combustion of
residential solid fuel is the main source of contribution (Shen et al., 2012; Škrbić et al., 2018; Li Z.
et al., 2019). More than 40% of households worldwide were reported to rely on solid fuels for cooking
and heating, and the proportions were higher in rural areas of developing countries (Zhang and Tao,
2009; Bonjour et al., 2013; Duan et al., 2014; Sun et al., 2018; Du et al., 2021). In rural areas without
pollution control measurements, higher PAH emission factors (EFs) have been achieved in domestic
cooking and heating systems than in industrial combustion processes with pollution control systems
(Oanh et al., 1999; Sun et al., 2018a). Residential solid fuel combustion has been found to contribute
to almost half of the total global PAH emissions (Shen et al., 2013). Low-efficiency solid fuel
combustion in residential areas strongly pollutes both the ambient air and indoor environment
(Gustafson et al., 2008; Lv et al., 2009), inducing many adverse health problems for people inhaling
polluted indoor and outdoor air (Lin et al., 2016; Shen, 2017; Janta et al., 2020; Li et al., 2020).
Numerous studies have indicated that exposure to PAHs might lead to metabolic disorders and
gastrointestinal cancers (Yang et al., 2015; Bhardwaj et al., 2019; Apiratikul et al., 2020). Kong et al.
(2018) conducted field tests in Jiangsu, China, pointing out that inhalation of PAHs emitted from
domestic coal and biomass combustion is associated with high potential cancer risk. The study by Du
et al. (2018a) also showed that the incremental lifetime cancer risk of indoor PAH inhalation using
residential solid fuels in northern China might be as high as 2.3 × 10−4, far exceeding the acceptable
level of 10−6. Growing attention is therefore being paid to PAH emissions caused by residential solid
fuel combustion in rural areas (Secrest et al., 2016; Li et al., 2017; Li et al., 2018; Marchetti et al., 2019).

The main solid fuels burned in residential areas are bituminous coal, charcoal, crop residues, and
wood (Sun et al., 2018a; Kalisa et al., 2019). Bonjour et al. (2013) found that crop residues are the
most commonly used solid fuels for cooking and heating in rural households around the world. As
the largest developing country and a leading agricultural country, China produced 803.2 × 106 t of
crop residues in 2009 and possibly larger amounts in recent years (Song et al., 2014; Yang et al., 2016).
Crop residues are important solid fuels in residences in China. Many studies of PAH emissions from
coal and biomass combustion have been published in recent decades (Tao et al., 2006; Xu et al., 2006;
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Yang et al., 2010; Singh et al., 2013; Chen et al., 2015; Wang et al.,
2018). Some studies were focused on PAH emissions during crop
residue burning (Shen et al., 2011, 2012, 2013a, 2013b; Yang et al.,
2017). At present, most combustion experiments are being
carried out in laboratory test and field measurement (Wei
et al., 2014; Shen et al., 2016; Du et al., 2018b, 2020). Due to
many uncontrollable factors, the EFs of PAHs measured in the
field measurements are usually higher and have great variations
(Shen et al., 2011,; Yang et al., 2017; Sun et al., 2018b). Shen et al.
(2011) determined PAH emissions when nine types of crop
residues commonly used were burned in a typical cooking
stove in rural areas in China. The mean total PAH EFs were
63 ± 37 mg kg−1 in the range of 27–142 mg kg−1. Shen et al.
(2013b) tested that the EF of 28 PAHs was 13 ± 4.8 mg kg−1 for
poplar branch combustion in a typical brick cooking stove. Zhang
et al. (2021) observed much higher PAH EFs (ranged from 736 to
1033 mg/kg) in typical solid fuel combustions in rural
Guanzhong Plain, China. Nowadays, there are huge gaps in
data availability, as well as regional differences between
different fuel types and stoves (Du et al., 2020). Therefore, it is
necessary to fully obtain the EFs of PAHs in different real-world
fuel-stove combinations and spatial differences.

In this study, PAH emissions were investigated when crop
residues were burned in domestic stoves in rural China. The
objectives were 1) to measure the PAH emissions when different
crop residues are burned in traditional and improved stoves and
2) to evaluate the carcinogenic risks induced by PAH emissions
from traditional and improved stoves burning different crop
residues. The study was expected to improve the data available
on crop residue combustion in rural areas and decrease
uncertainties in PAH emission inventories. The data were
expected to enable PAH emissions from domestic stoves in
rural China to be estimated and carcinogenic risk assessments
to be performed.

2 MATERIALS AND METHODS

2.1 Field Site, Fuels, and Stoves
The study was performed in two rural areas of northern China
(see Supplementary Figure S1). One location was in Huairou,
Beijing (40.45°N, 116.70°E), and the other was in Cangzhou,
Hebei Province (37.95°N, 116.86°E). These two areas are
similar to most rural areas in China, where crops and trees are
widely planted, resulting in a large amount of crop residues. Due
to the undeveloped infrastructure and lack of central heating,
local residents of these areas mainly use biomass stoves for their
daily cooking and heating requirements. Thus, the resultant air
pollution and health problems cannot be ignored.

Six commonly used crop residues (apricot branches, chestnut
branches, corn cobs, corn straw, cotton straw, and poplar branches)
were used in the emission tests. The C, H, N, O, and S contents were
determined by using an element analyzer (vario EL cube, Elementar,
Germany). In the CHNSmode, the temperatures of furnaces ranging
from 1 to 3 are 1,150, 850, and 0°C, respectively. In O mode, the
temperature of furnace 1 is 1,150°C, and the temperatures of
furnaces 2 and 3 are 0°C. Each crop residue was tested three times.

Two types of typically self-built adobe stoves (a traditional
stove and an improved stove), which are widely used for domestic
cooking and heating in rural China, were used. The traditional
stove was 40 cm high with one chamber, a 1.1 m tall chimney with
a column diameter of 0.1 m without grates. The improved stove
was 60 cm high with a chamber, a 2.3 m tall chimney with a
column diameter of 0.3 m and a grate. The main difference
between the improved and traditional stove is the grate, which
can improve the ventilation, leading to complete combustion. A
total of 20 stoves were measured (five traditional stoves and five
improved stoves in Huairou, Beijing; four traditional stoves and
six improved stoves in Cangzhou, Hebei Province). The two types
of stoves are shown in Supplementary Figure S2. Sample
information and the fuel properties are shown in Table 1.

2.2 Combustion Experiments and the
Sampling System
The samples were collected during normal cooking, and the local
residents were required to conduct fuel combustion activities as
usual. Sampling covered the entire combustion process from
ignition to burnout. Each test lasted for about 20–30 min. The
crop residues were weighed to calculate the weight loss by
combustion before each combustion test and the ash
remaining in the stove after a combustion process. All
samplings were repeated twice.

The sampling system is shown in Figure 1; there are five parts,
a sampling pipe to collect flue gases from the stove chimney, a
hot-box for heating the flue gas to avoid condensation, a mixing
room to dilute the flue gases with dry and filtered air, a PM2.5

cyclone to remove the particles with diameters >2.5 μm from the
flue gases (at a flow rate of 16.7 L min−1), and a sample-collection
unit with three channels. One channel is to collect the gaseous
and particulate-bound PAHs using quartz filters (QF, 47 mm in
diameters, 2500QAT-UP, PALL Corp., United States) and three
polyurethane foam (PUF, 22 mm diameter × 7.6 cm, Restek
Technology Co., Ltd., China) cartridges in series, respectively.
The flue gases were passed through the QF and then the three
PUF cartridges (to avoid the breakthrough phenomena). There
was a flow meter and pump at the end of the sampling train, after
the PUF cartridges. The flow rate was ~7 L min−1. The second
channel is to collect PM2.5 used for elemental and organic carbon
(EC and OC) analyses using a teflon filter (47 mm in diameters,
PALL Corp., United States) and a QF, and the flow rate was
~5 L min−1. The last one is parallel sampling of channel 2 using
two QFs with the flow rate of approximately 5 L min−1. The
dilution ratio was approximately 10 during the tests. Another
probe placed at the center of the chimney was connected to a flue
gas analyzer (Ratnoze 3, Mountain Air Engineering,
United States), which can quantify the carbon dioxide (CO2)
and carbon monoxide (CO) concentrations. The flue gas analyzer
was calibrated before each test using a gas standard. The average
flue gas velocity was at the level of 1.6 ± 0.7 m s−1 for traditional
stoves and 1.9 ± 0.3 m s−1 for improved stoves. There was no
obvious difference between the temperature of flue gas for the
traditional and improved stoves, and the average temperature at
the sampling points was 9.0 ± 3.4°C.
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2.3 Extraction and Analysis
Gravimetric filtration was used to determine the PM mass
measurement. The masses of PM2.5 were measured by the particles
on teflon filters (TFs) that were weighed using a microbalance (MT5,
Mettler Toledo, Switzerland). The TFs were preconditioned at 650°C
for 8 h to remove the organic contaminants. EachTFwas cut a 1.5 cm2

circle to determine the OC and EC using an OCEC analyzer (Model
5 L, Sunset Laboratory) with IMPROVE A method.

PAH sample extraction and analysis methods referred to
previous studies (Cao et al., 2017). QFs and PUFs were
purified, concentrated, and then analyzed using an Agilent
1290 high-performance liquid chromatography system (Agilent
Technologies, Santa Clara, CA, United States) with an Agilent
G1314A UV detector. A total of 16 U.S. EPA priority PAHs were
quantified (the substances and abbreviations are shown in Table 2).
All the samples were added with a mixed standard (naphthalene-
D8, acenaphthene-D10, phenanthrene-D10, fluoranthene-D10, and
chrysene-D12, J&WChemical, United States) andwere quantitatively
analyzed by the internal standard method. Detailed information can
be found in Supplementary Material S1.

2.4 Data Analysis
2.4.1 Calculation of EFs
The carbon mass balance method was used to calculate the
emission factors (EFs). For this method, it was assumed that
all of the carbon in a fuel was released as gases [CO2, CO, and total
hydrocarbons (THC)] and particles [organic carbon (OC) and
elemental carbon (EC)] during combustion (Dhammapala et al.,

TABLE 1 | Sample information and fuel properties.

Fuel Sampling
location

Stove Abbreviation MCE N % C % H % S % O %

Corn cob Huairou, Beijing Traditional TCC 0.93 ± 0.02 0.8 ± 0.2 43.5 ± 0.3 5.9 ± 0.1 0.3 ± 0.1 45.2 ± 0.2
Improved ICC 0.90 ± 0.11

Corn straw Huairou, Beijing Traditional TCS 0.92 ± 0.04 0.8 ± 0.1 42.4 ± 0.5 5.8 ± 0 0.6 ± 0.1 42.6 ± 0.4
Improved ICS 0.89 ± 0.01

Apricot branch Huairou, Beijing Traditional TAB 0.95 ± 0.05 0.4 ± 0 44.4 ± 0.4 6.0 ± 0.1 0.2 ± 0.2 45.1 ± 0.5
Improved IAB 0.91 ± 0.07

Chestnut branch Huairou, Beijing Traditional TCB 0.88 ± 0.02 1.3 ± 0.1 47.3 ± 0.6 5.4 ± 0.2 0.5 ± 0.4 40.3 ± 0.3
Improved ICB 0.91 ± 0.13

Poplar branch Huairou, Beijing Traditional TPB 0.80 ± 0.06 1.1 ± 0.1 46.4 ± 0.4 6 ± 0.2 0.1 ± 0.1 39.8 ± 0.2
Improved IPB 0.83 ± 0.12

Cotton straw Cangzhou, Hebei province Traditional TCT 0.90 ± 0.03 1.4 ± 0.2 45.8 ± 0.6 5.7 ± 0.1 0.2 ± 0.2 42.1 ± 0.5
Improved ICT 0.89 ± 0.09

MCE, modified combustion efficiency, MCE = CO2/(CO2+CO).

FIGURE 1 | Schematic diagram of the sampling system.

TABLE 2 | Substances and abbreviations of 16 PAHs.

Substance Abbreviation Substance Abbreviation

Naphthalene Nap Chrysene Chr
Acenaphthene Act Benz[a]anthracene BaA
Fluorene Flr Benzo[b]fluoranthene BbF
Acenaphthylene Acl Benz[k]fluoranthene BkF
Phenanthrene Phe Benzo[a]pyrene BaP
Anthracene Ant Dibenz[a,h]anthracene DBahA
Fluoranthene Flu Benz[ghi]perylene BghiP
Pyrene Pyr Indeno[1,2,3-cd]pyrene IP
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2007). The details on the calculation process can be found in
Supplementary Material S2.

2.4.2 Carcinogenic Risk Assessment
The carcinogenic risks induced by PAHs are generally expressed
as benzo[a]pyrene (BaP) toxic equivalents (TEQBaP) (Nisbet and
LaGoy 1992; Apiratikul et al., 2020, 2021; Deelaman et al., 2020a,
2020b, 2021). The toxic equivalents of each PAH (TEQi) were
equal to the concentration of each PAH in the sample (Ci),
multiplied by its toxic equivalency factor (TEFi). The equation
used to calculate the TEQBaP is shown in Eq. 1:

TEQBaP � ∑ (TEQi) � ∑
i

(CipTEFi). (1)

The values of TEFi are based on the study by Nisbet and
LaGoy. (1992). More details were described in Hao et al. (2018).
TEF values are listed in Supplementary Table S1.

2.5 Statistical Analysis
Statistical analysis was performed by Statistical Package for the
Social Sciences version 19.0 software (IBM, Armonk, NY,
United States). Statistically significant differences were
identified by performing the analysis of variance (ANOVA)
and t-test using a significance level of 0.05.

2.6 QA/QC
PUFs were extracted three times with dichloromethane by
ultrasonication for 30 min before use. QFs were baked at
550°C in a muffle furnace for 12 h before use. The field blanks
were analyzed and used to correct the concentration of samples.
The standard reference material, “Urban-Dust, SRM 1649b” [U.S.
National Institute of Standards and Technology (NIST), MD,
United States] was determined to verify the recovery of the
extraction method and the accuracy and precision of the
analysis method. The determined concentrations were within
acceptable value ranges according to SRM 1649b. The recovery
percentages ranged from 76.0 ± 15.7 (Ant) to 107.4 ± 18.2
(DBahA). The relative standard deviations (n = 5) for all the
target compounds were <5%. The detection and quantification

limits were calculated as the concentrations correspond to 3- and
10-times the standard deviation of the blank noise, respectively.
The PAH detection limits ranged from 0.4 ng/ml (for Phe) to
9.1 ng/ml (for Ant). The quantification limits for the 16 PAHs
ranged from 3.2 (for Phe) to 30.3 ng/ml (for Ant). Relevant
method validation data are shown in Supplementary Tables
S2, S3.

3 RESULTS AND DISCUSSION

3.1 PAH EFs
The EFs of PAH isomers from six crop residues and two stove
types are listed in Supplementary Table S4. Figure 2 shows the
EFs of16 PAHs (gas + PM2.5 bound) and the fraction of
particles of 16 PAHs in PM2.5 and OC in six fuels and two
stoves. The EFs of total 16 PAHs ranged from 49.4 mg kg−1 (for
TAB) to 160.5 mg kg−1 (for TPB) for traditional stoves and
26.8 mg kg−1 (for IAB) to 104.9 mg kg−1 (for IPB) for
improved stoves, respectively. The EFs of total 16 PAHs in
improved stoves were significantly reduced compared with
those of traditional stoves, resulting in an average decrease of
45.1%. The good air supply in the improved stoves decreased
incomplete combustion, decreasing the amounts of PAHs formed
(Sun et al., 2018a). The PAH EFs for apricot branches, chestnut
branches, corn cobs, and corn straw were similar. Cotton straw
and poplar branches produced larger amounts of PAHs than
the other crop residues. Singh et al. (2013) also found a high
total PAH EF for cotton straw. However, Sun et al. (2018b)
found much lower organic carbon EFs for ligneous plants (e.g.,
pine and poplar) than herbaceous plants (e.g., corn cobs and
cotton straw). The high PAH EF for poplar branches was
probably caused by the low combustion temperature used, the
moisture content of the poplar branches, and the air supply used
(Lu et al., 2009).

As shown in Figure 2, higher PAH EFs were found for the
particulate phase than the gas phase. In addition to TCT and
ICT, the particulate phase PAHs accounted for 89.3% of the total
PAHs averagely, which may be caused by the high content of high
molecular weight (HMW) PAHs in the particles. The combustion
process in rural households can increase the content and
composition of HMW PAHs, which is a common indicator of
solid fuel combustion (Yan et al., 2006; Li Y. et al., 2019). High
particulate phase PAH contributions to total PAH emissions were
also achieved by Yang et al. (2017) and Singh et al. (2013), and
particulate phase PAHs were found to respectively contribute to
~75.5% and ~87.6% of the total PAH emissions from various crop
residues. Figure 2 also shows the mass fractions of the EFs of
particulate phase PAHs to PM2.5 and OC, which ranged from
0.5% to 8.2% (for PM2.5) and from 1.1% to 13.6% (for OC),
respectively. The results were comparable with those of Sun et al.
(2018a).

A negative correlation was observed between the PAH EFs and
MCE, as previously widely reported (p < 0.05, shown in Figure 3)
(Shen et al., 2013; Du et al., 2021). The PAH EFs were positively
correlated with the EFs of CO (p < 0.05) since both were the
products of incomplete combustions. Similarly, the EFs of

FIGURE 2 | PAH EFs and the fraction of particles PAHs in PM2.5 and OC.
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particulate phase PAHs were also positively correlated with the
fraction of particles of PAHs in PM2.5 and OC, respectively (p <
0.05). Increased PAH emissions from stove combustions are often

accompanied by higher PM2.5 and OC emissions, indicating the
higher PAHs emissions and the higher potential toxicity of
particles (Du et al., 2020, 2021).

FIGURE 3 | Correlations between PAH EFs and other EFs (data were log transformed). (A) Correlations between EFs of particulate phase PAHs (EFparticulate PAHs)
and the fraction of EFparticulate PAHs in PM2.5; (B) Correlations between EFparticulate PAHs and the fraction of EFparticulate PAHs in OC; (C) Correlations between PAH EFs and
MCE; (D) Correlations between EFs of PAHs and CO.

FIGURE 4 | Comparison of PAH EFs in existing studies.
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In this study, the mean gas phase, particulate phase, and total
PAH EFs were 18.9 ± 24.2, 63.2 ± 43.3, and 82.1 ± 38.5 mg kg−1,
respectively, for the traditional stoves and 9.6 ± 15.9, 38.0 ± 29.1,
and 47.6 ± 29.8 mg kg−1, respectively, for the improved stoves.
The PAH EFs between the traditional stoves and improved stoves
were significantly different according to the t-test (p < 0.05).
However, the EFs of PAHs have large variations in previous
studies (as shown in Figure 4). For example, our results agreed
with the investigation from Yang et al. (2017), in which the gas
phase, particulate phase, and total PAH EFs for peanut hulls were
10.77, 33.1, and 43.87 mg kg−1, respectively, for an improved
stove. Wiriya et al. (2016) found the EF of the total PAH from
the burning of maize residue was only 0.5 ± 0.1 mg/kg in a
laboratory chamber, which was three orders of magnitude lower
than our results. However, Zhang et al. (2021) observed much
higher PAH EFs (ranged from 736 to 1033 mg/kg) in typical solid
fuel combustions in rural Guanzhong Plain, China, which were
one order of magnitude higher than our results and four orders of
magnitude higher than the results by Wiriya et al. (2016). It has
been reported that the results of the laboratory test are different
from those in real field measurements (Oanh et al., 2005; Shen
et al., 2013; Du et al., 2018b) because the laboratory tests are
usually performed under well-controlled conditions and the field
measurements are subjected to many uncontrollable factors. In
addition, there are also large variations among different field
measurements (Shen et al., 2013c; Sun et al., 2017; Zhang Y. et al.,
2021; Zhang et al., 2021). Shen et al. (2011) found the gas phase,
particulate phase, and total PAH EFs of 27 ± 13, 35 ± 23, and 62 ±
35 mg kg−1, respectively, for nine commonly used crop residues
burned in a cooking stove typically used in rural areas in China.
Singh et al. (2013) found the gas phase, particulate phase, and
total PAH EFs of 5.09, 35.84, and 40.93 mg kg−1, respectively, for
the crop residue burning in rural households in India. Our results
were higher than the EFs from Shen et al. (2011), Singh et al.
(2013), and Shen et al. (2013b) but lower than the total PAH EFs
of 141–276 mg kg−1 for a traditional stove found by Shen et al.
(2013a). These differences are presumably affected by many
factors, including sampling methods, type of fuels, the stove’s
architecture, and user operation (Wielgosiński et al., 2017; Zhao
et al., 2020). The sampling systems were different although they
had the same field measurement in rural household as previous
studies. Shen et al. (2011, 2013b) used the direct sampling
method, in which the flue gas in the chimney is directly
obtained through the sampling pipe without dilution, whereas
Singh et al. (2013) and this study used a dilution unit to cool down
the diluted flue gas before sampling. In order to avoid the
influence of high temperature flue gas on sampling, the direct
sampling method needs to keep the sampling system including
the filter membrane at a specific temperature, while this problem
can be addressed by diluting and cooling the high temperature
flue gas. However, the dilution rate, dilution ratio, and
temperature of dilution gas will directly influence the quality
and particle size distribution of particulate matter; the
distribution variation of volatile organic compounds induced
by dilution will also have a direct impact on the ratio of OC
to EC in particles. Therefore, it is important to control the
dilution rate and ratios and monitor the temperature and

humidity of dilution gas (Lipsky and Robinson, 2006; Rode
et al., 2006). Furthermore, various stoves with different
architecture were determined in these studies. It was found
that chimneys play an important role in stove performance by
influencing the draft, while the errors in the design impact the
ideal air/fuel ratio (Praoas et al., 2014). In addition, these
differences may also have been affected by many factors,
including the type of fuels (with different properties, e.g., fuel
moisture, volatile matter content, and heating values),
combustion conditions (e.g., temperature and air flow), and
user operation (Wielgosiński et al., 2017; Zhao et al., 2020).

3.2 PAH Profiles
The PAH profiles (the gas and particulate phase) from six crop
residues and two stove types are shown in Supplementary Table
S5. The results indicated that the type of stove affected the PAH
profiles little. The PAH profiles for the apricot branch, chestnut
branch, corn cob, corn straw, and poplar branch combustion
were similar but being different for the profiles for cotton straw
combustion.

The percentages of PAH isomers for all the samples are
presented in Figure 5. Phe and Flu were the dominant gas
phase PAHs, contributing to, respectively, 22.9% and 13.9% of
the total PAH concentrations averagely. BbF and BaP were the
major contributors to the particulate phase and total emissions,
together contributing to 28.7%–31.8% and 24.8%–26.7% of the
total PAH concentrations in the particulate phase and total
emissions, respectively. Organic compounds with low
molecular weight are usually found at higher concentrations in
the gas phase than the particulate phase; organic compounds with
high molecular weight are usually found under higher
concentrations in the particulate phase than in the gas phase.
The actual proportions of a compound found in the gas and
particulate phases are related to the polarity and vapor pressure of
the compound (Shen et al., 2016). Similar to the results for the
PAH isomers, no significant differences were achieved between
the distributions separated by the number of rings for different
stoves and crop residues (p > 0.05) (Figure 6). The three- and
four-ring PAHs were the dominant gas phase PAHs, together
accounting for 54.6%–77.8% of the total PAH concentrations.
The three-ring PAHs were the most abundant, contributing
44.1% of the total PAH concentrations. These results agreed
with the previous study from Yang et al. (2017). Four- and five-
ring PAHs were dominant in both the particulate phase and
total emissions, contributing to 72.8%–95.5% together, of both
the particulate phase and total emissions except for cotton
straw. Five-ring PAHs were the most abundant, which
contributed to 71.7% of the particulate phase and total
emissions. Similar results were found by Lai et al. (2009),
which revealed that four-ring PAHs strongly contributed to
the total PAH concentrations in the gas and particulate phases
but that PAHs in the particulate phase were dominated by PAHs
with more than five rings.

The ratios between different PAH concentrations are often
used to identify sources of PAHs in environmental media
(Yunker et al., 2002; Katsoyiannis et al., 2007; Galarneau,
2008; Ladji et al., 2009). The diagnostic ratios Ant/(Ant +
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FIGURE 5 | Percentages of PAH isomers for all the samples. (A) gas phase samples; (B) particulate phase samples; (C) total emission samples.

FIGURE 6 | Percentages of PAHs separated by the number of rings.
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Phe), Flu/(Flu + Pyr), BaA/(BaA + Chr), BbF/(BbF + BkF), BaP/
(BaP + Chr), and IP/(IP + BghiP) calculated in this study and
previous studies are summarized in Table 3. Hays et al. (2005)
found distinct variation of PAH isomer ratios from crop residue
burning in clean and traditional stoves. However, no significant
differences in the ratios of the improved and traditional stoves are
achieved in this study. Except cotton straw, the PAH isomer ratios
of other five crop residues are mostly similar. It is suggested that
Ant/(Ant + Phe) larger than 0.1 originates from combustion
(Škrbić et al., 2017); the ratio of Flu/(Flu + Pyr) greater than 0.5
arises from biomass and coal combustion (Yunker et al., 2002). In
this study, the values of these ratios fell in the range for biomass
and coal combustion. The ratios derived in this study are
generally comparable to those of crop residue burning in
stoves, chambers, or open fire and wood in stoves reported by
other studies (Table 3). It could be demonstrated that there were
significant differences in the calculated ratios between crop
residue burning in this study and coal combustion. The
measured ratios were also remarkably different with those
from diesel or gasoline engines. However, it is worth noting
that there are some ratios with conflicting results. The IP/(IP +
BghiP) ratio is employed to distinguish coal (> 0.5), biomass
burning (0.2–0.5), and traffic and petrogenic (< 0.2) (Yunker
et al., 2002). In this study, the ratios of IP/(IP + BghiP) for the
traditional stove and improved stove were 0.25 ± 0.08 and 0.15 ±
0.11, respectively. Contradictory results were also obtained by

Chen et al. (2005) and Zhang et al. (2008b), in which IP/(IP +
BghiP) for coal combustion were 0.33 and 0.35, respectively.
Moreover, the ratio of BbF/(BbF + BkF) less than 0.4 indicated
biomass burning (Tobiszewski and Namiesnik, 2012), while the
value in this study was much higher than 0.4. Large variations of
PAH isomeric ratios may be related to the widely varied fuel
properties and combustion conditions (Fang et al., 2004; Yang
et al., 2017). In addition, the aging and degradation of PAHs in
aerosols emitted from primary sources during the transmission
process from the source to sampling medium will cause the
change in the diagnostic ratio (Zhang et al., 2015). On the other
hand, it is confirmed that the PAH diagnostic ratios have
not only intrasource variability but also have intersource
similarity (Galarneau, 2008). For example, the ratio of Flu/
(Flu + Pyr) for diesel emissions was in the range of 0.6–0.7
(Schauer et al., 1999; Yang et al., 2010), while that for coal
combustion has a similar range of 0.32–0.7 (Chen et al., 2005;
Oanh et al., 2005; Zhang et al., 2008a). The BaA/(BaA + Chr)
ratio of gasoline emissions was 0.2–0.6 (Khalili et al., 1995)
similar to coal emissions with the ratio of 0.27–0.56 (Chen
et al., 2005; Oanh et al., 2005; Zhang et al., 2008a). Hence,
although the diagnostic ratios have been widely used in source
apportionment, they should be used with caution (Tobiszewski
and Namiesnik, 2012; Pongpiachan et al., 2017), and multiple
diagnostic ratios should be combined to characterize source
apportionment.

TABLE 3 | PAH isomer ratios found in this study and previous studies.

Ratio This study

TPB IPB TCT ICT TCB ICB TCS ICS TCC ICC TAB IAB

Ant/(Ant + Phe) 0.26 0.26 0.8 0.86 0.06 0.35 0.3 0.26 0.34 0.25 0.12 0.25
Flu/(Flu + Pyr) 0.54 0.55 0.36 0.26 0.5 0.59 0.62 0.59 0.69 0.64 0.53 0.57
BaA/(BaA + Chr) 0.49 0.49 0.52 0.51 0.53 0.58 0.51 0.47 0.52 0.5 0.54 0.48
BbF/(BbF + BkF) 0.85 0.85 0.48 0.4 0.83 0.86 0.89 0.86 0.9 0.74 0.85 0.88
BaP/(BaP + Chr) 0.94 0.94 0.65 0.76 0.89 0.93 0.92 0.94 0.92 0.96 0.85 0.91
IP/(IP + BghiP) — — 0.24 0.35 0.28 0.11 0.13 0.02 — 0.07 0.37 0.17

Ratio This study Reference

Traditional
stove

Improved
stove

Crop residue/
stovea,b,c,d

Crop residue/
chambere,f,g,h

Crop residue/open
firei,j,k

Coal/
stoveb,e,l

Wood/
stovec

Dieselm,n Gasolineo

Ant/(Ant+Phe) 0.31 ± 0.24 0.37 ± 0.22 0.1–0.45 0.18–0.25 0.17–0.25 0.13–0.58 0.1–0.3 — —

Flu/(Flu + Pyr) 0.54 ± 0.1 0.53 ± 0.13 0.43–0.80 0.50–0.53 0.34–0.53 0.32–0.70 0.43–0.74 0.6–0.7 0.4
BaA/(BaA+Chr) 0.52 ± 0.02 0.51 ± 0.03 0.37–0.56 0.46–0.53 0.39–0.50 0.27–0.56 0.39–0.56 0.4–0.7 0.2–0.6
BbF/(BbF+BkF) 0.8 ± 0.14 0.77 ± 0.17 0.35–0.65 0.28–0.41 0.35–0.80 0.60–0.89 0.35–0.51 — —

BaP/(BaP+Chr) 0.86 ± 0.1 0.91 ± 0.06 0.23–0.78 0.56–0.83 0.43–0.98 0.35–0.69 0.38–0.78 — —

IP/(IP+BghiP) 0.25 ± 0.08 0.15 ± 0.11 0.16–0.69 0.46–0.52 0.39–0.94 0.27–0.56 0.16–0.69 0.4–0.7 0.21–0.22

aYang et al. (2017).
bOanh et al. (2005).
cShen et al. (2011).
dSheesley et al. (2003).
eZhang et al. (2008a).
fLu et al. (2009).
gDhammapala et al. (2007).
hKeshtkar and Ashbaugh. (2007).
iHays et al. (2005).
j Enkins et al. (1996a).
kJenkins et al. (1996b).
lChen et al. (2005).
mSchauer et al. (1999).
nYang et al. (2010).
oKhalili et al. (1995).
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3.3 Carcinogenic Risk Assessment for the
PAHs
The estimated emissions of carcinogenic risks posed by PAH are
shown in Table 4. The toxic equivalents (TEQ) for the sums of
seven carcinogenic PAHs (BaA, Chr, BbF, BkF, BaP, IP, and
DBahA) (∑PAH7), BaP (TEQBaP), and PAHs (TEQPAHs) were
calculated.

∑PAH7, TEQBaP, and TEQPAHs for the gas phase, particulate
phase, and total emissions generally followed similar trends. The
∑PAH7, TEQBaP, and TEQPAHs were higher for cotton straw than
the other crop residues in the gas phase, but these were much
higher for the polar branch than the other crop residues in the
particulate phase and total emissions. The ∑PAH7, TEQBaP, and
TEQPAHs were much higher for the particulate phase than the gas
phase, and the particulate phase TEQPAHs accounted for ~91.2%
of the total emission TEQPAHs. Most of the high-molecular weight
PAHs (containing four rings or more), which are more toxic than
the low-molecular weight PAHs, were emitted in the particulate
phase. The mean ∑PAH7, TEQBaP, and total emission TEQPAHs

were 24.3, 19.2, and 24.4 mg kg−1, respectively, for the traditional
stoves and 16.5, 13.1, and 16.5 mg kg−1, respectively, for the
improved stoves. The mean PAH carcinogenic risk EFs were
>30% lower for the improved stoves than the traditional stoves.
The ∑PAH7 was the main contributor to the TEQPAHs; in
particular, TEQBaP dominated a mean of ~78.1% to the TEQPAHs.

4 CONCLUSION

Emissions of 16 PAHs were measured when six types of crop
residues were burned in the traditional and improved stoves used
in rural China. Compared with the traditional stoves, the EFs of
PAHs in the improved stoves reduced significantly, with an average
reduction of 45.1%.Good air supply in the improved stoves decreases
incomplete combustion, decreasing the amounts of PAHs emitted.
Higher PAH EFs were generally observed in the particulate phase
than the gas phase. Negative correlation was observed between PAH
EFs andMCE, and the EFs of COwere positively correlated with the
PAH EFs. Similarly, the EFs of PAHs in PM2.5 were also positively
correlated with the fraction of particles of PAHs in PM2.5 and OC.
The study was expected for the supplement of the data available on

crop residue combustion in domestic stoves in rural areas, decreasing
the uncertainties in PAH emission inventories.

The carcinogenic risks induced by PAH emissions were
calculated when crop residues were burned in the stoves.
The mean PAH carcinogenic risk EFs were >30%, which was
lower for the improved stoves than the traditional stoves. The
TEQPAHs were dominated by the ∑PAH7, particularly BaP
(which contributed ~78.1% of the TEQPAHs averagely).
These data are expected to provide more basic foundation
for the PAH carcinogenic risk assessment of rural household
stoves in China.

In fact, there are still several limitations to this study. First,
some influencing factors have not been deeply considered and
discussed, such as, the impact of cooking oil fumes was not
assessed, whichmay lead to the overestimation of PAH emissions.
Second, the dynamic changes of PAH emissions during the
combustion process are complex, and the dynamic evolution
mechanism of PAH formation has not been well studied. Finally,
only two sites are covered in this study, and there is limited
discussion on PAH spatiotemporal distributions. Larger sample
sizes and more field measurements are needed in the future to
improve our understanding of PAH formation mechanisms and
actual emissions during residential fuel combustions.
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