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Invasive alien plants (IAPs) are increasingly threatening biodiversity

worldwide; thus, early detection and monitoring tools are needed. Here,

we explored the potential of unmanned aerial vehicle (UAV) images in

providing intermediate reference data which are able to link IAP field

occurrence and satellite information. Specifically, we used very high

spatial resolution (VHR) UAV maps of A. saligna as calibration data for

satellite-based predictions of its spread in the Mediterranean coastal

dunes. Based on two satellite platforms (PlanetScope and Sentinel-2), we

developed and tested a dedicated procedure to predict A. saligna spread

organized in four steps: 1) setting of calibration data for satellite-based

predictions, by aggregating UAV-based VHR IAP maps to satellite spatial

resolution (3 and 10 m); 2) selection of monthly multispectral (blue, green,

red, and near infra-red bands) cloud-free images for both satellite

platforms; 3) calculation of monthly spectral variables depicting leaf and

plant characteristics, canopy biomass, soil features, surface water and hue,

intensity, and saturation values; 4) prediction of A. saligna distribution and

identification of the most important spectral variables discriminating IAP

occurrence using a fandom forest (RF) model. RF models calibrated for both

satellite platforms showed high predictive performances (R2 > 0.6;

RMSE <0.008), with accurate spatially explicit predictions of the invaded

areas. While Sentinel-2 performed slightly better, the PlanetScope-based

model effectively delineated invaded area edges and small patches. The

summer leaf chlorophyll content followed by soil spectral variables was

regarded as the most important variables discriminating A. saligna patches

from native vegetation. Such variables depicted the characteristic IAP

phenology and typically altered leaf litter and soil organic matter of

invaded patches. Overall, we presented new evidence of the importance
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of VHR UAV data to fill the gap between field observation of A. saligna and

satellite data, offering new tools for detecting and monitoring non-native

tree spread in a cost-effective and timely manner.

KEYWORDS

upscaling, invasive alien plants, Sentinel-2, PlanetScope, environmental monitoring,
random forest model, coastal dune landscapes

1 Introduction

Biological invasions are among the major threats impinging

on biodiversity across the world (Simberloff et al., 2013; Vilà and

Hulme, 2017; Pyšek et al., 2020). Invasive alien species (IAS),

i.e., non-native species introduced by humans into a natural

system outside of their native range, are causing intense direct

impact and indirect impact on invaded ecosystems,

compromising their ecological functions and services (Bartz

and Kowarik, 2019). IAS invasions may alter community

composition and species assemblage strategies (e.g.,

photosynthetic rate and standing and dead biomass; Linders

et al., 2019) and degrade soil properties (e.g., nutrient content

and water surface; Castro-Díez al., 2019).

Among the most invasive plants impinging on coastal

ecosystems worldwide, Acacia saligna (Labill.) H. Wendl

(Starfinger and Schrader, 2021) is one of the most aggressive

plants, and it was recently included in the European Regulation

on Invasive Alien Species (EU1143/2014; hereafter, IAS

Regulation). A. saligna is a small evergreen tree, native of

Western Australia (Maslin, 1974), with fast-growing and

intense vegetative and sexual propagation (Witkowski, 1991).

Being introduced as fodder (Asefa and Tamir, 2006; George et al.,

2007), windbreak and dune stabilization (Bar et al., 2004), and for

ornamental purposes (Donaldson et al., 2014), it has become

invasive in coastal areas across the world (e.g., South Africa,

North Africa, Horn of Africa, Chile, and the Mediterranean;

Thompson et al., 2015; Lozano et al., 2020). Several negative

effects of A. saligna invasion on natural ecosystems were

reported, for e.g., the alteration of biodiversity values, the

decline of focal species, and the drastic change of vegetation

structure toward dense monospecific A. saligna woodlands (Le

Maitre et al., 2011; Del Vecchio et al., 2013; Tozzi et al., 2021). A.

saligna also modifies soil nitrogen and organic matter content

(Yelenik et al., 2004; El-Gawad and El-Amier, 2015), altering soil

microbial communities (Crisóstomo et al., 2013). Furthermore,

invaded areas tend to present poorer aesthetic and recreational

landscape values than natural ones (Lehrer et al., 2011).

The growing pressure exerted by IAS across different

ecosystems worldwide urges the scientific community and civil

society to identify adequate monitoring and management

strategies (Brundu et al., 2018). As the Convention on

Biological Diversity (CBD; https://www.cbd.int/) claims for a

global strategy against IAS by 2030, the European Regulation on

Invasive Alien Species (EU1143/2014) provides clear guidelines

to prevent, minimize, and mitigate the occurrence and effects of

alien species on natural ecosystems (Genovesi et al., 2015;

Branquart et al., 2016).

The analysis of invasion processes was traditionally based on

field campaigns, often combined with visual interpretation of

aerial photos; both approaches were widely recognized as

expensive, time-consuming, and limited to depicting IAS

occurrences on remote and inaccessible areas (Del Vecchio

et al., 2013; Stanisci et al., 2014; Royimani et al., 2019).

Indeed, field campaigns for IAS spread analysis require an

accurate work plan to be carried out in a specific sampling

period, often in limited areas (Bolch et al., 2020). In addition,

the visual interpretation of aerial photos is very time-consuming,

even for skilled photo-interpreters (Bolch et al., 2020). During the

last decade, there has been increasing evidence of the potential of

remote sensing (RS) for IAS early detection, monitoring, and

mapping in a cost-effective, spatially contiguous, and timely

manner (Huang and Asner, 2009; Royimani et al., 2019).

Indeed, the distribution of different IAS can be detected by

using expensive very high-resolution (spatial and spectral) RS

images (e.g., airborne and satellite platforms with multispectral

or hyperspectral sensors; Underwood et al., 2003; Paz-Kagan

et al., 2017; Niphadkar et al., 2017) or combining free coarser RS

images and field-collected occurrences as calibration data (Zhou

et al., 2018; Kattenborn et al., 2019).

However, the combination of standard satellite RS images

and field-collected occurrences for IAS detection has different

shortcomings that should be overcome (Bradley 2014; Pettorelli

et al., 2014) as: 1) satellite images regularly covering the overall

Earth surface using standardized multispectral sensors (fixed

spatial resolution and zenith angle) could weakly describe

some important ecological parameters (e.g., IAS flower color

and the blooming period or altered soils on invaded areas) which

are essential for IAS detection (Müllerová et al., 2017); 2) the

acquisition of high quality IAS occurrence data in the field may

be hampered by local conditions, such as a dense canopy cover,

trouble in reaching remote invaded areas (Kaartinen et al., 2015;

McGaughey et al., 2017), or the complexity of the invaded

ecosystem mosaic (Bradley 2009; Hawthorne et al., 2017); 3)

building a reliable database of field IAS occurrences may require

a great effort to collect spatially accurate records using Real-Time

Kinematics Global Navigation Satellite System (RTK GNSS)

devices (Piiroinen et al., 2018; Dao et al., 2021).

A valid alternative to increase the spectral information and

the amount of accurate IAS occurrence data at a local scale is
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offered by unmanned aerial vehicles (UAVs). Indeed, the use of

UAVs allows the collection of highly customized data as the

operator can easily set several parameters that are useful to detect

alien species (e.g., type of sensor, angle of view, spatial resolution,

time, and frequency of acquisition), which are commonly

standardized on most satellite platforms (Kattenborn et al.,

2019; Alvarez-Vanhard et al., 2021). In addition, since UAV

images register environmental complexity as a continuous

surface (Kattenborn et al., 2019; Riihimäki et al., 2019) at very

high spatial resolution (VHR), variations of spectral values

caused by IAS can be detected in a smoothed way (Anderson

2018; Leitão et al., 2018), helping to fill the gap between field

observations and satellite data. On the other side, technical

constraints of UAVs (e.g., battery capability and surveying

restrictions) often prevent the use of this technology to

describe ecosystem patterns on a large scale. However, the

ability to acquire highly customized data makes UAVs an

interesting option to provide accurate maps of local IAS

occurrence (e.g., Wijesingha et al., 2020; Marzialetti et al.,

2021), supporting satellite detection at wider scales. The

contribution of VHR images for aiding IAS satellite detection

deserves to be further explored (Elkind et al., 2019; Alvarez-

Vanhard et al., 2021).

The present work sets out to investigate the potential of UAV

data depicting the smooth occurrence of A. saligna at a local scale

to support its satellite-based detection at a wide scale in complex

and dynamic environments such asMediterranean coastal dunes.

Specifically, we used VHR (0.05 m) multispectral (blue, green,

red, and near infrared) UAV images collected during the A.

saligna blooming period to provide occurrence data needed to

predict the spread of this IAS using two satellite platforms (free

for research purposes) with different spatial resolutions (e.g.,

PlanetScope: 3 m and Sentinel-2: 10 m). Moreover, we also

compared IAS detection performance achieved by the two

satellite platforms, highlighting their differences in mapping

invaded coastal dune environments.

2 Materials and methods

2.1 Study area and target species

The study area includes a representative tract of recent

(i.e., Holocenic) dunes along the Adriatic coast of Central

Italy, characterized by a Mediterranean climate (Figure 1A;

Acosta et al., 2009; Carranza et al., 2008). We selected two

areas: 1) an invaded one of approximately 11 ha as the UAV

flight calibration area (Figure 1B, red polygon, Marzialetti et al.,

2021) and 2) a wider one at high invasion risk (Marzialetti et al.,

2019) of approximately 70 ha as the prediction area (Figure 1B,

green polygon). As in other coastal areas of the Adriatic coast, the

analyzed dunes are low (less than 8–10 m) and occupy a narrow

strip parallel to the seashore. Under natural conditions, the

psammophilous vegetation mosaic follows a sea–inland

FIGURE 1
(A) Study area reporting the UAV flight calibration area in red and the prediction area in green (coordinate system in WGS 84 epsg: 4326). SAC
and LTER site shape is reported in black (Foce Trigno–Marina di Petacciato—IT7228221, https://deims.org/1835cda2-b56d-400a-b413-
ab5c74086dc5). (B) Enlargement of the study area projected on the PlanetScope image of 20 July 2021. Red polygon represents UAV flight coverage
used for preparing calibration data, and the green polygon represents the satellite prediction area.
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gradient ranging from the annual pioneer communities on the

upper beach to the Mediterranean maquis and Pinus spp. woods

in the inner fore dune sectors (Acosta et al., 2003; Carranza et al.,

2008; Bazzichetto et al., 2016). This zonation promotes the

development of highly specialized biodiversity, which shares

few species with other terrestrial communities (Drius et al.,

2016; Marzialetti et al., 2020), and its integrity assures

manifold ecosystem services (Drius et al., 2013). This area is

impinged by several human-related disturbances as most of the

Mediterranean coastal landscapes: agricultural pressure

(Malavasi et al., 2013), tourism and urban expansion

(Carranza et al., 2018), beach pollution (Di Febbraro et al.,

2021), and alien species invasions (Del Vecchio et al., 2013;

Marzialetti et al., 2019). The analyzed area is inside a special area

of conservation (SAC, Habitat Directive 92/43/EEC; Foce

Trigno—Marina di Petacciato IT7228221) and is a node of

the Long-Term Ecological Research Network (LTER, http://

www.lter-europe.net/; Stanisci et al., 2014; Drius et al., 2013),

which makes it an excellent testing ground to develop

methodologies which are able to evaluate and monitor

invasion processes.

2.2 Data collection and analysis

The proposed framework for detecting and predicting A.

saligna distribution was structured following four steps that are

schematically reported in Figure 2: (A) UAV-based A. saligna

FIGURE 2
Workflow synthesizing the procedure for the satellite-based prediction of A. saligna distribution using the UAV-based IAS VHR information as
calibration data. The proposal framework: (A) UAV-based A. saligna maps and calibration data, (B) Satellite imagery selection, (C) Remote sensing
variables calculation, (D) A. saligna satellite-based predictions.
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maps and calibration data, (B) satellite imagery selection, (C)

remote sensing variable calculation, and (D) A. saligna satellite-

based predictions.

2.2.1 Unmanned aerial vehicle-based Acacia
saligna calibration data

As calibration data for satellite-based predictions, we used a

VHR (0.05 m) presence/absence map of A. saligna derived from

the combination of a set of highly accurate UAV-based maps

produced for the study area (on Figure 1, red polygon) and

recently published by Marzialetti et al. (2021; Supplementary

material 1 Supplementary Figure S1). In that research, UAV

images were collected in pre-flowering and flowering periods

using a multirotor quadcopter (DJI Phantom 4 Pro V2.0)

equipped with two sensors: the CMOS (complementary metal

oxide semiconductor) RGB (red–green–blue) camera with

20 Mpx and the Parrot Sequoia multispectral sensor G, R,

REdge, and NIR bands (Green: 550 ± 40 nm; Red: 660 ±

40 nm; Red Edge: 735 ± 10 nm; and Near Infrared: 790 ±

40 nm) with 1.2 Mpx for each band. This study (Marzialetti

et al., 2021) indicated a very high predictive performance

(overall accuracy >95%, Kappa statistic >0.75) of four VHR

maps derived from images registered during the IAP flowering

period. So, in order to define robust calibration data (Figure 2A,

calibration area) and reduce possible errors, we stacked the

flowering period maps reporting as occurrences only those

pixels in which A. saligna was predicted in at least three of

the four maps. Then, based on these VHR calibration data

(0.05 m), we calculated, either for PlanetScope or for Sentinel-

2 platform, the fractional cover maps of A. saligna reporting the

percent of VHR-invaded pixels in 3 m (FCoverPS) and 10 m

(FcoverS2) grid cells, respectively.

2.2.2 Satellite imagery selection
As Mediterranean coastal areas are characterized by a highly

dynamic landscape undergoing substantial seasonal changes, we

relied on RSmulti-temporal stacks for gathering monthly images.

In order to capture the annual phenology both for A. saligna and

for native coastal dune vegetation, we usedmonthly multispectral

images recorded by two satellite platforms, which are accessible

free of charge for research purposes (Figure 2B). PlanetScope

(PS) satellite constellation consists of multiple DOVE CubeSat

acquiring four bands: blue (BPS, 455–515 nm), green (GPS,

500–590 nm), red (RPS, 590–670 nm), and near infrared

(NIRPS, 780–860 nm), with 3 m of spatial resolution

(PlanetLabs Inc 2021; Cheng et al., 2020). We downloaded

12 cloud-free PlanetScope images (November 2020–October

2021) with a zenith view angle lower than 5° (i.e., nadir

viewing; https://www.planet.com/explorer/). We specifically

used the surface reflectance products (i.e., processing level 3B)

with atmospherical correction already performed by PlanetLabs

(Supplementary Material 2 Supplementary Table S1, Kotchenova

et al., 2006; Kotchenova and Vermote, 2007).

The Sentinel-2 satellite (S2) is equipped with a multispectral

instrument (MSI) sensor including 13 bands in the range of

visible, near-infrared (10 m), and short-wave infrared (20 m).We

used the 10 m bands: blue (BS2, 459–525 nm), green (GS2,

541–577 nm), red (RS2, 649–680 nm), and near infrared

(NIRS2, 780–886 nm) bands (Drusch et al., 2012). We

downloaded 12 cloud-free Sentinel-2 images (November

2020–October 2021; Copernicus Open Access Hub: https://

scihub.copernicus.eu/). As the image of January 2021 showed

high cloud coverage, we replaced it with a cloud-free image

registered in January 2020 (Supplementary Material

2 Supplementary Table S2). We used atmospherically

corrected images at the surface reflectance (processing level

2A; European Space Agency using a Sen2Cor processor, Louis

et al., 2019).

2.2.3 Remote sensing variable calculation
As IAS spread could alter environmental features such as

biomass, chlorophyll content, and soil features in invaded native

ecosystems (Linders et al., 2019; Castro-Díez al., 2019), we

calculated monthly RS variables related to these main

biophysical parameters (Figure 2C; Table 1, Supplementary

Material S3). In particular, we calculated a set of spectral

variables using the R environmental ( R: https://www.r-

project.org/) that could help in distinguishing A. saligna

invaded areas from native vegetation, depicting leaf and plant

characteristics (e.g., leaf content of chlorophyll and carotenoids)

and canopy biomass, as well as soil features (e.g., bare surfaces

and organic content), and the presence of surface water

(Masemola et al., 2020; Shoko et al., 2020). For leaf and plant

characteristics, we estimated leaf pigments using six spectral

indices: the chlorophyll vegetation index (CVI) and the green

leaf index (GLI) for chlorophyll content; the chlorophyll index

green (CIgreen), which quantifies the photosynthetic activity; the

carotenoid reflectance index 550 (CRI550) and the structure

intensive pigment index 3 (SIPI3), which quantify the

carotenoids and photosynthetic pigments; and the green

difference vegetation index (GDVI), which estimates the

content of nitrogen (Tucker et al., 1979; Peñuelas et al., 1995;

Gobron et al., 2000; Gitelson et al., 2005; Vincini et al., 2008).

Canopy biomass characteristics were described by computing

five spectral indices: the normalized difference vegetation index

(NDVI) and simple ratio (SR), which are canonical biomass

indices; the enhanced vegetation index (EVI), which improves

the biomass estimate compared to two previous indices, reducing

the atmospheric influence; the transformed vegetation index

(TVI), which is sensitive to the photosynthetically active

biomass; and the visible atmospherically resistant index green

(VARIgreen), able to estimate the canopy biomass using visible

bands (B, G, and R, Huete et al., 2002; Tucker, 1979; Birth and

McVey, 1968; Rouse et al., 1973; Gitelson et al., 2002). As for soil

features, we calculated the brightness index (BI) and brightness

index 2 (BI2) as proxies of the bare surface, while the coloration
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index (CI) was used for organic content (Escadafal et al., 1989;

Mathieu et al., 1998). We also computed the normalized

difference water index (NDWI) to estimate seasonal water

surface fluctuations along coastal dunes (McFeeters, 1996).

In addition, we transformed the surface reflectance values of

RGB bands for all the images into digital numbers and converted

them into hue (H), intensity (I), and saturation (S) metrics

(Neteler and Mitasova, 2004; Zhang, 2004, Figure 2C; i.rgb.his

tool in GRASS GIS 7.8; GRASS Development Team, 2020,

Table 1), so as to catch color differences among A. saligna

leaves and inflorescences and native vegetation. HIS variables

are particularly effective in discriminating A. saligna from native

vegetation at a local scale (Yang et al., 2020; Marzialetti et al.,

2021). For each pixel, the H metric depicts the dominant

wavelength, the I metric depicts the brightness of a color (e.g.,

the relative degree of black or white), and the S metric depicts the

purity of the color, defined as the absence of mixture with other

wavelengths (Koutsias et al., 2000; Tu et al., 2005).

For each satellite (e.g., PlanetScope and Sentinel-2 images)

and area (e.g., calibration and prediction), we built a multi-

TABLE 1 Computed spectral indices andmetrics: acronyms, full names, formulas, and references. Concerning the spectral indices are grouped by the
main biophysical parameters related to leaf and plant characteristics, canopy biomass, soil features, and surface water (see for details
Supplementary Material S2).

Acronym Name Formula Reference

Leaf and plant characteristics

CIgreen Chlorophyll index green NIR
G − 1 Gitelson et al. (2005)

CVI Chlorophyll vegetation index NIRpRED
G2 Vincini et al. (2008)

CRI550 Carotenoid reflectance index 550 1
B − 1

G
Gobron et al. (2000)

GDVI Green difference vegetation index NIR – G Tucker et al. (1979)

GLI Green leaf index 2pG − R − B
2pG + R + B

Gobron et al. (2000)

SIPI3 Structure intensive pigment index 3 NIR−B
NIR−R Peñuelas et al. (1995)

Canopy biomass

EVI Enhanced vegetation index 2.5p NIR−R
(NIR+6pR−7.5pB)+1 Huete et al. (2002)

NDVI Normalized difference vegetation index NIR − R
NIR + R

Tucker (1979)

SR Simple ratio NIR
R

Birth and McVey (1968)

TVI Transformed vegetation index
���������
0.5 + R−G

R+G
√

Rouse et al. (1973)

VARIgreen Visible atmospherically resistant index green G−R
G+R−B Gitelson et al. (2002)

Soil features

BI Brightness index
�����
R2 + G2

2

√
Escadafal et al. (1989)

BI2 Brightness index 2
����������
R2 + G2+ NIR2

3

√
Escadafal et al. (1989)

CI Coloration index R − G
R + G

Mathieu et al. (1998)

Surface water

NDWI Normalized difference water index G − NIR
G + NIR

McFeeters (1996)

Hue, Saturation, and Intensity metrics

H Hue Koutsias et al. (2000)

S Saturation Koutsias et al. (2000)

I Intensity Koutsias et al. (2000)

Frontiers in Environmental Science frontiersin.org06

Marzialetti et al. 10.3389/fenvs.2022.880626

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.880626


temporal stack including monthly bands (RGB and NIR), HIS

values, and spectral indices (i.e., 264 layers; Figure 2C and

Table 1).

2.2.4 A. saligna satellite-based predictions
To upscale A. saligna FCover derived from UAV to

PlanetScope (predicted-FCoverPS) and Sentinel-2 (predicted-

FCoverS2) resolutions, we modelled this variable against the

spectral indices using random forest (RF; Figure 2D, Breiman,

2001). RF is a machine learning algorithm that operates with a

large combination of decision trees, reducing the error in

classification and regression by using bootstrap in the

considered explanatory variables (Cutler et al., 2007; Chan

and Paelinckx, 2008). RF is commonly applied to spatial

regression and classification of remote sensing data (Belgiu

and Drăguţ, 2016; Izquierdo-Verdiguier and Zurita-Milla,

2020), also accommodating well with highly correlated

explanatory variables (Meyer et al., 2017).

Given the high dimensionality of our data, we reduced the

multitemporal spectral variables using the recursive feature

elimination algorithm (RFE, Figure 2D, Kuhn and Johnson,

2013). RFE is a feature selection algorithm that estimates the

lowest possible number of features without reducing the final

performance metrics of the RF model (Demarchi et al., 2020).

RFE iteratively computes RF models with all the explanatory

variables in the calibration data and then drops in each cycle the

lowest important variable (i.e., scoring the lowest value of the

mean decrease impurity (MDI) index). At the end of all cycles,

RFE identifies the best number of explanatory variables by

comparing the predictive performance metrics of all the RF

models produced (Meyer et al., 2017; Lou et al., 2020). We

performed the RFE algorithm through the “caret” R package

(function rfe, Kuhn et al., 2021) applying a 10-fold cross-

validation and calculating the root mean square error (RMSE,

Castillo-Riffart et al., 2017) to assess the predictive performance

of each subset of variables (i.e., we set a maximum of

80 variables). Once we identified the best number of variables,

we fine-tuned the RF model according to three parameters: the

number of uncorrelated decision trees (Ntree),the number of

variables randomly selected at each node of decision trees (Mtry),

and the minimum number of observations in a terminal node

(minimal node size, Belgiu and Drăguţ, 2016; Probst et al., 2018).

We set a high number of uncorrelated decision trees (Ntree =

1,000), tested differentMtry values ranging from 2 to the number

of variables as indicated by RFE results, and checked a range of

minimal node size from 1 to 5 (Figure 2D). Furthermore, we used

the Extra-Trees algorithm as a splitting procedure to apply the

regression on independent tree nodes (Geurts et al., 2006).

The RF model reporting the lowest RMSE under a 10-fold

cross-validation (Figure 2D, Routh et al., 2018) was selected as

the optimal one and used to predict A. saligna FCover. Along

with RMSE, RF predictive performance was assessed by

calculating the coefficient of determination R2 between

observed and predicted values under cross-validation. RMSE

and R2 values by RF models obtained from PlanetScope and

Sentinel-2 images were compared through the Mann–Whitney

test to assess which of the two satellites performed best in

predicting A. saligna FCover.

The relative importance of spectral variables in RF models

was estimated through the MDI index (i.e., the Gini index with

the sum of squares as an impurity measure, Nembrini et al., 2018;

Figure 2D). Then, we explored the shape of the relationships

between predicted-FCover of A. saligna and the most important

variables in both RF models by using partial dependence (PD,

Friedman, 2001) plots. PD plots measure the marginal effect of a

given explanatory variable on the predicted values of RF model, f

constant, and the other variables’ constant (e.g., to their median

value; Elith et al., 2008).

Lastly, we evaluated the degree of extrapolation on values of

spectral variables outside the UAV flight area by computing the

multivariate environmental similarity surface (MESS) in both RF

models (Figure 2D, Elith et al., 2010). MESS measures the

similarity between values of spectral variables inside the

calibration area and values in the prediction area. Negative

values (MESS <0) indicate pixels with values of spectral

variables dissimilar from the calibration area (Elith et al.,

2010). We computed MESS using the R package “dismo”

(function mess, Hijmans and Elith 2021) and reported the

percentage of negative MESS values in both RF models.

3 Results

The RF model on Sentinel-2 data retained 25 spectral

variables after RFE with Mtry and minimal node size equal to

24 and 1, respectively, performing slightly better (R2 = 0.707 ±

0.088) than the model on PlanetScope data, which retained

75 variables and obtained Mtry and minimal node size equal

to 66 and 1, respectively (R2 = 0.628 ± 0.028, Figure 3, see also

Supplementary Material S4). The RMSE of the Sentinel-2 model

was significantly lower than that of PlanetScope (Mann–Whitney

U = 0, p < 0.001; Supplementary Material S5).

The relationship between A. saligna observed (i.e., derived

from UAV) and predicted (i.e., satellite-based) FCover values

varied between the two satellite platforms, with R2 PlanetScope =

0.628 ± 0.028 and R2 Sentinel-2 = 0.707 ± 0.088 (Figure 3). We

observed a moderate variability as well as a wider range (e.g.,

from 0 to 95%) in FCover values predicted by the PlanetScope RF

model. Predicted values of the Sentinel-2 model presented a

lower variability and a reduced range (from 0 to 75%). In both RF

models, predicted FCover values are slightly over-estimated

compared with the lowest observed values and under-

estimated compared with the highest observed values (Figure 3).

Spatially explicit predictions of A. saligna FCover evidenced

differences in the ability of the two satellite platforms to depict

the smoothed spatial variations in A. saligna observed cover as
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well as the invaded patch edges, which varied markedly with the

spatial resolution of the considered satellite images (Figure 4).

The RF model based on PlanetScope, with a finer spatial

resolution (3 m), was able to delineate invaded patches and

accurately describe the smooth FCover gradient between the

invaded core areas and edges (Figure 4C), predicting even small

patches correctly. On the contrary, the model based on Sentinel-2

images, with a coarser spatial resolution (10 m), delineated A.

saligna edges quite poorly, as well as the fuzzy variability of the

observed FCover values in invaded areas. In addition, it was

unable to map small invaded patches (Figure 4D).

The relative importance of spectral variables measured by the

MDI index differed between Sentinel-2 and PlanetScope models

(Figure 5). In the PlanetScope model, the first 60% of the

cumulated MDI percentage was achieved with 18 spectral

variables (i.e., from CVI.07 to NDWI.07; Figure 5A), while in

the Sentinel-2 model the same percentage was achieved with six

spectral variables (from H.07 to CVI.08). In the PlanetScope RF

model, the three most important variables were chlorophyll

vegetation index of July (CVI.07; 7%), hue of July (H.07;

6,9%), and hue of May (H.05; 5,8%; Figure 5A). According to

PD plots, high CVI.07 and the extreme values (low and high) of

H.07 and H.05 were consistently associated with an increase in A.

saligna FCover (Supplementary Material S6). Other important

variables in the PlanetScope model were related to summer (e.g.

BI2.06, BI2.07, GLI.07, CI.07, VARIgreen.07, CIgreen.07, TVI.07,

NDWI.07, NIR.07, and GDVI.08; Figure 5A) and autumn (e.g.

G.09, CVI.09, EVI.10, SR.10, SIPI3.10, and NDVI.10; Figure 5A).

In the Sentinel-2 RF model, the spectral variables included in

the first 60% of the cumulated MDI percentage are related to

summer (H.07, BI2.06, and CVI.08), spring (H.05 and CVI.05),

and winter (S.01) features. Specifically, the hues of July (H.07)

and May (H.05), with 21 and 11% MDI, respectively, were the

two most important variables (Figure 5B). H.07, H.05, CVI.05,

CVI.08, and S.01 showed a positive relationship with predicted

FCover values, while BI2.06 showed a slightly decreasing

relationship (Supplementary Material S6).

The degree of extrapolation in the predicted area varied

among the two RF models. The PlanetScope model showed a

low percentage of pixels with negative MESS values (6.043%) in

areas where A. saligna occurrence is very unlikely (e.g., on the

sandy beach close to the sea; Supplementary Material S7). The

Sentinel-2 RF model showed a higher degree of extrapolation

with 13.792% of pixels with negative MESS values

(Supplementary Material S7).

4 Discussion

The present work contributed to improving monitoring tools

for A. saligna detection and spread, extending the utilization of

UAV data to support IAS satellite modelling on Mediterranean

coastal dunes. This approach was previously tested in a temperate

broadleaved forest (Kattenborn et al., 2019; Gränzig et al., 2021;

Holden et al., 2021), tundra coniferous formations (Riihimäki

et al., 2019), and wetlands (Zhou et al., 2018; Doughty et al.,

2021). It is implemented in this study for the first time in complex

coastal landscapes.

Our results evidenced a good potential of UAV-based fine-

scale maps as a source of calibration data for satellite-based

FIGURE 3
Relationship between calibration A. saligna fractional cover (e.g., UAV calibration-FCover) and predicted fractional cover obtained by (A)
PlanetScope (predicted-FCoverPS) and (B) Sentinel-2 (predicted-FCoverS2) classification models. Blue depicts the linear regression between
predicted FCover and calibration FCover. Red dashed lines depict ideal regressions of perfect match among predicted-FCover and calibration-
FCover values. RF predictive performance (R2) and root mean square error (RMSE) for each regression are also reported.
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prediction of a woody IAP in partially invaded Mediterranean

coasts.

The RF models for both satellite platforms predicted A.

saligna FCover properly, although they slightly over-estimated

A. saligna FCover comparedwith lower values and under-

estimated compared with the higher ones. A similar

overestimation of cells with low cover values was registered by

Kattenborn et al. (2019) with other IAPs (e.g., Pinus radiata,

invading forest and Ulex europaeus invading scrublands) in

South America. These authors underlined the limits for

detecting cover fractions below a ~12% threshold. Differently,

the under-estimation of pixels with high Fcover values may be

related to the small number of coarse satellite grids dominated by

A. saligna inside the calibration area.

Concerning the predictive accuracy, as previously observed

in tundra and taiga ecosystems (Riihimäki et al., 2019; Fraser

et al., 2021), and also on coastal dune landscapes, satellite images

with a coarse spatial resolution supported distribution models

with higher predictive accuracy than those with fine spatial

resolution. According to RMSE values, the 10 m resolution

Sentinel-2 model predicted the VHR UAV calibration data

more accurately than the 3 m PlanetScope model. As reported

in previous studies (Dark and Bram, 2007; Riihimäki et al., 2019;

Fraser et al., 2021), such differences may be due to the modifiable

area unit problem (MAUP) and the decreased variance of the

coarser-resolution data, arising due to the aggregation of finer

scale data (e.g., 0.05 m VHR IAP map) on coarser grids (e.g.,

10 m resolution FcoverS2). MAUP affects the statistical analyses

because with the aggregation of fine cell information in the larger

ones (e.g., 3 m or 10 m), a decrease of the between-cell variability

is verified and an increase of the explanatory power of derived

models occurs.

On the other hand, the finer spatial resolution of PlanetScope

(3 m) allowed the maintenance of a good part of the spatial

information derived by UAV data, as verified by the variability of

its FCover values ranging from 0 to almost 100 percent. In the

Sentinel-2 FCover values, the relation among VHR UAV

occurrences is limited to a smaller range.

Other scale issues that might influence the IAS model

accuracy are the low number of pixels registering “pure” A.

saligna patches in Sentinel-2 images and the relatively limited

number of total pixels in the prediction area. In fact, the fuzzy

FIGURE 4
Visual example of (A)UAV orthophotographs captured during the A. saligna flowering period, (B) calibration data derived by the UAV-based VHR
A. saligna map 0.05 m, (C) A. saligna fractional cover on the PlanetScope model (predicted-FCoverPS), and (D) A. saligna fractional cover on the
Sentinel-2 model (predicted-FCoverS2). Black edges reported on boxes C and D depict the shape of UAV-based A. saligna distribution used as
calibration data.
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shape of A. saligna patches as derived by Sentinel-2 models

corresponds to better model performance values (Riihimäki et al.,

2019; He et al., 2021). On the other hand, the finer spatial

resolution of PlanetScope images allowed us to model the

variability of FCover values registered by the very high UAV-

basedmap, thus offering a good support for identifyingA. saligna

patch edges. Similarly, this complementarity between coarse and

fine-scale images has been observed in previous studies

predicting the fractional cover of tundra vegetation and lichen

of taiga using UAV and satellite images with different spatial

resolutions (e.g., PlanetScope, Sentinel-2, and Landsat; Riihimäki

et al., 2019; He et al., 2021).

The analysis of multi-temporal spectral variables derived

from visible (blue, green, and red) and NIR bands acquired by

Sentinel-2 and PlanetScope platforms effectively depicted the

phenological behavior of specific IAS. Our results pinpointed the

summer biomass production peak (see CVI of July for

PlanetScope and CVI of August for Sentinel-2) among the

most important parameters for modelling the fractional cover

of A. saligna along coastal dune systems. Previous research

studies based on medium-resolution satellite images (RGB and

NIR bands of Sentinel-2) evidenced the importance of spectral

indices depicting the characteristic Acacia spp. summer

productivity peak to detect invaded patches embedded in

natural landscapes (e.g., montane forest and alluvial wetlands;

see Masemola et al., 2020; Kattenborn et al., 2019). As observed

for other Acacia species (e.g., A. dealbata, A. mearnsii, and A.

longifolia; Masemola et al., 2020; Groβe-Stoltenberg et al., 2016),
and also for A. saligna, the analyzed RS variables denoted high

leaf chlorophyll content during the summer season. Such

photosynthetic temporal patterns can be described by several

monthly RS spectral indices (e.g., CIgreen, CVI, GLI, and GDVI)

and, in our case, by the high July CVI values. This peak of

chlorophyll content is consistent with the previous field

FIGURE 5
Relative importance of RS spectral variables in percentage (%) calculated using the mean decrease impurity for (A) PlanetScope (75 variables)
and (B) Sentinel-2 (25 variables) RF models. Spectral variables are reported in Table 1. Red dashed lines indicate the 60% of cumulated MDI
percentage.
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ecophysiological studies along the Mediterranean coastal

environments (Nativ et al., 1999; Morris et al., 2011).

Our results also evidenced that soil RS variables (summer

BI2 and CI values) are important for modelling the fractional

cover of A. saligna, which is consistent with the alterations in leaf

litter content and soil organic matter in IAS patches usually

observed in the field (Del Vecchio et al., 2013; Nsikani et al., 2017;

Tozzi et al., 2021). In fact, Acacia species, being nitrogen-fixing

plants, modify soil features, increasing the organic content and

the development of soil microbiomes (Del Vecchio et al., 2013).

This nitrogen-fixing action alters the nature of the

unconsolidated coastal dune soil characterized by low organic

content (Le Maitre et al., 2011). Both PlanetScope and Sentinel-2

models highlighted a reduced summer bare surface on A. saligna

patches compared to the coastal dune native vegetation,

indicating a dense canopy of the IAS as well as an enriched

soil organic content. It is also noteworthy that the nitrogen

content in leaves, as calculated by GDVI, was markedly higher

in A. saligna patches than native vegetation ones (Yelenik et al.,

2004; Hellmann et al., 2011).

Interestingly, during the summer period, the two RS models

distinguished the A. saligna patches from native vegetation by

different hue values of leaves (see H of July). This pattern may be

due to the different coloration of leaves between A. saligna and

dominant native species, particularly the gymnosperm species

such as Pinus spp., Juniperus oxicedrus, and the maquis species

such as Pistacia lentiscus and Phyllirea angustifolia.

Acacia saligna is characterized by an early blooming period

compared to the coastal dune vegetation and conforms to pure

yellow color patches in April–May (Milton and Moll, 1982; Paz-

Kagan et al., 2019). The spectral variables characterizing the A.

saligna blooming period are very useful for detecting the IAS

using remote sensing images with very fine spatial (e.g., VHR

UAV images; Marzialetti et al., 2021) or spectral (e.g., yellow

wavelength bands; Paz-Kagan et al., 2019) resolution. The

models developed in this study using coarse spatial and

spectral information, freely available from PlanetScope and

Sentinel-2 platforms, partially confirm the usefulness of RS

variables registered during the blooming period, as suggested

by the distinct behavior of hue and the chlorophyll content of

leaves in May. Moreover, the combined use of multi-temporal RS

variables and machine learning algorithms allowed to describe

different RS ecological conditions over time and seasons,

supporting the detection of A. saligna and the identification of

the most important RS variables to distinguish the invaded

patches from native vegetation ones.

Finally, the adopted approach offers economic commitments

and reduces the time necessary to evaluate A. saligna invasion

levels in complex environments such as coastal dunes. In this

way, this approach supports the prioritization of monitoring and

management actions claimed by the EU IAS Regulation 1,143/

2014 (Simberloff et al., 2013; Rai and Sing, 2020; Souza-Alonso

et al., 2017). In addition, this methodology could easily be applied

to other IAS in complex environments. UAV images could be

considered appropriate candidates to become a major tool to

gather reference data. In this context, we could better outline

operational workflows for the early detection and monitoring of

IAS invasion status over time, which is essential to define

adequate management actions and to tackle these invasive

species (Holden et al., 2021).

5 Conclusion

Developing early detection and monitoring tools for IAS that

are able to operate at wide scales is an urgent challenge requested

by the IAS European Regulation (IAS Regulation 1,143/2014). In

this study, we tested a methodological workflow, applied for the

first time on coastal dune landscapes, to predict the fractional

cover of the invasive alien species A. saligna by applying a

combination of VHR UAV data and two satellite multi-

temporal images (PlanetScope and Sentinel-2) with a different

spatial resolution (3 and 10 m, respectively). We presented new

evidence on the importance of VHR UAV data to fill the gap

between field observation of A. saligna and satellite data in

complex and dynamic environments such as the

Mediterranean coastal dunes. The predictions based on

PlanetScope and Sentinel-2 multi-temporal data accurately

predicted A. saligna fractional cover derived by the UAV-

based map with high performance metrics in both models

(R2 > 0.6 and RMSE <0.08). The PlanetScope-based model

was able to outline invaded area edges even for small patches.

Moreover, the model accurately described the smooth FCover

gradient between the invaded core areas and edges, confirming

the importance of finer spatial resolutions.

The over-estimation and under-estimation of the lowest and

highest fractional cover predicted values in both satellites gave

evidence of a reduced capability of the satellite-based model to

detect early stages of the invasion process and dense

monospecific patches.

Nevertheless, from an applied perspective, our results also allow

to identify the set of RS variables depicting effective ecological

parameters for predicting A. saligna occurrence in coastal areas,

and then contribute to improving monitoring activities. Our

encouraging results support the usefulness of combining UAV

and satellite images to detect and monitor A. saligna spread in

the coastal areas in a timely and cost-effective manner.

Overall, we could conclude that our approach, based on satellite

images available worldwide and free of charge for research purposes,

could be potentially applied to a wide variety of landscapes and IAPs.

This procedure could be important not only in Europe (IAS

regulation 1143/2014) but also around the world (global strategy

against IAS by CBC) because IAS management requires a common

approach worldwide.With this inmind, further case studies could be

implemented in the future to better test and extend the synergetic use

of unmanned aerial vehicles and satellite images presented here.
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Moreover, this approach could provide comparable information for

other coastal ecosystems, for other invasive alien species (e.g.,

Carpobrotus spp., Agave americana, and Yucca gloriosa), and for

other biogeographical areas as well.
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