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The extensive and unchecked application of chlorpyrifos against crop insects has caused
contamination of various ecosystems, such as soil, sediments, and water, posing harm to
plants, animals, useful arthropods, and humans. The present study aimed at evaluating the
ability of proto-type constructed wetland to biodegrade chlorpyrifos and its major
metabolites especially 2-hydroxy-3, 5, 6-trichloropyridine/ol (TCP) using chlorpyrifos-
degrading indigenous bacterial strains, namely, Acinetobacter baumanni and Bacillus
cibi with Canna spps. and indigenous Mentha spps. as a bacterial–plant consortium. Soil
and plant samples were collected at regular time intervals for 12 weeks; analytes were
extracted using the toluene method and evaluated through gas chromatography–mass
spectrometry (GC-MS). In case of wetland vegetation with Canna andMentha, 2-hydroxy-
3, 5, 6-trichloropyridine (TCP, m/z = 198) and 2- hydroxypyridine (m/z = 97) with
deprotonated molecular ions at m/z = 69 (M-H)−were detected as the intermediate
metabolites, while in the bacterial–plant consortium, instead of TCP, 3, 5, 6-trichloro-2-
methoxypyridine (TMP, m/z = 212) was formed along with di-ethylthiophosphate (DETP,
m/z = 169). Based on the metabolite analysis using GC-MS, the biodegradation pathway
for chlorpyrifos degradation through bacterial–plant consortia is predicted. The
constructed wetland with the bacterial–plant consortium showed its potential to either
bypass TCP generation, or TCPmay have been immediately biodegraded by the plant part
of the consortium. The designed constructed wetland provided a novel remedial measure
to biodegrade chlorpyrifos without producing harmful metabolites.
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1 INTRODUCTION

Chlorpyrifos is a broad-spectrumpesticide, extensively used against pests in agricultural (cotton, grains, and
fruits) and urban (lawns, commercial, and domestic buildings) settings. It belongs to the organo-phosphate
class, under the chemical name O, O-diethyl O-(3, 5, 6-trichloro-2- pyridinyl)-phosphorothioate
(C9H11Cl3NO3PS) having low water solubility (2mg/L) but soluble in organic solvents (Tariq et al., 2007).

Less than 1% of chlorpyrifos (CP) is applied to the target organisms, and most of the remaining
chlorpyrifos ends up contaminating the atmosphere, soil, and water (Shi et al., 2019). Therefore,
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long-term and irregular applications of chlorpyrifos have resulted
in large-scale pollution of soil, groundwater, sediment, and air. It
eradicates non-targeted organisms along with the targeted ones
including fish, useful arthropods, plants, animals, and humans. Its
exposure leads to acetylcholine accumulation leading to high
irritation and nerve compression (Gilani et al., 2016). This nerve
compression leads to seizures and finally death of insects and
mammals. Furthermore, CP and its metabolites are associated
with endocrine disruption (Ur-Rehman et al., 2021; Ramos et al.,
2019). This non-targeted biocidal activity on these organisms
may also be responsible for the loss of biodiversity and overall
environmental quality deterioration (Eskenazi et al., 1999;
Matthews, 2006; Benachour et al., 2007).

The half-life of CP in water is 50 days (Dores & De-Lamonica-
Freire, 2001), while in soil it varies from 60 to 120 days, although
it can deviate from 2 weeks to over 1 year, depending on the soil
type, climate, and other environmental conditions (Uniyal et al.,
2021). Therefore, it has been detected as the second most
common pesticide in food and water (John and Shaika, 2015).
In aquatic environments, its metabolites, for e.g., 3, 5, 6-
trichloropyridinol (TCP) and diethyl chlorpyrifos (DEC) are
found, among which TCP has been documented as more
toxic, persistent, and mobile than its parent compound CP, by
the US-EPA with a half-life ranging from 65 to 360 days in soil
(El-Hellow et al., 2013; Sud et al., 2020). The long half-life and
antimicrobial nature pose a hurdle for the complete remediation
of CP through microorganisms, leading to the accumulation of
TCP which results in the loss of soil biodiversity.

There are numerous methods available for detoxification of
chlorpyrifos including chemical treatment (Rayment and
Higginson, 1992), photodecomposition, volatilization, and
incineration, but most of them are not applicable for complete
removal of contamination at low concentration due to their
inefficiency, expensive, and environmentally unfriendly nature
(Abraham et al., 2013). In the past few years, physicochemical
(advanced oxidation process) and biological treatment approaches
have been widely employed for pesticide removal. Being a cost-
effective and eco-friendly method (Walkley and Black, 1934),
bioremediation (microbial and phyto-degradation) of
environmental pollutants, especially pesticides have been a focus
to improve environmental quality in general and soil quality in
particular (Nandhini et al., 2021). Chlorpyrifos, previously shown
to be resistant to enhanced degradation, has now been proved to
undergo enhanced microbe-mediated decay (John and Shaike,
2015). Several bacterial genera, especially Bacillus and
Acinetobacter, Pseudomonas, Flavobacterium, Sphingomonas,
and Agrobacterium sp. have been reported to biodegrade CP
(Alizadeh et al., 2018; Anwar et al., 2009; Pino and Peñuela,
2011; Maya et al., 2011; Fulekar & Geetha, 2008; Yang et al.,
2006). Among these reported bacterial species, Acinetobacter is
reported as an efficient biodegrader of various organophosphates
and is able to use those organophosphates as a sole carbon and
energy source (Sabit et al., 2011). Therefore, microbial degradation
is proven as a major factor determining the fate of
organophosphate pesticides in the environment. In addition to
microbial degradation, indigenous vegetation is reported to be
involved in the degradation of CP. Plants may serve as a means to

enhance the bioremediation process of contaminated soils as they
can absorb and accumulate a variety of xenobiotics and metals
from polluted soils and even degrade them, but the uptake process
of organic pollutants andmetals by plant roots is affected by several
factors (Chandra et al., 2021). The herbaceous plants derived from
local wetland species showed good growth when used to
biodegrade chlorinated perchloro-ethylene (PCE) or its by-
products (Avsar et al., 2007). Sometimes, the extended root
system of plants in the soil apparently sustains microbial
communities which are responsible for both anaerobic and
aerobic biodegradative activity against such contaminants
(Amon et al., 2007). These plants enhance the bioremediation
process by release of exudates and enzymes such as carbohydrates,
carboxylic acid, and amino acids that stimulate both microbial and
biochemical activity in surrounding soil and mineralization of
pollutants in rhizosphere soil (Tarla et al., 2020). The constant
supply of carbon compounds from plant roots to rhizosphere
microbes acts as fuels for complex interactions among rhizosphere
organisms including those between microorganisms and plants
(Daane et al., 2001). This consortium when exists as a land
transition between terrestrial and aquatic systems, termed as
wetland, plays an important role in the environment
rehabilitation through natural decomposition or degradation
(Terry and Bañuelos, 1999; Mejáre and Bülow, 2001). In
addition to natural wetlands, lab-scale constructed wetland
offers an option for ex situ bioremediation of contaminants,
displaying a considerable potential to mitigate pesticide load
including CP (Schulz and Peall, 2001). Plants in constructed
wetlands also serve to stabilize the bed surface, increases
porosity throughout the wetland volume for aerobic bacteria
thriving in the soil, thus contributing toward the biodegradation
process. Approximately, 92% removal of different pesticides from
wastewater has been reported by Cooper et al. (2016) when a three-
stage bio-bed was used as wetland. Retention capability was
assessed by Schulz and Peall (2001) when no pesticide was
detected in the outlet of a constructed wetland, while Gregoire
et al. (2009) mentioned almost 80% removal efficiency for pesticide
flux. Tang et al. (2019) reported a 98% CP removal with Cyperus
alternifolius, Canna indica, Iris pseudacorus, Juncus effusus, and
Typha orientalis in recirculating vertical flow constructed wetland
systems. In a similar study, a constructed wetland (CW) cultivated
with Polygonum punctatum, Cynodon spp., and Mentha aquatic
showed approximately 98% removal efficiency of CP by Souza et al.
(2017).

It has been shown that multiple bacterial species co-exist, not
as isolated pockets of pure cultures, but as complex communities
known as biofilms, which are capable of maximizing nutrient
utilization and redox environments, etc., for example, some
members of a community may convert plant exudates into a
form available to other member of the community (Nottingham
and Messer, 2021). Bacteria were isolated from the rhizosphere of
Phragmites australis growing in the distillery effluent
contaminated site mostly present in the lower region of roots,
capable for the bioremediation of distillery wastewater
contaminated sites (Chandra & Chaturvedi, 2002).

Taking into account the CP biodegradation process, the major
CP metabolite, TCP, being antimicrobial and having a higher
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water-soluble nature, makes it more mobile in various
environmental matrices (Bose et al., 2021). Furthermore, the
produced TCP, as a result of microbial biodegradation, in
turn proves lethal for the biodegrading microorganisms
resulting not only in decline in the biodegradation
efficiency but also in the loss of diversity of soil microbial
fauna (Abraham et al., 2013). In addition, studies concerning
its fate and degradation in the soil are very limited. So, its
further degradation is crucial to alleviate its concentration to
prevent its magnification in the environment, thus mitigating
the pollution and toxicity posed by TCP in particular and
other metabolites of CP in general.

The CP biodegradation efficiency in a proto-type CW is
influenced by many independent environmental factors such
as bacterial species, nature of the pesticide, hydraulic retention
time (HRT), and the plant species (deMatos et al., 2009; Tu et al.,
2018). As reported by Romos et al. (2019) for pesticides with
short aquatic half-lives, wetland systems require to exhibit much
longer residence times (RTs). So, in the present study, the
bacterial–plant consortium was used to 1) observe the
potential of constructed wetland for bioremediation of CP and
its major metabolites, especially TCP using the indigenous
plant–bacterial consortium; 2) compare the biodegradation of
chlorpyrifos (CP) and its metabolites using wetland vegetation
alone and plant–bacterial consortium for possible biodegradation
pathway analysis.

2 MATERIALS AND METHODS

2.1 Chemicals and Reagents
Analytical-grade chemicals and reagents were purchased from
Sigma-Aldrich, while commercial chlorpyrifos (48% w/v) was
purchased from standard commercial suppliers. Minimal salt
medium (MSM; pH 6.8–7.0) was prepared using the chemicals
as described: dextrose, 1.0 g/L; K2HPO4, 7.0 g/L; KH2PO4, 2.0 g/L;
sodium citrate, 0.5 g/L; MgSO4.7H2O, 0.1 g/L; and (NH4)2SO4,
1.0 g/L (Parmar et al., 2014).

2.1.1 Soil Parameter Analysis
Different parameters of soil such as pH, soil nutrients, soil
texture, and soil nitrogen contents were analyzed as described
in the following sections.

2.1.2 pH Measurement
In a 100-ml bottle, about 10 g of air-dried soil was weighed, and
25 ml of distilled water was added and shaken for about 1 h. After
shaking, the glass electrode was dipped in soil suspension and pH
of soil was recorded (Ohtsu et al., 1994).

2.1.3 Organic Matter Determination
To the air-dried and sieved 1 g soil, 10 ml of k2Cr2O7

solution (1 N) was added. Then, 20 ml of concentrated
H2SO4 was added and mixed well, and the mixture was
allowed to stand for about half an hour. On the other
hand, 25–30 drops of diphenylamine indicator and 0.2 g
of sodium fluoride were added to distilled water, and the

solution was titrated with ferrous ammonium sulfate
solution. A color change from dull green to brilliant
green was noticed. A blank sample (without soil) was also
run in the same way (Walkely–Black method).

2.1.4 Total Nitrogen
One gram of dried soil was shifted to a digestion tube along with
10 ml of H2SO4 and 5 g of catalyst mixture and heated to 100°C
with an increase in temperature up to 400°C. The sample was
noted, and the cooled sample was shifted into a distillation unit
with 40 ml NaOH (40%) and 20 ml boric acid (4%) as an
indicator, and any color change was noted. The distillate was
titrated with sulfuric acid (0.02 N). A blank sample was also run
using the same method (AOAC, 1995).

2.1.5 Total Phosphorous
Dried soil (2.5 g) was added to 0.5 g activated charcoal. To this
mixture, 50 ml NaHCO3 (0.5 M) solution was added and shaken
for almost half an hour and filtered through the Whatman filter
paper. The filtrate was acidified by adding H2SO4 (5N) and
ascorbic acid with distilled water as an added solvent. A blank
sample was also run with the similar conditions and compared
with the test sample (Koenig & Johnson, 1942).

2.1.6 Determination of Potassium
Five gram of soil was weighed with 25 ml of ammonium acetate
(NH4OAc) solution, then shaken for five minutes, and filtered
through the Whatman filter paper. Potassium extract was
measured (Black, 1965).

2.2 Screening and Isolation of
Chlorpyrifos-Degrading Bacteria
To isolate the potential bacterial strains, soil samples from
selected chlorpyrifos-infested sites were collected from Kotli,
Azad Jammu, and Kashmir-Pakistan (33.2896 oN 73.7414 oE).
This particular field of choice has been exposed to continuous
applications of chlorpyrifos for a considerable period of time. The
soil samples were obtained from 5 to 10 cm layers below soil
surface as described by Wang et al. (2021). One gram soil sample
was mixed in distilled water (10 ml), and 1 ml of the solution was
spread on the nutrient agar media through the spread plate
method. The plates were incubated at 37°C for 24 h.
Morphologically distinct colonies were selected and purified
through the streak plate method.

2.2.1 Enrichment of the Bacterial Strains
Isolated strains were selected by subjecting them to the increasing
concentrations of chlorpyrifos (250, 500, 750, and 1,000 ug/L).
For this purpose, the isolated strains were grown in MSM
medium (pH 7.0) on a shaker (IRMECO, I 3000, Germany) at
200 rpm for a period of 72 h as described by Abraham et al.
(2013) with some modification. CP degradation was observed
in the first set of experiments by bacterial isolates in minimal
salt media (MSM) in different concentrations and
combinations with CP as the sole carbon source along
with positive and negative controls.
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2.3 Proto-Type Constructed Wetland
A prototype wetland was constructed using pots filled with coarse
and fine gravel, coarse gravel (20–30 mm diameter), fine gravel
(2–10 mm diameter), sand, and soil from a specific site (Figures
1A,B). Prior to hand milling, soil was air-dried and screened
through a sieve (2 mm pore size). The local plants, namely,Canna
spps. and Mentha spps. (indigenous mint), were selected for
constructed wetland (CW) establishment due to their ubiquitous
abundance in the region, especially on the sampling site and along
the river. The use of indigenous species is preferred as they do not
pose any negative impact on micro-flora and has better survival
chance (Farhan et al., 2021). A total of twelve (12) CW
arrangements were maintained under different experimental
conditions, namely, control, with isolated bacterial strains in

soil alone, with plant and soil alone, and with a mix
bacterial–plant consortium, and spiked with predefined CP
concentrations.

2.3.1 Extraction of Chlorpyrifos From Soil
After a set retention time, the remaining chlorpyrifos was
extracted from the CW soils using the toluene method as
described by Reddy et al. (2013). A measured quantity of soil
(12.5 g) was added to 20 ml toluene in 50-ml Teflon centrifuge
tubes and kept on a horizontal shaker (IRMECO, OS 10,
Germany) at 150 rpm for 4 h at 25°C. The tubes were then
centrifuged at 4000 rpm for 10 min (Reddy et al., 2013). The
resultant extract was filtered through anhydrous sodium sulfate
(Na2SO4). For GC-MS analysis, 1 ml of toluene was added to the
filtrate.

2.3.2 GC-MS Analysis for Chlorpyrifos Biodegradation
Degradation of chlorpyrifos to its metabolites was confirmed by
GC-MS (Perkin Elmer, MS Claurus SQ 8S, GCClaurus 590, USA)
equipped with a HP-5MS capillary column (30 m, 0.025 mm i.d)
in helium carrier gas (1 ml per min) and with a splitless injection
system. Initially, the column was maintained for 5 min at 90°C
and then increased to 290°C at a rate of 8°C per min and held at
290°C for 5 min (Reddy et al., 2013). The injector and interface
temperature were kept at 280°C and the source temperature at
250°C. A mass spectrum was obtained by the electron impact (EI)
at 70 eV.

3 RESULTS AND DISCUSSION

3.1 Soil Analysis
Soil used in the constructed wetland was analyzed for different
parameters such as saturation, pH, texture, organic matter,
nitrogen content, phosphorous, and potassium. Soil saturation
was 51% with basic pH (8.12) with a texture of clayey loam with
0.059%, 16, and 131 ppm of nitrogen, phosphorous, and
potassium contents, respectively.

3.2 Isolation and Identification of
Pesticide-Degrading Bacteria
In the present study, a bioremediation system was developed by
isolating CP-degrading indigenous bacterial cultures, and their
subsequent application in the indigenous plants using
constructed wetland (CW). A total of two morphologically
distinct CP-tolerant bacterial strains MBT035 and MBT037
were isolated and identified through ribotyping (16s rRNA) by
Macrogen (Macrogen Inc., South Korea) as Acinetobacter
baumanni and Bacillus cibi, respectively.

The CW establishment was applied in two combinations: a)
soil and plants only and b) soil, plant, and bacterial consortium, to
observe the effect of the bacterial isolate alone, plants alone, and
in consortium. The CP removal efficiency in constructed wetland
was analyzed by GC-MS, in which MS spectra of the extracted
samples showed an effective biodegradation using constructed
wetland when cultivated with indigenous Canna spps. and

FIGURE 1 | (A) Proto-type constructed wetland. (B). Execution of the
prototype constructed wetland.
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Mentha spps. and bioaugmented with Acinetobacter baumanni
and Bacillus cibi (CP-degrading bacterial isolates). By observing
the chromatograph, it is evident that chlorpyrifos was
metabolized to produce various intermediates of different m/z
in various combinations of CWs, that is, plant alone and in the
bacterial–plant consortium. The results are described in the
following sections:

3.2.1 Wetland With Indigenous Plants
The wetland vegetation, Cannas spps. andMentha spps., in a CW
was used to monitor the biodegradation of CP through the phyto-
degradation process. Several characteristic peaks of different
metabolites of chlorpyrifos’s biodegradation were observed
in the GC-MS chromatogram. Among them, the most
documented intermediate and degradation product, TCP
(3, 5, 6-tricloro-2-piridinol) was detected, which was
confirmed by the m/z peak of m/z = 198 (Figure 2).This
product has already been documented in case of bacterial
biodegradation by various researchers (Abraham et al., 2013;
Zhu et al., 2019). But, it is also reported as a more toxic
pollutant than the parent compound CP in the environment,
especially for the microbes in the soil (antimicrobial agent).
This may be a possible reason for resistance to enhanced
microbial biodegradation for CP biodegradation. In the
current study, TCP was also reported when indigenous
plant vegetation was used. But, a good growth response to
this toxic TCP was shown by the wetland vegetation. This
toxic antimicrobial compound seemed either non-toxic to the
indigenous plants or the plants might have coped with the
toxicity posed by this particular intermediate of CP
biodegradation. The study endorses the hypothesis of plant
degradation potential for TCP.

Further degradative product, diethyl acid phosphate (DEP)
with a molecular ion at m/z 152.98 [M - 1]- was also detected
which was further metabolized into a molecule of m/z = 98,
identified as H3PO4. These results were found in accordance with
Shi et al. (2019).

TCP was further degraded to form 2-hydroxypyridine (m/z =
97) with deprotonated molecular ions at m/z = 69 (M-H)− as
described by Uniyal et al. (2021).The results were found in
accordance with Tang et al. (2019) who reported a decrease in
the half-life of TCP when Canna indica was used as wetland
vegetation with approximately 33 percent removal. These results
showed efficient biodegradation of CP and its metabolites,
especially TCP in proto-type constructed wetland when Canna
and Mentha spps. were used.

3.2.2 Soil, Plant, and Bacterial Consortium
In the second phase of the experimentation setup of the
plant–bacterial consortium, when wetland vegetation,
i.e., Canna spps. and Mint spps., was used along with the
indigenous bacterial strains, a CP metabolite with m/z = 212
was detected corresponding to TMP (3, 5, 6-trichloro-2-
methoxypyridine). In addition to TMP, another metabolite
(m/z = 169) was also detected and found out to be diethyl-
thio-phosphate (DETP) a CP hydrolysis product mentioned by
Bicker et al. (2005) in his studies (Figure 3). As described by Chen
et al. (2012), the degrading microorganisms tend to metabolize
chlorpyrifos by hydrolysis to form diethyl-thio-phosphoric acid
(DETP) along with TCP. On the other hand, the bacterial–plant
consortium showed good growth performance, depicting a good
consortium establishment between plants and isolated strains
(Figure 4). When metabolites of the biodegradation in both the
experimental designs, i.e., wetland vegetation alone and
plant–bacterial consortium, were compared, this TCP was not
detected in plant–bacterial association rather TMP was detected.
It is already described by Shi et al. (2019) that TCP can further
generate TMP. The transient appearance of TCP and its
subsequent degradation to TMP may be attributed to the
mutual interaction and biodegradation ability of the
plant–bacterial consortium. It may further be inferred from
the GC-MS chromatogram that the formation of TCP may be
either bypassed, or it was synthesized for a very short period of
time and immediately biodegraded by the plant part of the

FIGURE 2 | GC-MS chromatograph for wetland with indigenous Canna spps. and Mentha spps.
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consortium. The synthesis of TMP in place of TCP was found
against the findings of Chen et al. (2012) as in most of the cases
reported to date, the bacterial isolates tended to transform
chlorpyrifos to yield TCP, which in turn accumulated in the
batch cultures or soils and posed toxic effects on the microbial
culture. So, the enhanced microbial degradation could not occur
owing to its antimicrobial properties (Chen et al., 2012).

During the study, a good adaptation of the bacterial isolates to
the applied CP was observed in the plant–bacterial consortium,
since the bacterial number increased with increasing
concentration of the pesticide to the soil. This could be
reasoned to the absence of TCP in the bacterial–plant

consortium which may be the reason for prolonged survival
and good growth of the bacterial–plant consortium. An overall
96% of CP removal was observed in the bacterial–plant
consortium. These results were found against the findings of
Chen et al. (2012) who reported formation of TCP along
with DETP.

Thus, the bacterial augmentation in the experimental soil with
wetland vegetation eventually caused higher degradation,
suggesting the compatibility of the augmented culture with the
indigenous wetland vegetation. The dominant removal process
was reported to occur through microbial degradation in wetland
technology as described by Liu et al. (2019). In a similar study,
Singh et al. (2003) observed maximum biodegradation of CP
using Pseudomonas putida after 90 days in basic soils. These

FIGURE 3 | GC chromatogram of the chlorpyrifos metabolites formed in the microbial–plant consortium.

FIGURE 4 | Proto-type constructed wetland with indigenous bacterial
strains and Canna and Mentha spps.

FIGURE 5 | Proposed biodegradative pathway for chlorpyrifos in
wetland vegetation and bacterial–plant association.
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results were also found in accordance with Souza et al. (2017) and
Uniyal et al. (2021).

3.3 Proposed Biodegradation Pathway
for CP
The insecticide CPF mostly undergoes hydrolysis to 3, 5, 6-
trichloro-2-pyridinol (TCP), diethyl-thio-phosphoric acid
(DETP), and negligible amounts of other intermediate
products (Das and Adhya, 2015).TCP is a major metabolite of
CP, and under all pathways, it is observed to undergo ring
cleavage to form smaller organic and inorganic molecules as
described by Sud et al. (2020). The degradation pathway of
chlorpyrifos begins with cleavage of the phosphorus ester
bond to yield 3, 5, 6-trichloro-2-pyridinol (TCP) (Lee et al.,
2012). Based on the GC-MS analysis, the possible degradation
pathway in case of wetland vegetation is proposed via hydrolysis
as: CP (m/z = 358 > TCP (m/z = 198) >2- hydroxypyridine (m/z =
198) > 69. While in case of bacterial–plant association, CP (m/z =
358)>TMP (m/z = 212>TCP-2H (m/z = 196) > DETP (m/z =
169) is suggested (Figure 5).

4 CONCLUSION

The present study was designed to observe the potential of
constructed wetland using indigenous bacterial–plant
association for the chlorpyrifos biodegradation. Therefore, a
bioremediation system was developed by isolating CP-
degrading indigenous bacterial cultures and their subsequent
application in couple with indigenous plants using constructed
wetland.

1. Two morphologically distinct CP-biodegrading bacterial
strains Acinetobacter baumanni (MBT035) and Bacillus cibi
(MBT037) were isolated and purified.

2. A pro-type constructed wetland (CW) with indigenous Canna
spps. andMentha spps. and bioaugmented with Acinetobacter
baumanni and Bacillus cibi showed enhanced biodegradation
of chlorpyrifos (CP) up to 96%.

3. TCP (3, 5, 6-tricloro-2-piridinol, m/z = 198) was observed
when indigenous plant vegetation was used in CW which was
further degraded to form 2-hydroxypyridine (m/z = 97) with
de-protonated molecular ions at m/z = 69 (M-H)−.

4. In case of the bacterial–plant consortium, instead of TCP, a 3,
5, 6-trichloro-2-methoxypyridine (TMP, m/z = 212) was

detected along with diethyl-thio-phosphate (DETP,
m/z = 169).

5. The results of the present study showed good potential
constructed wetland with Canna spps. and Mentha spps.
and bioaugmented with Acinetobacter baumanni and
Bacillus cibi.

5 FUTURE PROSPECTS

The current study promotes further research on
plant–microbe joint combined remediation and examines
the different behaviors. Following future prospects may be
considered:

1. The fate of the other metabolites of CP and their toxicity may
be monitored in the plants and animal species thriving in soil
or environment.

2. Attempts could be made to optimize the bacterial–plant
consortium for maximum and efficient bioremediation of
the CP as well other environmental contaminants.
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