
Extended-Range Forecasting of PM2.5
Based on the S2S: A Case Study in
Shanghai, China
Yuanhao Qu1,2, Jinghui Ma1,2,3,4* and Zhongqi Yu1,2

1Shanghai Typhoon Institute, Shanghai Meteorological Service, Shanghai, China, 2Department of Atmospheric and Oceanic
Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China, 3Shanghai Key Laboratory of Meteorology
and Health, Shanghai Meteorological Service, Shanghai, China, 4Big Data Institute for Carbon Emission and Environmental
Pollution, Fudan University, Shanghai, China

Air pollution has become one of the most challenging problems in China, especially in
economically developed and densely populated regions such as Shanghai. In this
study, the long short-term memory (LSTM) model is introduced for the application in
extended-range forecasting of PM2.5 in Shanghai by incorporating three members of
the Subseasonal-to-Seasonal Prediction project (S2S) forecasting, moderate-
resolution imaging spectroradiometer (MODIS) aerosol optical depth (AOD) data,
and large-scale circulation factors derived from ERA-5 reanalysis. Therefore, an
accurate ~40-day PM2.5 prediction model over Shanghai was developed, providing
new insights for air pollution extended-range forecasting. The new model not only
exhibited much better accuracy but also captured the pollution process more closely
than traditional methods, such as multiple regression (MLR). The prediction root-mean-
square errors (RMSEs) based on the China Meteorological Administration (CMA), the
U.K. model, and the European Centre for Medium-Range Weather Forecasts (ECMWF)
were 24.84, 24.35, and 22.27 μg m−3, respectively, and their Heidke Skill Scores
(HSSs) were between 0.1 and 0.5. As a result, the S2S-LSTM model for extension
period pollution prediction with higher accuracy developed in this study could further
burst the hot spots of pollution extended-range prediction research. However,
limitations of the prediction model are still in existence, especially in dealing with
only a single site instead of a two-dimensional prediction, which requires further
investigation in future studies.
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1 INTRODUCTION

Air pollution caused by PM2.5 has already been regarded as an important threat to human health;
therefore, there is an urgent need for practical preventative measures to be adopted. Over the years, a
large body of research has elucidated the composition and diffusion characteristics of air pollutants,
including PM2.5 (WHO, 2003; WHO, 2016; Xing et al., 2016), and reported that they could lead to
various diseases, including respiratory diseases and heart diseases. Therefore, accurate air quality
prediction is crucial for preventing medical accidents caused by air pollution and controlling the
atmospheric environment comprehensively and effectively. The time scale of the extended range is a
current issue, leading to difficulties in pollution prediction.
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For PM2.5 operational forecasting, in terms of period validity,
there is a lack of an extended-range prediction method between
short- and medium-term numerical forecasting and statistical
models that perform monthly to seasonal forecasting. Extended-
range prediction is a 10- to 30-day scale forecast that bridges the
“time gap” between weather forecasts and climate predictions,
which is both a technical difficulty and a key to the preparation
for joint pollution control. The occurrence and evolution of air
pollution are complex and nonlinear, with the collective effect of
pollution emission sources and multiple atmospheric factors.
There are two main types of methods for air pollution
prediction research: deterministic (Baklanov et al., 2008; Kim
et al., 2010; Woody et al., 2016) and statistical (Di Carlo et al.,
2007; Castellano et al., 2009; De Gennaro et al., 2013; Donnelly
et al., 2015). In deterministic methods, the formation and
diffusion processes of pollutants are modeled using theoretical
metalogical emissions and chemical models. Due to the use of
ideal theory in model structure determination and empirical
parameter estimation, deterministic methods are not sufficient
to explain the nonlinearity and heterogeneity of many factors
related to the formation of pollutants. In addition, limited by the
number of computing resources and the physical mechanisms of
pollutant formation and weather evolution are described in the
model, it is difficult to continue to extend period validity while
maintaining numerical stability. Compared with deterministic
methods, statistical methods can avoid the complexity of
modeling and have good performance by using data-driven
statistical modeling techniques, but linear equations in
traditional statistical models are not sufficient to describe
complex nonlinear processes. Therefore, there is an urgent
need to develop new PM2.5 concentration prediction methods
that include the nonlinear relationship between PM2.5

concentration and its impact factors but do not exhaust too
many computing resources and establish a quantitative extended-
range prediction model of PM2.5.

Organized by theWorldMeteorological Organization, theWorld
Weather Research Program, and the World Climate Research
Program jointly launched the Subseasonal-to-Seasonal Prediction
Project (S2S) (Vitart et al., 2017), which provides sub-seasonal
prediction datasets (up to 60 days). Currently, 11 operational
centers provide the outputs of their prediction models, including
the China Meteorological Administration (CMA), the U.S. National
Center of Environmental Prediction (NCEP), the European Centre
for Medium-Range Weather Forecasts (ECMWF), and centers in
Australia, Canada, France, Italy, Japan, Korea, Russia, and the
United Kingdom. The S2S model database has provided a great
data foundation for evaluating the prediction performance of
extreme events (such as heavy pollution) and, more importantly,
deterministic prediction results. Therefore, the S2S prediction field
can be used as an impact factor in constructing the nonlinear PM2.5

concentration model.
In recent years, with the development of artificial intelligence,

deep learning has emerged (Gao et al., 2018). The concept of deep
learning was first proposed by Hinton et al. (2006), which refers to
the learning process of obtaining a multilevel deep network
structure using certain training methods based on sample data.
The long short-term memory (LSTM) network was developed on

the basis of recurrent neural networks (RNNs). By introducing
“memory units,” the LSTM network solved the vanishing or
exploding gradient problem that occurred when the RNN
processed long-term series data, making it more suitable for
solving long-time series forecasting problems. The LSTM
network has been widely used for air pollution forecasting. Seng
et al. (2021) utilized the LSTM network to forecast air quality in
Beijing, which achieved better results than other line-basedmodels.
Qin et al. (2019) proposed a new method for urban PM2.5

concentration prediction based on a convolutional neural
network (CNN) and LSTM network, which utilizes the CNN to
extract spatial features of inputs between monitoring stations, and
the LSTM network to predict future air pollution concentration
based on the learning of features in the historical air pollution
concentration time series data. Qi et al. (2019) proposed a hybrid
PM2.5 spatiotemporal prediction model based on graph
convolutional neural networks and the LSTM network, which
uses graph convolutional networks (GCNs) to extract the spatial
correlation between different stations, the and LSTM network to
capture the temporal correlation between observations at different
times. Zhou et al. (2019) proposed a deep learning multi-output
LSTM (DM-LSTM) neural network model that incorporates three
deep learning algorithms (mini-batch gradient descent, dropout
neurons, and L2 regularization), which can be used to extract key
factors of complex spatial–temporal relationships. Wen et al.
(2019) adopted a new spatiotemporal convolutional long short-
term neural network for air pollution prediction, extracted high-
level spatiotemporal features through a combination of CNN and
long short-term memory neural networks (LSTM-NN), and
integrated meteorological data and aerosol data to improve
model prediction performance. Wang and Song (2018)
proposed a deep spatiotemporal ensemble model for air quality
prediction, which used a weather pattern partitioning strategy,
generated spatial data as relative stations and relative area by
analyzing causalities among stations to discover spatial
correlations, and used a predictor based on deep LSTM
network to learn both long-term and short-term dependencies
of air quality. The aforementioned models captured the
spatial–temporal correlations of air pollution concentration data
well, and they can all fulfill short-term air quality forecasts.
However, none of these studies involved extended-range
pollution prediction. Until now, there has been no objective
pollution prediction method based on S2S. The extended range
is a key period for the government to formulate emission
abatement plans in advance and optimize production capacity;
therefore, there is an urgent need for an accurate and objective
extended-range pollution prediction.

In this study, first, synthetic analysis and regression analysis were
used to select and define the local and large-scale circulation factors
that impact the change in PM2.5 concentration in Shanghai. Then,
multiple sets of experiments were designed based on the LSTM
method to carry out a 20-day PM2.5 concentration forecast in
Shanghai, and the optimal experimental design was selected.
Finally, the S2S meteorological forecast, MODIS AOD data, and
previous large-scale circulation were integrated as input fields to
establish and evaluate the extended-range predictionmodel of PM2.5

concentration in Shanghai.
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2 DATA AND METHODS

2.1 Data Sources
2.1.1 PM2.5 Concentration Data
The daily average PM2.5 historical concentration with a resolution
of 0.5° was obtained from historical data reconstructed based on
the evaluation of MERRA-2 (https://search.earthdata.nasa.gov/)
combined with meteorological information. In this study, the
time period of the modeling and evaluation data was January 1,
1996 to December 31, 2019. The grid point (121.5°E, 31.5°N)
represents the value of Shanghai. The PM2.5 concentration data
were obtained from the national urban air quality real-time
publication platform (http://113.108.142.147:20035/
emcpublish/), and the data between January 1, 2014 and
December 31, 2019 were used.

2.1.2 Meteorological Data
Reanalysis data of the three models (CMA, U.K. model, and
ECMWF) with a resolution of 1.5° were collected from the S2S
database (http://apps.ecmwf.int/datasets/data/s2s). A basic
description of these models is provided in Table 1. In this
study, the common reanalysis period was 1996–2019, with an
emphasis on the winter season (November to February, or NDJF)
for evaluation related to pollution. The grid point (121.5°E, 31.
5°N) represents the value of Shanghai. In addition, CMA and U.K.
models are run daily, while the ECMWF model generates
predictions twice a week (on Mondays and Thursdays).
Atmospheric circulation data were sourced from ERA-5.

2.1.3 MODIS AOD Data
Satellite-derived AOD indicates the air pollution of the whole
layer and is highly indicative of ground-level PM2.5

concentrations (Shen et al., 2018). In this study, MODIS
global aerosol data (MOD04L2) are used (https://ladsweb.
modaps.eosdis.nasa.gov/search.html), which is the most
commonly used remote sensing aerosol optical thickness data
set. It uses the improved dark pixel algorithm to obtain 550 nm
AOD data with a spatial resolution of 10 km. This study extracts
the daily AOD data of Shanghai and its surrounding areas from
2001 to 2019, AOD is considered a parameter related to pollution
emission sources in the model.

2.2 Modeling Method
2.2.1 LSTM Model
The LSTM model is an improved recurrent neural network that
was proposed by Hochreiter and Schmidhuber (1997) and
recently improved and promoted by Alex Graves. The core

concepts of the LSTM model are the cell state and the “gate”
structure. The cell state is equivalent to the path of information
transmission, which allows information to be passed on in the
sequence. Theoretically, the cell state will always be able to pass
on the relevant information during sequence processing. Thus,
even information from earlier time steps can be carried to cells in
later time steps, overcoming the impact of short-term memory.
The addition and removal of information are achieved through
“gate” structures that learn which information to save or forget
during the training process. The LSTM model has three types of
gate structures: forget gate, input gate, and output gate; its
structure is shown in Figure 1. For a detailed introduction,
see Olah (2015).

2.2.2 Multiple Regression
In this study, there was a significant linear correlation between the
random variable Y, which was the PM2.5, and the fixed variables
x1, x2.... xm, which were the S2S meteorological factors:

Y � b0 + b1x1 + b2x2 + bmxm + c, (1)
where b0, b1,. . . bm are coefficients, m is the number of
meteorological factors, and c is a constant.

2.3 Impact Factor Analysis of PM2.5

Concentration
2.3.1 Local Impact Factors
In order to study the local factors affecting PM2.5 concentration,
synthetic analysis was conducted on meteorological and
environmental factors before and after the rapid increase and
decrease in PM2.5 concentration in Shanghai. A rapid increase
(decrease) is defined as an average daily increase (decrease) in the
PM2.5 concentration in Shanghai by more than 1.5 times the
standard deviation. Thus, from 2014 to 2019 (2014 refers to the
winter of 2014/2015, similarly for the following years), there were
41 rapid increases and 45 rapid decreases. The changes in
meteorological elements at the Shanghai Baoshan Station
before and after the rapid increase and decrease are shown in
Figure 2.

During a rapid increase, the temperature first decreased and
then increased, with the largest drop occurring from 4 to 2 days
before and the lowest temperature occurring 2 days before the
rapid increase. The same was true for relative humidity. The wind
speed at 10 m above ground also dropped at first and then rose,
with the highest wind speed occurring from 4 to 3 days before, the
largest drop occurring from 3 to 1 day before, and the lowest wind
speed occurring 1 day before the rapid increase. From 1 day

TABLE 1 | CMA, U.K., and ECMWF model prediction data description.

Model Name Prediction range Resolution Type Prediction frequency Years

CMA 0-60 d 1.5°*1.5° In operation Daily 1996–2019
U.K. model 0-60 d 1.5°*1.5° In operation Daily 1996–2019
ECMWF 0-46 d 1.5°*1.5° In operation 2/weeks 1996–2019
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before to 1 day after the rapid increase, the wind speed increased
slowly, and then from 1 to 2 days after, it decreased slowly. The
atmospheric pressure also exhibited a trend of first increasing and
then decreasing, with the largest increase occurring from 3 to
2 days before the rapid increase. From 2 days before to the day of
the rapid increase, the atmospheric pressure increased slowly,
reaching the highest on the day, and then dropped rapidly. It can
be concluded from the temperature and wind speed trends that
before the rapid increase, a cold front passed through Shanghai,
and as the atmospheric pressure was the highest on the day, a
rapid increase occurred after the passage of the cold front.

During a rapid decrease, environmental factors differed greatly
from those during a rapid increase. The temperature increased and
then decreased, with the largest increase occurring from 3 to 1 days
before and the highest temperature occurring 1 day before. Relative
humidity decreased and then increased, with the lowest occurring
1 day before. The change in wind speed was smaller than that during
a rapid increase, with the largest increase occurring from 1 day
before to the day, and the highest wind speed occurring 1 day after,
and then the wind speed started to fall. The change in atmospheric
pressure was also smaller than that during the rapid increase, and the
atmospheric pressure was always higher. A large increase occurred

FIGURE 1 | LSTM gate structure.

FIGURE 2 | Changes of factors in the atmospheric environment before and after the rapid increases and decreases in PM2.5 concentration: (A) temperature, (B)
relative humidity, (C) wind speed, and (D) atmospheric pressure. (Note: The positive (negative) time indicates the change in environmental meteorological elements
occurring before (after) the change in PM2.5.)
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from 2 days before to the day, and the atmospheric pressure was the
highest on the day. The wind speed increases from 1 day before to
the day of the rapid decrease, and combined with the decreasing
trend of temperature, indicated that the rapid decreasing process was
impacted by the high surface pressure system, and a cold front
passed from 1 day before to 1 day after the process.

It can be seen from the aforementioned analysis that local
temperature, wind speed, atmospheric pressure, and relative
humidity are the main impact factors of the rapid changes in
PM2.5 concentration.

2.3.2 Large-Scale Circulation Impact Factors
In order to analyze the large-scale circulation characteristics and
key areas that impact the change in PM2.5 concentration in
Shanghai, a lead/concurrent regression analysis of PM2.5 on
geopotential height and temperature fields was conducted. To
ensure period validity, this study analyzed the environmental
factor regression before PM2.5 concentration changes.

The results of the lead regression analysis of PM2.5

concentration on the geopotential height field at 500 hPa (as
shown in Figure 3) showed that the 10 days before 500 hPa

geopotential height regression field had a “positive, negative,
positive, negative” distribution pattern in Eurasia, with its
centers of positive anomalies located in the Mediterranean and
Siberian regions, and the centers of negative anomalies located in
the Ural Mountains and the North Pacific regions. The negative
anomaly centers passed the significance test, and this distribution
corresponded to zonal circulation.

Five days before, the locations of the positive and negative
anomaly centers remained the same, but the range of the anomaly
centers in the Ural Mountains and Lake Baikal regions increased,
and the anomaly centers in both locations passed the significance
test. At the same time, the intensity and range of the positive
anomaly center in Siberia and the negative anomaly center in the
Ural Mountains decreased, while the intensity and range of the
negative anomaly center (the Aleutian Low) in the North Pacific
increased. A negative anomaly center appeared in East China,
indicating that Shanghai was experiencing the impact of a trough.
From the aforementioned analysis, it can be seen that the signal of
the 500 hPa high-altitude field was the strongest 5 days before the
change in PM2.5 concentration in Shanghai, and this signal had
good predictive significance for the change in PM2.5

FIGURE 3 | Lead regression analysis of PM2.5 concentration on the 500 hPa geopotential height field (A) ten days before, (B) five days before, and (C) day of.
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concentration in Shanghai. Therefore, (47°–67°N, 30°–65°E) and
(47°–63°N, 85°–110°E) were selected as the key areas of the
500 hPa geopotential height field.

Figure 4 shows the regression on the 850 hPa temperature
field, which shows that 10 days before the increase in PM2.5

concentration in Shanghai, there was a positive anomaly
center in Siberia, whose intensity and range increased 5 days
before, and it passed the significance test. From 10 to 5 days
before, the central and eastern regions of China were controlled
by significant negative anomalies. At the same time, the center of
a positive anomaly in Siberia clearly moved south and expanded
in its range to central and eastern China. This shows that during
the same period of increase in PM2.5 concentration, the
temperature at 850 hPa increased in central and eastern China,
which was conducive to the occurrence of a temperature
inversion that could inhibit the vertical diffusion of pollutants.
It can be seen that the signal of the 850 hPa field was also the
strongest 5 days before the change in PM2.5. Therefore, the
850 hPa temperature field (53°–63°N, 80°–110°E) was selected
as the key area.

The distribution of the sea-level pressure field regression and
the 850 hPa temperature field were similar (figures not shown).
The increase in PM2.5 concentration corresponded to the
formation, eastward movement, and southward movement of
the Siberian High. To avoid factor duplication, this study did not
select key areas from the sea-level pressure field of the sea-level
pressure field.

2.4 Predictor Screening
Based on the analysis in Section 2.3, the predictors were divided
into two categories: local factors and large-scale circulation
factors. Meteorological predictors in three models (ECMWF,
CMA, and the U.K. model) in the S2S dataset on a grid point
near Shanghai and MODIS AOD data were used as local factors.
To obtain more comprehensive meteorological information and
avoid the error caused by a single factor, a decision tree model
(LightGBM) was adopted to rank the meteorological factors in
the three models in the S2S dataset that affect PM2.5

concentration, and the first 69 predictors were selected,
including 46 high-altitude predictors and 23 sea-level

FIGURE 4 | Lead regression analysis of PM2.5 concentration on the 850 hPa temperature field (A) ten days before, (B) five days before, and (C) day of.
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predictors. The names and importance of the predictors are
presented in Supplementary Appendix Table S1. The large-
scale circulation factors were the four key area indices defined in
the middle, lower, and surface layers of the troposphere in section
2.3. In addition, the forecast date and PM2.5 measurements before
the forecast started were set as the basic information of the
forecast.

2.5 Modeling Framework
The PM2.5 concentration from 2001 to 2019, the meteorological
prediction data of the CMA, ECMWF, and U.K. models in the
S2S dataset, MODIS AOD data, and earlier atmospheric
circulation indices in the key areas were selected. The LSTM
model parameter settings are presented in Table 2. Figure 5
shows the flowchart of the modeling framework. The specific
steps were as follows: 1) The LightGBMmodel was used to extract
feature factors of the meteorological factors that impact PM2.5

concentration and randomly divide the feature factors into a
training set (90%) and a validation set (10%); 2) 90% of the data in
the training set were selected randomly and applied to the LSTM
andMLRmodels, respectively, for model training. The remaining
10% was used for testing and adjusting the model parameters
based on the test results to select the optimal parameters for the
model; 3) the validation set was used to evaluate and test the
model prediction results. If the model passed the test, the model
was saved. Then, only predictor inputs were required to generate
the operational forecasts. If the model did not pass the test, then
the process returned to model training, the predictors and
training parameters were adjusted, and the model was retrained.

Commonly used continuous time series evaluation test
indicators, correlation coefficient (R) and root-mean-square
error (RMSE), were selected for an overall evaluation, and the
Heidke Skill Score (HSSs) (Heidke, 1926) was selected as an

indicator to evaluate the hit rate of pollution days. The HSS is
related to two measures: proportion correct (PC) and its
maximum likelihood estimate (E), which is defined as follows:

PC � a + d

a + b + c + d
� a + d

n
, (2)

where a refers to the number of observed pollution days
forecasted correctly, b refers to the number of observed
pollution days forecasted incorrectly, and c refers to the
number of observed pollution days where a forecast was not
made. Based on Eqn 2, the ideal value of PC is a uniform value,
and its reference value is a probable consistency. Therefore, E can
be written as

E � (a + c

n
)(a + b

n
) + (b + d

n
)(c + d

n
), (3)

and HSS can be defined as

HSS � PC − E

1 − E
� 2(ad − bc)
(a + c)(c + d) + (a + b)(b + d), (4)

where the range of HSS is [−∞, 1], and a negative value means that
the model is worse than random predictions, a value of 0 means
that it does not have any skill, and a value of 1 means that the
forecasts are perfect.

3 RESULTS

Based on the aforementioned analysis, the PM2.5 concentration in
Shanghai is affected not only by the interaction between local
meteorological factors and source emissions but also by earlier
atmospheric circulation conditions. Meteorological fields
predicted by S2S can provide local meteorological factors over
an extended range. Utilizing the LSTM and MLR models, the
nonlinear and linear correlations between the PM2.5

concentration and the local factors (S2S predicted values) and
earlier atmospheric circulation factors were established. Then, an
extended-range prediction model of PM2.5 concentration in
Shanghai was established. Based on the evaluation, the optimal
model was selected as the prediction model.

TABLE 2 | LSTM model parameter settings.

Model parameter* ① ② ③ ④ ⑤ ⑥

Value 600 2 Adam MSELoss 0.005 Default value

Note:* ① Epoch, ② num_layer, ③ Optimizer, ④ Loss_function, ⑤ Learning_rate, ⑥
Other parameters.

FIGURE 5 | Flowchart of the modeling framework.
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3.1 Experiment Plan and Result Verification
Based on the time relationship between the impact factor and the
forecast target, three sets of experiments were designed, and each
experiment was repeated ten times. The ensemble average was
obtained as the forecast result. The design and forecast testing for
each experiment are described as follows.

Experiment 1: t-20, t-19,..., t-1 real-time atmospheric
circulation factors were selected as predictors to establish a
forecast model for PM2.5 concentration in Shanghai for
20 days, t, t + 1,..., t + 20. The design scheme is listed in
Table 3. The model in EXP1-1 was built using MLR
regression, and the forecast model in EXP1-2 was built using

the LSTM network. Experiment 2: A total of 207 historical
predictors (t, t + 1,..., t + 20) from the three models in the
S2S dataset, and MODIS AOD data (t-20, t-19,..., t-1) were used
to establish a forecast model for 0- to 20-day PM2.5 concentration.
The model in EXP2-1 was built using MLR regression, and the
forecast model in EXP2-2 was built using the LSTM network.
Experiment 3: Real-time atmospheric circulation factors (t-20, t-
19,..., t-1), MODIS AOD data (t-20, t-19,..., t-1), and historical
predictors (t, t + 1,..., t + 20) in the three models in the S2S dataset
were selected as predictors for training the model. The model in
EXP3-1 was built using MLR regression, and the forecast model
in EXP3-2 was built using LSTM. Figure 6 shows the forecast test

TABLE 3 | Experimental design.

Experiment Time Factors selected Data source

EXP1-1 (t-20,t-19,. . ., t-1) Circulation Circulation factors were obtained from ERA-5
EXP1-2

EXP2-1 (t,t+1,. . ., t+20) Local Local factors were obtained from S2S and MODIS AOD data
EXP2-2

EXP3-1 (t-20,t-19,. . ., t+20) Circulation Circulation factors were obtained from ERA-5, and local factors were obtained from S2S and MODIS AOD data

FIGURE 6 | Individual experiment forecast result verification of EXP 1 to EXP 3 (A,B) R (the 95% confidence level is 0.18) (C,D) RMSE.
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results for each experiment. The top and bottom graphs show the
changes in the forecast and real-time RMSE with forecast time,
respectively. Figure 7 shows the comparison between the forecast
and actual measurements in January, February, November, and
December of 2019 (the black line is the observation, and the
colored lines are the 20-days predicted daily concentration values
that start daily the 20-day predicted daily concentration value that
started daily).

It can be seen from the R and RMSE results that overall, the
prediction results of LSTM were better than those of the MLR
model. First, the results from EXP 1-1 and 1–2 were analyzed.
This model only used earlier large-scale circulation as predictors,
and its error was relatively small in short-term forecasts, and the

error increased as the period validity increased. The R and RMSE
of 0- to 7-day forecasts versus the true value were stable, with R
between 0.3 and 0.35, and RMSE around 26 μg m−3. As the period
validity increased, R decreased, and RMSE increased significantly.
The R and RMSE values of EXP 1 to 2 were better than those of
EXP 1-1, indicating that the LSTM model had a better predictive
ability than the MLR model. As seen from the comparison
between the forecasted and measured PM2.5 concentration in
2019 (Figure 7), both EXP 1-1 and EXP 2-1 were only able to
forecast the average PM2.5 concentration, but not the highest and
lowest values, which indicates that only considering large-scale
circulations and not considering local factors would cause the
model to not be able to obtain information about the local

FIGURE 7 |Comparison of results from EXP 1 to EXP 3with the actual condition for (A)MLR and (B) LSTMmodel. (Note: The black line is the measured PM2.5, and
the colored lines are the daily forecast, R is the correlation coefficient of 1- 20-day average prediction with observation.)
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meteorological factors and thus not forecast the high-frequency
changes in PM2.5. However, the earlier large-scale circulations
contain weather signals near the forecast stations for a period of
time in the future, so they can provide background information
about the average PM2.5 concentration to some extent.

In EXP 2-1 and EXP 2-2, the meteorological factors predicted
by S2S and MODIS AOD data at this station were selected as
predictors, and the error of these experiments also increased as
the period validity increased. The R and RMSE of EXP 2-2 were
better than EXP 2-1, which indicates that the predictive ability of
the LSTM model was better than that of MLR. As seen from the
comparison between the forecasted and measured PM2.5

concentration in 2019 (Figure 7), both experiments were able
to forecast the high-frequency change in PM2.5, which shows that
the information contained in the local meteorological factors

predicted by S2S had a relatively significant impact on PM2.5.
However, as the period validity increased, the accuracy of the S2S
meteorological forecast decreased, and its ability to forecast the
PM2.5 concentration also weakened.

EXP 3-1 and EXP 3-2 selected all S2S local predictors, MODIS
AOD data, and earlier large-scale circulation factors as predictors
to train the models. The results showed that the distribution
patterns of R and RMSE of EXP 3-1 and EXP 3-2 were the same as
those of EXP 2-1 and EXP 2-2, but the error values (R and RMSE)
were smaller, indicating that adding the earlier large-scale
circulation factors on the basis of local factors can significantly
improve the forecast by the model. As seen from the comparison
between the forecasted and measured PM2.5 concentrations in
2019 (Figure 7), both EXP 3-1 and EXP 3-2 could predict high-
frequency changes in PM2.5. Overall, they are closer to the actual
condition than EXP 2-1 and EXP 2-2, indicating that local factors
were the main impactor of the change in PM2.5, and the earlier
circulation factors in the key areas could correct the error in the
S2S local forecast, thereby improving the forecast results. EXP 3-2
had a higher R, a lower RMSE, and better forecast stability than
EXP 3-1, and its forecasted peak value was closer to the actual
peak, indicating that LSTM has better predictive ability
than MLR.

It can be concluded from the aforementioned three
experiments that the optimal forecast model was achieved
when both the large-scale circulation factors before the PM2.5

concentration change and the S2S local meteorological predictors
(including MODIS AOD data) were used as impact factors, and
the LSTM model was used in training. Therefore, this study
selected the LSTMmodel established in EXP 3-2 as the extended-
range prediction model of PM2.5 concentration in Shanghai.

3.2 Model Prediction Effect Analysis
Based on the aforementioned experiments, the design of EXP 3
was used, and the 45-day prediction of the ECMWF, CMA, and
U.K. models in the S2S dataset, the first 20 days of the
atmospheric circulation indices in the key areas from the
ERA-5 reanalysis data, the MODIS AOD data, and the

FIGURE 8 |Correlation coefficients (the 95% confidence level is 0.18) (A) and RMSE (B) between PM2.5 concentration predictions with different period validity (one
to eight pentads) (x-axis) of MLR and LSTM predictions based on CMA, U.K., and ECMWF models and the actual condition.

FIGURE 9 | Heidke Skill Score (y-axis) of MLR and LSTM PM2.5

concentration predictions based on CMA, U.K., and ECMWF models with
different period validity (one to eight pentads) (x-axis).
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measured PM2.5 concentration was selected to train the winter
of 2001–2014 using the LSTM and MLR models. Six prediction
models were obtained: LSTM-ECMWF, MLR-ECMWF,
LSTM-CMA, MLR-CMA, LSTM-UK, and MLR-UK. They
were then used to predict the following 40-day daily PM2.5

concentration from 2015 to 2019. The results were first
averaged using a pentad, then tested, and evaluated. The
evaluation results (Figure 8) showed that as the period
validity increased, the prediction ability of the models
gradually decreased. The correlation coefficient of 1–2-
pentad LSTM_ECMWF model prediction could reach

0.6–0.7, the coefficients for the U.K. and CMA models were
slightly lower (0.5–0.65), and their RMSE were all lower than
25 μg m−3. The prediction accuracy of the model decreased
significantly beyond the three pentads, with a correlation
coefficient lower than 0.45. The RMSEs of the LSTM-
ECMWF model at 20–25 μg m−3 and that of the LSTM-U.K.
and LSTM-CMA models were both higher than 25 μg m−3.
Overall, the predictive ability of the MLR model was weaker
than that of the LSTM model. For example, the correlation
coefficient of the LSTM-ECMWF was higher than 0.1–0.2 than
MLR-ECMWF, and the RMSE was lower by 3–9 μg m−3.

FIGURE 10 | Comparison of results from EXP 1 to EXP 3 with the actual condition for LGBM and LSTM models (A) R (the 95% confidence level is 0.18) and (B)
RMSE.
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The HSS was estimated from the score of correctly predicted
pollution days in winter after the revised predictions due to
random errors were excluded. It can be seen from the
comparison of the HSS of the six prediction models
(Figure 9) that compared to the predictions made by MLR,
the prediction made by LSTM showed higher skill in most
prediction lead times, and its HSS was always higher than 0.1
in the period validity of two to eight pentads. The prediction of
LSTM-UK had an advantage within the lead time of one to four
pentads, with an HSS higher than 0.2; for a lead time of four to
seven pentads, the predictive abilities of LSTM-ECMWF and
LSTM-UK were similar. It can be seen that the LSTM model
based on S2S can predict the pollution days in Shanghai to some
extent, which exceeded the time scale of the weather forecast
(7–10 days in advance), but as lead time increased, its prediction
ability gradually weakened.

3.3 Comparison With LGBM
In order to further verify the prediction advantages of the LSTM
model, based on the aforementioned three groups of experiments
and the same data set, this study conducted the same prediction
test with a light gradient boosting machine (LGBM). An LGBM is
a decision tree machine learning algorithm. The R and RMSE of
the aforementioned two tests are given in Figure 10. Overall, the

prediction ability of the LSTMmodel is obviously better than that
of LGBM model. In experiments 3-1, the average correlation
coefficient and RMSE of all prediction days (including 1–20 days)
are 0.495 and 23.4 μg m−3, respectively, which are better than
those of the LGBM model (0.47 and 23.8 μg m−3). In addition,
compared with the LGBM model, the LSTM model also has
advantages in the prediction performance of longer forecast time.
For example, when the prediction days were 16–20 days, RMSE is
reduced by 0.8 μg m−3 compared with LGBM. Thus, only LSTM
prediction results were evaluated in the next section.

3.4 Predictive Effect of Individual Cases of
Pollution
As discussed in the previous sections, the LSTMmodel has higher
and more stable prediction skills; therefore, only the LSTM
prediction results were evaluated using individual cases of
pollution. December 1, 2015 to January 20, 2016 was selected
as the case study. In this period, 25 pollution days occurred (figure
not shown), among which three pollution processes lasted 3 days
or more, and pollution lasted for seven consecutive days from
January 13 to 19, 2016. Figure 11 shows the model-predicted
2015–2016 consecutive pollution events compared with the
observed results (purple dots) at different lead times (blue

FIGURE 11 | Comparison between the observed pollution processes and the LSTM-predicted pollution periods (December 1, 2015–January 20, 2016). (Note:
Purple dots indicate the observed pollution period (December 1, 2015–January 20, 2016).) The three sets of graphs show the predicted pollution period by ECMWF
(top), CMA (middle), and the U.K. (bottom) models with different period validity (y-axis).
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dots). Overall, the LSTM-ECMWF, LSTM-CMA, and LSTM-UK
models were able to predict 80, 76, and 88% of the pollution processes
with a lead time of 15–40 days, respectively. However, there were
differences in the lead times for the pollution prediction. Relatively
speaking, the ECMWF model showed good skill in predicting
continuous pollution during January 13–19, 2016, 35–40 days in
advance. The U.K. model accurately predicted this pollution process
35 and 15 days in advance, but there was a period where predictions
were not made in mid-December 2015. The lead time of the accurate
prediction by the CMA model was short, only 20 days in advance of
the continuous pollution process in mid-January 2016. Compared
with the intermittent predictions of continuous pollution by ECMWF
and CMA, the U.K. model provided a more reasonable prediction of
the pollution cycle with a lead time of 15–40 days. It can be seen that
for the prediction of the pollution process, all three models had a
certain level of prediction ability, but the LSTM-UK model had a
higher hit rate for pollution prediction.

4 DISCUSSION

The local factors were the main factors affecting the rapid changes
in PM2.5. Regression analysis was used to select earlier large-scale
circulation factors can provide background information about the
average PM2.5 concentration to some extent. Adding the earlier
large-scale circulation factors on the basis of local factors can
significantly improve the forecast by the model, indicating that
local factors were the main impactor of the change in PM2.5, and
the earlier circulation factors could correct the error in the S2S
local forecast to some extent. In future research, external forcing
factors can be selected to enter the model because the signal of
external forcing factors lasts longer and has an impact on the
evolution of atmospheric circulation in advance.

The model prediction error originates from two sources. The first
is the prediction ability error of the model, which can be solved by
selecting the model with strong prediction ability, increasing the
trainingmodel samples, and adjusting the appropriate parameters of
the model. The second is the forecast error of the S2S meteorological
field. The field of ERA-5 was regarded as the “true value,” and
correlation analysis was performed with the same meteorological
elements in S2S (figure omitted). It was discovered that the
correlation coefficients of U, V, and ERA of each standard layer
related to the wind field decreased significantly beyond the second
pentad, and wind at different layers played a large role in the PM2.5

concentration (Supplementary Appendix Table S1); therefore, the
wind field error of the S2S forecast may be one of the main factors
causing the relatively large error in 11- to 40-day pollution
prediction. By adding predictors related to the wind field in the
training model, the impact of wind field error on the predictive

ability of the model can be reduced, which was one of the reasons
why 69 S2S local factors were chosen. In addition, before training the
pollution prediction model, the meteorological prediction field of
S2S first should be objectively corrected, which is one of the effective
ways to reduce the prediction error of the pollution
prediction model.

In addition, PM2.5 concentration is affected not only by
meteorological factors but also by the emission of pollutants
and the interaction between pollutants. In this study, only
MODIS AOD is used to characterize pollution emission
factors. In the future, incorporating real-time emission
inventory into the model is also the direction to improve the
prediction ability of the model.
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