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Forests ecosystem plays a significant role in supplying multiple services given the unique
properties of forest soils, in which the elements of C, N, and P are essential to support soil
fertility and site productivity. However, soil properties at different soil depths between
plantation forests (PF) and natural forests (NF) have not been well quantified. Therefore, the
current study was carried out in the Qilian Mountains of northwest China to determine the
difference between PF and NF in the soil properties, both physical (e.g., bulk density, BD)
and chemical (e.g., pH value, the contents, stocks, and stoichiometry of soil organic
carbon (SOC), total N (TN), and total P (TP)). Research analyzed soil samples at different
depths (0–20, 20–40, 40–60, 60–80, and 80–100 cm). The results showed that the soils’
pH values and BD were significantly higher (p ≤ 0.05) in PF than in NF and increased with
soil depth. The contents of SOC, TN, and TP decreased considerably with soil depth and
then stabilized at the soil depth of 80–100 cm. The NF showed significantly higher (p ≤
0.05) SOC, TN, and TP contents than PF, confirming that the soil quality of PF had not fully
recovered yet. The stocks of SOC and TN quickly decreased with soil depth up to
40–60 cm and stabilized gradually. Additionally, the soil stoichiometry of C:P and N:P
decreased significantly with rising soil depth, while the C:N ratio remained unchanged. The
N:P and C:P ratios were lower in PF than in NF, while the C:N ratio was higher in PF than in
NF. In conclusion, the results show that the soils of NF present significantly higher stocks of
SOC and TN but lower (or nearly equal) TP stocks than PF (under the same age group and
tree species composition). These results imply that maintaining NF and avoiding their
replacement by PF can help keep higher soil quality and related ecosystem services.
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INTRODUCTION

In global ecosystems, forest soil is a vital constituent as the
primary source of plant nutrition. Carbon (C), nitrogen (N),
and phosphorus (P) are the soil’s main nutritional and
structural elements and the major limiting factors for
global ecosystem health (Reed et al., 2015; Rahman et al.,
2018). The stocks of total nitrogen (TN), total phosphorus
(TP), soil organic carbon (SOC), and C:N:P stoichiometry are
indicators of soil fertility and plant nutrient conditions
(Sterner and Elser, 2002; Batjes, 2014; Ali et al., 2022).
Researchers use stoichiometry frequently to associate
plants with soil nutrients in various forest types (Moe
et al., 2005; Liu et al., 2017; Yang et al., 2018). These
nutrients continuously circulate among the soil depths
through biogeochemical cycling, which confirms the even
flow of energy and sustains the stability of ecosystems (Lü
et al., 2017). However, some factors such as soil type, soil
depths, forest types, forest conversion, and possibly forest
species composition (Louman et al., 2010; Tadesse et al.,
2014) can result in changes in the SOC, TN, and TP
contents, stocks, and stoichiometry (Lin et al., 2018; Hu
et al., 2019). Therefore, many studies showed a significant
difference in the impact of the forest conversion between
natural forest (NF) to plantation forest (PF) on the quality
and quantity of SOC, TN, and TP (Guo et al., 2016; Lin et al.,
2018; Ngaba et al., 2019). However, such studies were not
carried out evenly among regions and are scarce in the
dryland regions of the Qilian Mountains of northwest
China, where plantation and natural forests exist in the
same climatic zone.

In the last few decades, PF has sharply increased worldwide
to meet the growing demand for domestic and industrial
timber (Berthrong et al., 2009; Ahmad et al., 2018), slow
down the increase of CO2 concentration in the atmosphere
(Jackson et al., 2005; van Dijk and Keenan, 2007; Ahmad et al.,
2021), protect soil against nutrient losses, and supply
hydrological and many other ecosystem services. However,
PF can alter the C, N, and P contents, stocks, and stoichiometry
of forest soils due to changes in the species composition and
many different stand structure parameters compared with
surrounding or original natural forests (Wall and Hytönen,
2005; Freier et al., 2010; Ahmad et al., 2019), and the
interferences of silviculture activities (Yang et al., 2005;
Zheng et al., 2008). Such studies have reported significant
effects of PF on physicochemical soil properties (Jackson
et al., 2005; Berthrong et al., 2009; Laganiere et al., 2010).
However, the research results are inconsistent, such as studies
comparing non-forested lands to afforested lands from
previous agricultural systems converted to plantations (Paul
et al., 2002; Berthrong et al., 2009; Laganiere et al., 2010).
Natural forests provide vital natural resources, goods, and
services (Wang et al., 2020). It is of great value in
soil–water conservation, adding C, N, and P to maintain
and improve soil quality and fertility (Behera and Sahani,
2003; Ashagrie et al., 2005; Yang et al., 2005; Zheng et al.,
2008). The NF can sustain the nutrient cycles of forest soils,

especially SOC, TN, TP, and physicochemical soil properties
such as BD and pH values (Han et al., 2019; Ngaba et al., 2019).
Hence, questions have arisen about whether the PF can
similarly provide beneficial soil properties after plantations
(Gogoi et al., 2021).

NF is being converted into PF, especially in monoculture tree
plantations worldwide, including in China (Chen et al., 2005).
This transformation creates many problems and ultimately
affects the physicochemical soil properties such as soil BD
and pH value, the nutrient contents, stocks, and
stoichiometry of SOC, TN, and TP (Yang et al., 2019; Sun
et al., 2021; Yang et al., 2021). Furthermore, many studies
demonstrated a considerable influence on soil properties, for
example, when the broadleaved NF were converted to
monoculture PF in subtropical China (Behera and Sahani,
2003; Chen et al., 2005; Lemma et al., 2006; Nsabimana
et al., 2008). However, these results were not entirely reliable
due to the interferences from the difference in age groups, tree
species compositions (Yang et al., 2009; Wang et al., 2011), or
climatic and site conditions. Hence, such studies recorded
variations in soil properties after NF were transformed to PF
but never reported the differences in soil properties between NF
and PF with the same tree species composition (such as Picea
crassifolia and Sabina przewalskii in the Qilian Mountains of
northwest China) and age groups under the same topographic
and climatic conditions. Therefore, the current study was
carried out to assess variations and compare the
physicochemical soils properties of PF and NF in the Qilian
Mountains at soil depths within 0–100 cm.

MATERIALS AND METHODS

Study Area
This study was conducted in the Qilian Mountains (Qifeng,
Sidalong, and Xishui Forest Farms), Sunan Yugur
Autonomous County (38°49′18.7″N 99°36′09.8″E), Zhangyi
city, Gansu Province, northwest China (Figure 1). The
elevation ranges from 2,450 to 3,300 m. The climate is arid
and semi-arid, with mean annual precipitation of
410–540 mm, which increases with rising elevation (Wang
et al., 2003). Most precipitation (86%) falls from May to
September (Zhang et al., 2011). The mean annual air
temperature varies from −0.3 to 8.1°C and decreases with
rising elevation (Wang et al., 2009). The annual
accumulated frost-free period is 127 days. About 60% of the
daily photoperiodic is full sunshine, and the yearly pan
evaporation is 1,785 mm (Yuan and Hou, 2015). The
primary soil parent materials are slope deposits and
residuals from limestone, shale, and conglomerate. The
degree of downwards minerals transition was mostly
indistinct/vague and obvious. The compactness was usually
moderate, slightly loose, while less soils were compact and
firmly loose. The soil structure was frequently massive or bulky
and granular. The soil texture was commonly loam, sandy
loam, and clay loam, while soil moisture was mostly moist/
damp, but some soils were dry in the PF and NF.
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Most of the forests belong to the natural forests of Qinghai
spruce (Picea crassifolia), which grow on the shady and semi-shady
slopes within the elevation range of 1,750–3,550 m (but
concentrated within 2,200–3,200 m), and also the natural forests
of Qilian juniper (Sabina przewalskii), which grow on the dry and
sunny slopes within the elevation range of 2,600–4,000 m (Rong

et al., 2019). At the same time, the adjacent PF was also
dominated by Qinghai spruce and Qilian junipers. Both PF
and NF belong to the middle-aged groups. There are rich
ground mosses on the floor of spruce forests due to their
unique habitat. The dominant shrubs and herbs species were
Berberis diaphana, Caragana jubata, Salix sylvestris, Sabina

FIGURE 1 | The geographic location of Qifeng, Xishui, and Sidalong Forest Farms in the National Nature Reserve of Qilian Mountains with the elevation and annual
precipitation maps.

TABLE 1 | The basic plant community properties of the PF and NF in the forest farms of Qilian Mountains.

Stand structures PF NF

Mean ± SD Min. Max. Mean ± SD Min. Max.

Tree density (individuals ha−1) 1,163 ± 527 475 2,425 1,332 ± 517 270 2,500
Average tree height (m) 5.81 ± 1.54 2.80 8.60 7.82 ± 3.73 3.10 17.3
Average diameter at breast height (cm) 16.7 ± 11.4 3.67 53.1 24.7 ± 12.9 4.89 53.1
Average dominant tree height (m) 8.77 ± 3.04 1.10 14.4 12.5 ± 4.14 5.30 19.4
Average shrub height (cm) 50.6 ± 21.5 25.0 89.0 52.0 ± 22.9 21.0 93.0
Herbaceous average coverage (%) 0.30 ± 0.28 0.07 0.95 0.28 ± 0.17 0.11 0.900
Herbaceous average height (cm) 11.2 ± 4.27 6.00 22.0 16.1 ± 26.8 6.00 138
Canopy density (%) 42 ± 12.86 20.0 69.0 39.1 ± 17.1 20.0 70.0
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procumbens, Dasiphora fruticose, Carex oshimensis, Potentilla
fruticose, Polygonum viviparum, and Agropyron cristatum
under both forest types. The average tree density of the
surveyed plots was 1,163 and 1,332 trees ha−1 for PF and NF,
respectively. The average tree height was 5.8 and 7.82 m, and tree
DBH was 16.7 and 24.7 cm for PF and NF, respectively. Similarly,
the average height of dominant trees was 8.77 and 12.5 m, and the
canopy density was 42% and 39% for PF and NF, respectively
(Table 1).

Plot Setting and Soil Sampling
For both PF and NF, 46 sample plots were selected to
investigate the physicochemical soil properties. The plot size
was 20 m × 20 m, and a pit of 1 m2 was dug out at the forest
floor and replicated three times for each soil profile. Each soil
profile was classified into O, A, AB, B, BC, C, and other
horizons, and a total of 230 soil samples (115 of each forest
type) were collected. For physical analysis (soil bulk density,
BD), the soil samples were collected at each soil depth using
stainless-steel augers and oven-dried at 104°C for 48 h. The soil
samples for chemical analysis were collected from the soil
profiles using a multi-point mixed-method at the soil depths of
0–20, 20–40, 40–60, 60–80, and 80–100 cm. The litter, leaves,
roots, insects, and larger residues were separated and removed.
All soil samples were screened through a 2-mm sieve mesh.
The soil samples were air-dried under the ceiling fan and
stored at room temperature to determine physicochemical
soil parameters. The stored soil samples were then analyzed
with standard methods to determine the pH value, soil organic
carbon (SOC), total N (TN), and total P (TP) contents and
transformed into stocks (SOCs, TNs, TPs) and soil
stoichiometry (C:N:P ratios) under the soil depth (SD) and
forest types (FT).

Soil Chemical Analysis
The soil organic carbon content was determined by the
K2Cr2O7–H2SO4 digestion method (Walkley, 1947). The
content of total soil P was measured by dissolved nitric acid
(NH3), perchloric acid digestion (HClO4), and hydrofluoric acid
(HF) using an automated discontinuous analyzer. The content of
total soil N was measured with a fully automatic Kjeldahl analyzer
(dissolved by H2SO4 along with a catalyst). The soil pH value was
measured with a pH-meter at 1:5 soil water suspension (Mclean,
1982).

Data Calculation and Statistical Analysis
The SOC stock at each soil depth was calculated as follows (Hu
et al., 2018):

SOCs(Mgha−1) � SOC contents (g kg−1) · BD(g cm−3)

· ST(cm)/10 .(1)
Similarly, the soil stocks of total N and P (TNs and TPs) were

calculated using the above equation. Here, ST denotes the soil
layer thickness (cm).

The data analysis was performed using one-way ANOVA
(Analysis of Variance) to determine the impacts of FT and

SD, respectively, on the physicochemical soil properties. Two-
factor ANOVAs were conducted to investigate the impact of SD,
FT, and their interactions on soil properties. The Tukey HSD all-
pairwise comparison (least significant difference) test at p < 0.05
was used to compare the means. Origin Lab-2019 was used to
evaluate the correlation between physicochemical soil parameters
and perform the PCA (principal component analysis) for each
forest type.

RESULTS

Variation of BD and Soil pH Value with Soil
Depth and Forest Types
The soil BD and pH values differed among soil depth and forest
types significantly (p ≤ 0.05), showing an increase with rising soil
depth for both forest types (Figure 2A). The mean BD of PF and
NF increased from the lowest values of 0.833 and 0.813 at the
topsoil depth (0–20 cm) to the highest values of 1.37 and
1.10 g cm−3 at the deepest soil depth (80–100 cm). Similarly,
the pH values increased from 8.16 and 7.80 at the topsoil
depth for PF and NF to 8.41 and 8.23 at the deepest soil
depth (Figure 2B). The BD at all soil depths of PF was higher
than those of NF, and this difference increased with rising soil
depth, from 0.02 g cm−3 at the topsoil depth (0–20 cm) to
0.27 g cm−3 (based on the data pair) at the soil depth of
80–100 cm (Figure 2A).

Similarly, the soil pH values at all soil depths of PF were
higher than those of NF, but this difference decreased with
rising soil depth, from 0.36 at the topsoil depth to 0.18 (based
on the data pair) at the deepest soil depth (Figure 2B). The
mean soil BD of 0–100 cm soil depth was 1.03 g cm−3 for PF,
higher than the corresponding value of 0.97 g cm−3 for NF.
Similarly, the mean soil pH value of 8.30 for 0–100 cm soil
depth for PF was higher than the pH value of 8.10 for NF
(Table 2).

Variation in SOC, TN, and TP Contents With
Soil Depth and Forest Types
The contents of SOC, TN, and TP differed among soil depths
(SD) and forest types (FT) significantly (p ≤ 0.05), showing a
decrease with rising soil depth for both PF and NF. The SOC and
TN contents at all soil depths of PF were lower than those of NF
(Figures 2C, D). The difference in SOC content decreased from
12.7 g kg−1 (based on the data pair of 49.9 and 62.6 g kg−1) at the
topsoil depth to 12.3 g kg−1 (based on the data pair of 19.1 and
31.4 g kg−1) at the deepest soil depth (Figure 2C). The mean SOC
content of 0–100 cm soil depth for NF (44.3 g kg−1) was
significantly (p ≤ 0.05) higher than that of PF (32.0 g kg−1)
(Table 2). The difference in TN content decreased from
1.05 g kg−1 (based on the data pair of 3.53 and 4.58 g kg−1) at
the topsoil depth to 1.00 g kg−1 (based on the data pair of 1.18 and
2.18 g kg−1) at the deepest soil depth (Figure 2D). The mean TN
content of 0–100 cm soil depth for NF (3.07 g kg−1) was
significantly higher (p ≤ 0.05) than that of PF (2.15 g kg−1)
(Table 2).
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FIGURE 2 | The physicochemical soil properties of different soil depths for PF and NF. The error bars represent standard error. The BD, SOC, TN, and TP indicate
the soil bulk density, the contents of soil organic carbon, total nitrogen, and total phosphorus, respectively.
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The mean TP contents of PF and NF generally decreased
from the highest values of 0.72 in both PF and NF at the topsoil
depth to the lowest values of 0.55 and 0.66 at the deepest soil
depth (Figure 2E). However, the variation pattern of TP content
along soil depth differed from the continuously decreasing
pattern of SOC and TN. For NF, the TP content declined
non-significantly and leveled-off within the soil depth of
0–100 cm. For PF, the TP content decreased insignificantly
within 0–40 cm and obviously within the depth of
60–100 cm; however, a significant difference existed only
between 0–20 cm and 80–100 cm. The mean TP content of
0–100 cm for NF (0.67 g kg−1) was significantly higher than
those of PF (0.63 g kg−1) (Table 2). At each soil depth, the
percent contribution of overall average contents of SOC, TN,
and TP was presented in Figure 4, showing a decrease in soil
depth for PF and NF.

Variation in SOC, TN, and TP Stocks with
Soil Depth and Forest Type
For both PF and NF, stocks of SOC and TN decreased
significantly (p ≤ 0.05) in each soil depth, while that of TP
increased (Figures 3A–C; Table 5). The highest SOC stocks,
82.6 and 96.8 Mg ha−1 for PF and NF, were at the topsoil depth
(0–20 cm), and the lowest values, 48.4 and 66.7 Mg ha−1, were at
the deepest soil depth (80–100 cm). Similarly, the maximum TN
stocks of 5.83 and 7.19 Mg ha−1 for PF and NF were at the
topsoil depth, while the lowest values of 3.02 and 4.73 Mg ha−1

were at the deepest soil depth. The TP stock was highest
(1.47 Mg ha−1) for both PF and NF at the deepest soil depth,
while the lowest values (1.19 Mg ha−1) for both PF and NF were
at the topsoil depth. The SOC and TN stocks of NF were higher
than PF at all soil depths. The SOC and TN stock differences
between PF and NF increased with soil depth, from 14.2 and
1.36 Mg ha−1 in the topsoil depth to 18.3 and 1.71 Mg ha−1

(based on the data pair) at the deepest soil depth (Figures
3A, B). The average SOC stocks, 64.3 Mg ha−1 and 80.6 Mg ha−1

for PF and NF at soil depth (0–100 cm), showed that NF was

significantly higher (p ≤ 0.05) (Table 2). Similarly, the average
TN stocks, 4.32 Mg ha−1 and 5.72 Mg ha−1 for PF and NF at soil
depth (0–100 cm), showed NF was significantly higher (p ≤
0.05), while no significant difference existed for the TP stocks
1.35 Mg ha−1 and 1.33 Mg ha−1 for PF and NF at soil depth
(0–100 cm) (Table 2). The percent contribution of SOC and TN
stocks of each soil depth to their total stocks over 0–100 cm soil
depth decreased with rising soil depth for both PF and NF, but
increased in the case of TP stock (Figures 4B, E).

Variation in C:N:P Stoichiometry with Soil
Depth and Forest Type
The soil C:P and N:P ratios of PF and NF decreased significantly
(p ≤ 0.05) with soil depth. The C:P ratios decreased from 73.3 and
89.5 for PF and NF at topsoil depth to 34.7 and 47.7 at the deepest
soil depth. The N:P ratios decreased from 5.05 and 6.45 for PF
and NF at the topsoil depth to 2.13 and 3.34 at the deepest soil
depth (Figures 3E, F). The C:N ratios were similar among all soil
depths for both PF and NF, although the variation range for PF
was bigger than that for NF (Figure 3D).

The C:P and N:P ratios for NF were significantly higher than
those for PF at all soil depths. The differences in C:P and N:P
ratios decreased with rising soil depth, from 16.2 to 13.0 for C:P
ratios and from 1.40 to 1.21 for N:P ratios, respectively (based
on the data pairs in Figures 3E, F). The difference in the C:N
ratio between PF and NF increased and then decreased with
rising soil depth but was non-significant at all soil depths
(Figure 3D). The average C:N ratios were 16.7 and 14.5 for
PF and NF at soil depth (0–100 cm), where PF was significantly
higher, while the C:P and N:P ratios for PF (51.5 and 4.38) were
significantly lower than those for NF (66.1 and 5.85) (Table 2).
The percent contributions of each soil depth to the overall
stoichiometry of C:P and N:P of soil depth 0–100 cm were
calculated for PF (Figure 4C) and NF (Figure 4F), showing
decreasing percent contribution of each soil property with rising
soil depth for both PF and NF, while the C:N ratios in PF showed
an increase up to 40–60 cm and thereafter decreased, and were
rather similar in NF.

The Effects of Soil Depth and Forest Type on
Physicochemical Soil Properties
The soil depth and forest type intimately affected the physicochemical
soil properties, while their interaction showed non-significant effects
except for BD and TP content (Table 3). The soil BD, pH value, and
the contents of SOC and TN were highly significantly correlated with
both FT and SD. The TP content was positively associated with SD
(p ≤ 0.001) and significantly correlated with FT (p ≤ 0.05). The stocks
of SOC and TNwere highly significantly correlated with both FT and
SD (p≤ 0.001), but the TP stockwas only positively associatedwith SD
(p ≤ 0.001) and non-significantly correlated with FT. The C:N ratio
was somewhat significantly correlated with FT (p ≤ 0.05) but
insignificantly correlated with SD. The C:P and N:P ratios were
highly correlated (p ≤ 0.001) with FT and SD. Overall, most
physicochemical soil properties were highly affected by SD and FT
(except TP stock and C:N ratio).

TABLE 2 | The mean physicochemical soil properties of 0–100 cm soil depth for
PF and NF.

Soil properties PF NF

BD (g cm−3) 1.03 ± 0.24a 0.97 ± 0.23b

pH values 8.30 ± 0.22a 8.10 ± 0.48b

SOC content (g kg−1) 32.0 ± 16.7b 44.3 ± 19.6a

TN content (g kg−1) 2.15 ± 1.17b 3.07 ± 1.25a

TP content (g kg−1) 0.63 ± 0.17b 0.67 ± 0.10a

SOC stock (Mg ha−1) 64.3 ± 28.6b 80.6 ± 29.6a

TN stock (Mg ha−1) 4.32 ± 1.87b 5.72 ± 2.09a

TP stock (Mg ha−1) 1.35 ± 0.32a 1.33 ± 0.40a

C:N ratio 16.7 ± 10.6a 14.5 ± 3.78b

C:P ratio 51.5 ± 29.5b 66.1 ± 28.9a

N:P ratio 4.38 ± 3.33b 5.85 ± 4.09a

The values are means ± standard deviations (SD). The different letters within each row
indicate a significant (p ≤ 0.05) difference between forest types. The BD, SOC, TN, and
TP indicate the soil bulk density, the contents of soil organic carbon, total nitrogen, and
total phosphorus, respectively.
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FIGURE 3 | The SOC, TN, and TP stocks and stoichiometry under different soil depths for PF and NF. The error bars indicate standard error. The SOCs, TNs, and
TPs indicate soil organic carbon, total nitrogen, and total phosphorus stocks respectively.
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FIGURE 4 | Percent contribution per soil depth to overall average contents, stocks, and stoichiometry of SOC, TN, and TP for PF (A–C) and NF (D–F).
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PCA for Physicochemical Soil Properties
under the Soil Depth and Forest Types
The PC1 and PC2 define physiochemical soil parameters for PF
and NF (Figures 5A, C). The sum of PC1 and PC2 explains 80.3%
and 80.6% variations in physiochemical soil properties of PF and
NF. The cumulative contribution rate of PC1 (59.7%) mainly
reflects the soil BD, SOC, and TN for PF, while the contribution
rate (56.6%) for NF mainly reflects the pH values, SOC, and TN.
Similarly, the cumulative contribution rate of PC2 (20.6%)
reflects the significant contribution of pH values for PF, while
the contribution rate (24.0%) for NF defined the significant
variability in soil BD and TP. The score plot for soil depth in
each forest type was also developed (Figures 5B, D). The
physicochemical soil properties under each soil depth
occupied different sections of the diagrams. The soil depths
(60–80 and 80–100 cm) were close for PF and NF and were in
the analogous ordination space, resulting in the least
significant differences. As a result, the correlation coefficient
of soil parameters at these depths should be high. The soil
properties occupying different positions in the diagram, such
as the opposite location, reveal significant variation and
quantitative changes between the soil properties. The soil
depths (0–20 and 20–40 cm) for PF and NF were also lying
closely, indicating minimal differences, though the overall
differences for a soil depth of 0–20 cm were higher than
those at 20–40.

Correlations among Physicochemical Soil
Properties
The Pearson’s correlation analysis revealed a strong correlation
among the physicochemical soil properties under PF and NF at
0–100 cm soil depth (Figure 6). The SOC was positively
correlated with TN, and TP, while negatively correlated with
pH (r = 0.78, 0.41, and −0.30, respectively) under PF
(Figure 6A). Similarly, the SOC was positively correlated
with TN and slightly correlated with TP, while a negative
correlation was observed with pH for NF (r = 0.83, 0.17, and

-0.66, respectively) (Figure 6B). The TN was positively
correlated with TP (r = 0.54), while a negative correlation
was found with pH for PF (r = −0.04). For NF, the TN was
also positively correlated with TP (r = 0.30), and a negative
correlation has existed with soil pH values (r = −0.61). The TP
has negatively correlated with soil pH and BD for PF (r = −0.04,
−0.51), while only negatively correlated with pH for NF (r =
−0.16). The soil BD was strongly negatively correlated with
SOC, and TN for PF and NF, while positively correlated with soil
pH values (r = −0.78, −0.75, −0.64, −0.45, 0.28, and 0.30,
respectively).

DISCUSSION

Effects of Soil Depth and Forest Type on Soil
BD and pH Value
The soil BDwas significantly affected by soil depth and forest type
(Figure 2A;Tables 3, 4). The increase of BDwith rising soil depth
is an integrated result of changing soil texture (Landsberg, 2003;
Ali et al., 2019) and decreasing soil organic matter input from the
humus layer and tree root litter due to the limited gaseous
exchange (Tokunaga, 2006). However, the higher BD in PF
than NF might be attributed to the poor growth and
associated lower stand biomass, but unlikely due to
mechanical compaction on the exposed surface soil by
management activities (such as heavy harvest and human
trampling) because the forest management for timber
production has been prohibited in the natural reservation area
for more than 4 decades. Of course, the natural forests were
excluded from commercial use in this natural reservation area
(Liao et al., 2012).

The increased pH value with soil depth could be associated
with less input of humus material (with organic acids) into the
deeper soil depths (Table 4). A similar study (Balstrøm et al.,
2013) reported that the organic acids present in the topsoil tend to
break down before they reach the deeper soil depths, leading to
higher pH values in deeper soil depths. The observed lower soil
pH value under NF than PF confirmed the results of other studies
(Chen et al., 2004). Thus, it may also be explained by the higher
SOC content (SOM, correspondingly higher organic acid
production) in NF than PF and the much longer time of
forest cover and humus decomposition (Chen et al., 2016) in
NF than in PF, which ultimately reduced the pH values of soil in a
natural forest. Moreover, the better forest stand structure of NF
than PF is also an influencing factor (Kafle, 2019).

Effects of Soil Depth and Forest Type on
SOC, TN, and TP Contents
Soil depth is an important factor influencing the contents of SOC,
TN, and TP (Berger et al., 2002; Olorunfemi et al., 2018). Our study
showed a decreasing tendency in SOC, TN, and TP contents (Yang
and Liu, 2019); this could be explained by the decreasing inputs of
SOM with rising soil depth (Table 4) from both above and below-
ground litterfall (Ngaba et al., 2019), especially by the decreasing
influence of the humus layer covering the soil surface (Sperfeld

TABLE 3 | Effects of SD, FT, and their interaction on soil properties based on two-
way ANOVAs.

Variables Forest
types (FT)

Soil depth (SD) FT x SD

F P F P F P

Soil bulk density 30.00 0.0000 38.49 0.0000 3.90 0.0044
Soil pH value 18.29 0.0000 6.76 0.0000 0.82 0.5165
SOC content 42.41 0.0000 37.15 0.0000 0.13 0.9713
TN content 65.23 0.0000 56.29 0.0000 0.60 0.6629
TP content 7.59 0.0064 5.96 0.0000 3.23 0.0133
SOC stock 21.59 0.0000 13.39 0.0000 0.19 0.9410
TN stock 36.82 0.0000 17.64 0.0000 0.53 0.7160
TP stock 0.19 0.6609 4.15 0.0029 0.34 0.8500
C:N ratio 4.03 0.0458 0.40 0.8116 0.30 0.8803
C:P ratio 18.97 0.0000 20.51 0.0000 0.05 0.9947
N:P ratio 38.54 0.0000 189.01 0.0000 2.04 0.0897

The significance level was tested at p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001.
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et al., 2017; Zhang et al., 2018; Xu et al., 2019; Yang and Liu, 2019)
and the decreasing activities of soil animals and microorganisms
(Barreto et al., 2011). With rising soil depth, the soil permeability
decreases, and the BD increases, limiting the input of dissolved
SOM through leaching (Berger et al., 2002; Clemmensen et al.,
2013; Rahman et al., 2022).

The lower contents of SOC, TN, and TP in PF compared with
NF (Table 4) could be attributed to the lower accumulation of
litterfall and the faster mineralization of SOM due to the more
open stand structure, which leads to a higher soil temperature
(Liao et al., 2010; Zhang et al., 2016; Wang et al., 2018).
Furthermore, the harvesting of biomass and logging residues
during site preparations for afforestation, the forest managing
measures (e.g., weeding and thinning), and the quicker
absorption of nutrients of trees in the fast-growing stage of a
plantation may also contribute to the lower contents of SOC, TN,

and TP in the soils of PF than NF (Paul et al., 2002; Jobbágy and
Jackson, 2003; Berthrong et al., 2009; Liao et al., 2012).

Effects of Soil Depth and Forest Type on
SOC, TN, and TP Stocks and Stoichiometry
The stocks of SOC and TN significantly decreased with soil
depth irrespective of the forest types of PF or NF (Wang
et al., 2016; Li et al., 2019; Ngaba et al., 2020) except for the
TP stocks (Table 5). Our study showed that SOC and TN
stocks firstly declined significantly with rising soil depth
within the range of 0–60 cm and then stabilized or leveled-
off thereafter within the soil depth range of 60–100 cm (Gao
et al., 2020). The most important reason might be the
highest biological activity in the topsoil, characterized by
the highest SOM content and associated nutrient

FIGURE 5 | Principal component analysis for the physicochemical soil properties (loading and score plot). Panels (A, C) show the association of physicochemical
soil parameters. At the same time, panels (B, D) represent the position of different soil depths (0–100 cm) under PF and NF.
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accumulation (Ngaba et al., 2020). Higher SOC and TN
stocks in NF than PF in this study were comparable with
previous studies (Gong et al., 2011; Wang et al., 2018),
thought to be due to the more significant inputs of soil
nutrients to the mineral soils in NF from their higher
accumulated humus and litterfall compared with PF

(Gong et al., 2011; Zhang et al., 2016). The TP stock
likely increased with soil depth due to deep phosphorous
parent materials or compounds down the soil profile (Xu
et al., 2019). The similar stocks of TP (for PF and NF) in this
study (Table 2) are in line with other studies (Hu et al.,
2018), which indicated that forest conversion increases the

FIGURE 6 | Pearson’s correlation scatter matrix for the physiochemical soil properties under PF and NF at 0–100 cm soil depth. The BD, SOC, TN, and TP indicate
the soil bulk density, the contents of soil organic carbon, total nitrogen, and total phosphorus, respectively.

TABLE 4 | The mean physicochemical soil properties in different soil depths from 0 to 100 cm.

Soil depth (cm) BD (g cm−3) pH value SOC (g kg−1) TN (g kg−1) TP (g kg−1)

0–20 0.82 ± 0.16d 7.98 ± 0.34b 56.29 ± 16.33a 3.67 ± 1.30a 0.70 ± 0.15a

20–40 0.94 ± 0.16c 8.18 ± 0.37ab 46.19 ± 14.01b 3.05 ± 0.82b 0.68 ± 0.14ab

40–60 1.04 ± 0.19b 8.24 ± 0.35a 34.55 ± 15.81c 2.35 ± 0.87c 0.65 ± 0.13abc

60–80 1.15 ± 0.20a 8.30 ± 0.37a 28.65 ± 15.86cd 1.93 ± 0.92cd 0.61 ± 0.13bc

80–100 1.23 ± 0.24a 8.32 ± 0.42a 25.26 ± 15.34d 1.68 ± 0.92d 0.60 ± 0.13c

Mean 1.04 ± 0.19 8.20 ± 0.37 38.15 ± 15.47 2.61 ± 0.96 0.65 ± 0.13

The values are means ± standard deviations (SD). The different letters within each column indicate a significant (p ≤ 0.05) difference among soil depths. The BD, SOC, TN, and TP indicate
the soil bulk density, the contents of soil organic carbon, total nitrogen, and total phosphorus, respectively.

TABLE 5 | Themean SOC, TN, and TP stocks in different soil depths of 0–100 cm.

Soil depth (cm) SOCs (Mg ha−1) TNs (Mg ha−1) TPs (Mg ha−1)

0–20 89.37 ± 24.62a 6.49 ± 2.09a 1.19 ± 0.37b

20–40 85.28 ± 25.40a 5.70 ± 1.76ab 1.28 ± 0.35ab

40–60 68.36 ± 27.16b 4.80 ± 1.85bc 1.36 ± 0.36ab

60–80 61.51 ± 29.57b 4.22 ± 1.83c 1.40 ± 0.34a

80–100 57.57 ± 30.50b 3.88 ± 1.84c 1.47 ± 0.34a

Total 362.09 ± 27.45 25.09 ± 1.87 6.695 ± 0.35

The values aremeans ± standard deviations (SD). The different letters within each column
indicate a significant (p ≤ 0.05) difference among soil depths. The SOCs, TNs, and TPs
indicate soil organic carbon, nitrogen, and phosphorus stocks.

TABLE 6 | The mean SOC, TN, and TP stoichiometry in different soil depths of
0–100 cm.

Soil depth (cm) C:N ratio C:P ratio N:P ratio

0–20 14.41 ± 3.50a 81.17 ± 26.71a 5.74 ± 3.50a

20–40 15.82 ± 5.47a 71.18 ± 27.42a 4.61 ± 1.32b

40–60 16.45 ± 11.8a 54.06 ± 27.20b 3.65 ± 1.32bc

60–80 15.79 ± 9.65a 46.35 ± 25.29b 3.09 ± 1.26c

80–100 15.51 ± 7.18a 41.18 ± 24.17b 2.74 ± 1.33c

Mean 15.45 ± 7.53 63.04 ± 26.16 4.26 ± 1.75

The values are means ± standard deviations. The different letters within each column
indicate a significant (p ≤ 0.05) difference among soil depths under forest types.
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TP stocks in the middle and deep soil depths (20–100 cm).
This result is possibly due to the higher P input into the
deeper soil depth because of the accelerated humus
mineralization and leaching and the reduced P uptake by
the young trees in the earlier growth stage of plantations (Xu
et al., 2018).

The differences in C:P and N:P ratios among soil depths
were significant in this study, as reported in many studies
(Liu et al., 2017; Xu et al., 2019; Liu et al., 2021), while it
showed a non-significant difference in the C:N ratios among
soil depths (Figure 3D; Table 6). A study in the Loess
Plateau of China showed a similar result that the C:N
ratios remained unchanged with soil depth (Deng et al.,
2013). The C:N ratios of forest soils are negatively associated
with the mineralization rate of SOM (Stevenson and Cole,
1999; Hu et al., 2019). Therefore, the lower C:N ratios in NF
might be explained by the mineralization stage of SOM in
the undisturbed NF. The C:P and N:P ratios could be used as
indicators of the saturation or limitation of P and N (Sterner
and Elser, 2002) and to assess the structure, health, and
function conditions of forests that influence the quality and
quantity of litter/humus as well as their mineralization
(Wang et al., 2014; Yang et al., 2018). The observed
variations of C:N:P ratios with soil depth and forest type
in our study are consistent with other investigations (Gong
et al., 2011; Zhang et al., 2016; Luo et al., 2019). Based on our
results, the soil C:P and N:P ratios for NF were higher than
those for PF, but the soil C:N ratios for NF were lower than
that of PF, which could be associated with the element
content changes, and litter decomposition rate (Yu et al.,
2010; Zhang et al., 2016; Wang et al., 2018; Yang et al., 2018).
Thus, we concluded that the NF present higher soil C:P and
N:P ratios but lower C:N ratios than the PF with the same
age group, tree species composition, and similar site
conditions.

CONCLUSION

After characterizing the forest soil properties in the Qilian
Mountains of northwest China, most physicochemical soil
properties (except C:N ratio and TP stocks) differed
significantly among soil depth and forest types. The soil
BD, pH values, and TP stock increased with rising soil
depth, while the contents of SOC, TN, and TP and their
stocks and stoichiometry decreased with rising soil depth
apart from the C:N ratio, which showed non-significant
differences among soil depths. The physicochemical soil
properties of NF are much better than those of PF since the
NF soils present lower BD, favorable pH value range, higher
contents of SOC and TN and TP, and higher SOC and TN

stocks. Therefore, the physicochemical soil properties in terms
of soil fertility in NF are unlikely to be restored in a short
period through plantations, indicating that the replacement of
NF with PF should be avoided to sustain ecosystem
sustainability.
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