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Anthropogenic disturbances are one of the primary factors that drive biodiversity loss.
Temporal changes in biodiversity respond to such disturbances. In the present study, we
investigated the temporal changes in taxonomic and functional diversity of fish
assemblages in different habitats (Three Gorges Reservoir, TGR; running water above
the TGR, UTGR; and tributary Chishui River, CSR) in the upper Yangtze basin after
impoundment of the TGR from 2008 to 2015. During the survey, the taxonomic and
functional composition of fish assemblages varied among the habitats. Although
taxonomic diversity increased and functional diversity decreased significantly in the
entire upper Yangtze basin, no significant changes in the diversities were observed in
each habitat. The habitats showed directional changes in the composition of fish species.
The slope of the directional changes in the TGR was more than that in the UTGR and CSR.
These results indicated that the distribution of fish species was associated with the habitat
after the impoundment. The assembly of the fish assemblage was driven primarily by the
neutral process in the entire survey area but was promoted by a combination of species
sorting and neutral process in each habitat. The impoundment caused more effects on the
TGR than on the UTGR, but it slightly affected the CSR. Regarding fishing closure,
conservation measures for fish diversity should be established according to the different
habitats. The study findings suggest the removal of small dams in tributaries and ecological
regulation in the mainstream and continuous monitoring of fish biodiversity.
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1 INTRODUCTION

Biodiversity loss is currently one of the most severe environmental issues (Ceballos et al., 2015).
Anthropogenic disturbances such as agriculture, urbanization, overlogging, pollution, and damming
are one of the most crucial drivers of biodiversity loss (van der Plas, 2019; Suárez-Castro et al., 2022).
These disturbances eliminate the sensitive species by reducing the abundance of resources and
degrading the habitats (Steudel et al., 2012; Gámez-Virués et al., 2015). From another perspective,
anthropogenic disturbances are also considered to be the mechanism responsible for structuring
biota communities by transforming the patterns of species coexistence (Suárez-Castro et al., 2022).
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Freshwater biodiversity is more vulnerable to anthropogenic
disturbances, such as overfishing, damming, and pollution, than
terrestrial andmarine realms (Winemiller, 2018; Dudgeon, 2019).
More than 20% of the freshwater species have become extinct or
nearly extinct (Wishart and Davies, 2003). Dam is one of the
major disturbances that affect river ecosystems and aquatic
biodiversity by obstructing the river continuum and changing
the natural hydrological regime (García et al., 2011; Liermann
et al., 2012), thereby leading to a decreased population density of
migratory fish (Gao et al., 2009), delayed timing of fish breeding
(Li et al., 2016), and altered taxonomic and functional
composition (Dugan et al., 2010; Liu X. et al., 2019; Zhang C
et al., 2020).

Temporal directional or nondirectional changes in
biodiversity respond to the changes in both abiotic and
biological factors (Martin, 2001; Hollister et al., 2015). The
temporal changes can also reflect the underlying mechanisms
that influence the community assembly processes under
disturbance gradients, such as species sorting and neutral
processes (Larson et al., 2021). Recent studies on the response
of biodiversity to disturbance events have raised serious concerns,
particularly regarding long-term changes under pressure and
after pulse disturbances (Jentsch and White, 2019). These
studies have provided insights into the protection of native
species, habitat management and restoration, and prediction of
ecosystem functions (Grman et al., 2010; Betts et al., 2019).

The Yangtze River is the third longest river in the world, with a
length of 6,300 km and a mean annual runoff of 951.3 billion m3.
The river flows through 11 provinces or cities from west to east
andmerges with the East China Sea in Shanghai city. The Yangtze
River basin covers an area of 1.8 × 106 km2, accounting for 18.8%
of China’s land area. More than 400 fish species or subspecies
inhabit the Yangtze River basin, and it is, therefore, recognized as
a biodiversity hotspot. The upper Yangtze River basin serves as a
habitat for approximately 300 fish species, of which about 50% of
the species are endemic to the upper Yangtze River (Institute of
Hydrobiology, unpublished data). The Three Gorges Dam
(TGD), one of the largest dams in the world, is located in the
Yichang reach of the middle Yangtze River. Since 2010, the water
of the Three Gorges Reservoir (TGR) fills up to 175 m above sea
level (ASL). After the water level reaches the 175 m mark, the
TGR inundates the riverine and reaches 660 km above the TGD,
with a catchment area of 1.0 × 106 km2.

While the TGD offered great social and economic benefits, it
has also caused a series of ecological and environmental
problems (Chinese Academy of Engineering Three Gorges
Project Construction Third Party Independent Evaluation
Project Group, 2020). Previous studies have found that the
TGD induced negative effects on the fish population in the
Yangtze River. For example, after the impoundment, the fish
species diversity in the Yangtze River basin significantly
decreased, and the species composition verged to
homogenization (Liu X. et al., 2019). A total of 44 endemic
species in the upper Yangtze River have a higher extinction risk
(Park et al., 2003); this is because a shift in the species
composition in fish assemblages occurred in the river area
above and below the TGD (Gao et al., 2019; Zhang C et al.,

2020). After the impoundment, in terms of hydrological regime,
the fish habitats in the upper Yangtze River are roughly
classified into three categories: reservoir, running water of
the main channel, and tributary. Few current studies have
investigated the differences in temporal changes in fish
diversity between the habitats after the impoundment.

In the present study, we analyzed the temporal changes in
taxonomic and functional diversity and composition in the TGR,
the main channel above the TGR, and a tributary after the
impoundment to understand the effects of the TGD on fish
diversity in different habitats. Based on a comprehensive
analysis framework of temporal changes in taxonomic and
functional diversity, we expect to understand to some extent
the mechanisms driving the assembly processes of fish
assemblage under the effects of the impoundment.

2 MATERIALS AND METHODS

2.1 Study Area and Sampling
The filling of the TGR was completed in four stages. The first
filling raised the water level to 135 m in 2003, followed by a
raise to 156 and 172.5 m in 2006 and 2008, respectively.
Finally, the water level was raised to 175 m in 2010. For
flood control, electricity generation, and shipping, the
operation schedule of the TGR involves raising the water
level to 175 m in the dry season (from October to April)
and lowering the water level to 145 m in the wet season
(from May to September) (Gao et al., 2019). The present
study was conducted from Yibin to Zigui in the mainstream
of the upper Yangtze River and the mainstream of the Chishui
River. The Chishui River is one of the largest tributaries with a
length of 436.5 km and a drainage area of 20,440 km2 in the
upper Yangtze River, and it is the only tributary without dams
built in the mainstream (Figure 1). The survey area that has no
dams and maintains riverine continuity covers approximately
1,400 km long reaches, and it includes about 1,000 km reaches
of the Yangtze River, and about 400 km reaches of the Chishui
River.

Data regarding the presence/absence of fish species were
collected at eight sites from 2008 to 2015. These sites were
grouped into three types of habitats: reservoir (TGR), riverine
reach (upstream of the TGR, UTGR), and tributary (Chishui
River, CSR). The UTGR and CSR are the major components of
the National Nature Reserve for Rare and Endemic Fishes in the
upper Yangtze River, which approximately account for 65% of the
total length of the reserve. Mudong (MD), Wanzhou (WZ), and
Zigui (ZG) sites are located in the TGR, which is defined as the
lacustrine zone. Yibin (YB) and Hejiang in the Yangtze (HJY)
sites are located in the UTGR, which is the riverine zone. Hejiang
in Chishui River (HJC), Chishui city (CSS), and Chishuizhen
town (CSZ) sites are located in the CSR, which show a natural
flow (Figure 1). A 10-year fishing closure has been implemented
progressively in the different regions of the Yangtze River since
2017. For the present study, we used data only up to 2015, which
were collected in a consistent environment to reduce
analysis bias.
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A fish survey was conducted using at least two local fishing
boats in spring (May–June) and autumn
(September–November) each year from 2008 to 2015 at each
site. Each survey was performed for approximately 15–20 days
by local fishermen, with a region of 10–30 km surveyed within
each site. The fishermen captured fish in different habitats using
multiple fishing methods depending on their experience. They
preferred to capture fish in the area where they could obtain as
many fish as possible at each site. In the mid-channel, the
fishermen caught fish using drifting gillnets (height: 1–2.3 m;
length: 50–180 m; and mesh size: 1–14 cm), multi-cod-end
seines (height: 1.5 m; length: 150 m; mesh size: 1, 1.5, or
2 cm; cod ends: 500–800), and trawl nets (net opening: 4.5 m
× 1.8 m; net depth: 8 m; mesh size: one or 2 cm) for
approximately every 2 h during a 12-h period on each
sampling day. In near-shore areas, stationary gillnets (height:
5 m; length: 35–100 m; mesh size: 1–11 cm), hoop nets (mesh
size: 0.5, 1, 1.5 cm), and trotlines (200 to1900 hooks per line)
baited with worms or an artificial bait were used. The fishermen
set these fishing gears in the river water for 10–12 h at night
(from 6 p.m. to 6–8 am on the next day). Moreover, we captured
rare species in each survey using electrofishing, lift net, cast net,
and trap net. The fish specimens were sorted and identified
according to the guidelines of Ding (1994). Each fishing gear has
its inherent biases. Therefore, we used multiple fishing gears that
almost covered a variety of fish habitats and caught more fish
species for obtaining a consistent representation of fish species
composition at the same site. These consistent biases can
eliminate the impact of sampling error on the analysis of
diversity and structure of fish assemblages to a certain extent.

2.2 Data Analysis
In this study, the seasonal data were pooled as the annual data for
each site. All statistical analyses were performed using the R
software (R Core Team, 2017). Functional diversity can effectively
reflect the long-term effects of changes in an aquatic system on
fish communities (Villéger et al., 2010; Oliveira et al., 2018). In the
present study, we selected eight characteristics based on fish
habitat preferences, life history, and feeding mode, which
included four continuous variables (maximum length, body
length, tail shaft length, head length and diameter ratio, and
body length and body height ratio) and four categorical variables
(vertical position, water flow preference, feeding, and spawning
type). All functional trait values or trait categories were obtained
from the FishBase website (www.fishbase.org) and published
studies or books (Institute of Hydrobiology, 1976; Ding, 1994).
When trait values or categories were lacking for a specific species,
the mean value within the same or a similar genus was used
(Zhang C et al., 2020).

2.2.1 Differences in Taxonomic and Functional
Composition Among the Different Habitats
To evaluate the differences in species composition between the
different habitat types, we analyzed the multivariate
homogeneity of groups’ dispersions (variances) of different
habitats using the “betadisper” function of the vegan package
(Oksanen et al., 2013). This method used principal coordinate
analysis (PCoA) to reduce the dimensions of the
multidimensional space composed of the matrix of the
community at each section during the entire investigation
and showed the difference between the communities of the

FIGURE 1 | Study area and sampling sites upstream of the Three Gorges Dam. The red ellipse indicates the Three Gorges Reservoir area; the blue ellipse indicates
the upper reaches of the Three Gorges Reservoir; and the green ellipse indicates the Chishui River.
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different habitats in a two-dimensional space (Anderson,
2006). We then used permutational multivariate analysis of
variance (PERMANOVA) to quantify the differences in the
fish community composition of the different habitats.

The functional composition of fish communities in the
different habitats was analyzed based on the functional
space comprising multidimensional volume (Villéger et al.,
2011). In this method, PCoA was performed on the fish
functional traits, and the multidimensional volume was
calculated for each habitat type (Villéger et al., 2011). Based
on the functional space constituted by the first three axes of
PCoA, the functional dissimilarity between the fish
communities of different habitats is calculated and
decomposed into functional nestedness and functional
turnover (Villéger et al., 2013). The functional dissimilarity
is the difference in the distribution and occupied space of the
different communities in the functional space (Villéger et al.,
2011). Functional space and functional dissimilarity were
calculated based on the “multi-dimFbetaD” function
provided by Villéger (http://villeger.sebastien.free.fr/
Rscripts.html).

2.2.2 Temporal Changes in Taxonomic and Functional
Composition
To investigate the temporal variation of fish communities in
each section, species diversity and species evenness were
measured using Shannon–Wiener diversity (H) and Pielou’s
evenness (J), respectively (Hill, 1973). Functional richness
(FRic), functional divergence (FDiv), functional dispersion

(FDis), and Rao’s quadratic entropy index (RaoQ) were used
to calculate the functional characteristics of fish communities,
following the multifaceted framework proposed by Villéger
et al. (2008).

Inter-annual variation trends of species and functional
diversity indices in the different habitats were analyzed based
on the Mann–Kendall trend multivariate analysis (Maire et al.,
2019). The Mann–Kendall trend test is widely used to study
whether the change in variables over time has a general
monotonous upward or downward trend, and it can identify
the nonlinear change trends (Hamed and Rao, 1998). Before
multivariate analysis, based on the methods of Hamed and Rao
(1998), the variation in statistical data was corrected for temporal
autocorrelation. In the present study, a random-effects model
based on the Gaussian correlation structure was used to analyze
the spatial autocorrelation of the different habitat communities in
the upper reaches of the Yangtze River (Cressie, 2015). A 4 × 4
distance matrix was developed based on the data of the three
habitats (TGR, UTGR, and CSR) and the total data (the dataset
created by pooling the data of the UTGR, TGR, and CSR together
and abbreviated as all habitat (AHT)). The distance between the
sampling units was calculated as river channel distance (km).
Among them, AHT was obtained by summarizing the fish species
data of the other three sampling units; thus, the distance from this
unit to the other three units was defined as zero. The random-
effects model was constructed using the “rma.mv” function of the
metafor package (Viechtbauer, 2010). Multivariate analysis of the
trend of community diversity was performed using the R codes
provided by Maire et al. (2019).

FIGURE 2 | Principal coordinate analysis of fish communities in the different habitat types in the upper reaches of the Yangtze River.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8757894

Zhang et al. Temporal Changes of Fish Biodiversity

http://villeger.sebastien.free.fr/Rscripts.html
http://villeger.sebastien.free.fr/Rscripts.html
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Directional change trend and variation degree of the fish
community structure of the different habitat types in the upper
reaches of the Yangtze River were studied using the method of
Collins et al. (2000). This method is based on the Euclidean distance
of species composition in the entire time series and calculates the
differences in the species composition between paired communities
in different time intervals. The Euclidean distance value is subjected
to regression analysis according to the time interval. The slope of the
regression line indicates the rate of community composition change
and direction (Collins et al., 2000). The analysis was completed using
the “rate_change_interval” function in the codyn package in R
software (Hallett et al., 2016).

3 RESULTS

3.1 Difference in Taxonomic and Functional
Composition Among the Different Habitats
During the survey period, 171 fish species belonging to 30 families
were collected. Cyprinidae and Bagridae species accounted for
56.1 and 7.6% of the collected species, respectively. In the UTGR,

131 fish species belonging to 26 families were captured, where
Cyprinidae and Bagridae species accounted for 52.7 and 8.4%,
respectively; in the TGR, 143 fish species belonging to 29 families
were captured, where Cyprinidae and Bagridae species accounted
for 53.8 and 7.0%, respectively; and in the CSR, 141 fish species
belonging to 22 families were captured, where Cyprinidae and
Bagridae species accounted for 58.2 and 7.8%, respectively.

The results of PERMANOVA showed significant differences
in the species compositions among the TGR, UTGR, and CSR
(p < 0.05). PCoA showed that the species composition in the CSR
completely varied from those in the TGR and UTGR (Figure 2).
However, there was some overlap in the species composition
between the TGR and UTGR (Figure 2).

A comparison of the functional composition revealed some
differences in the functional composition of fish assemblage
among the three habitat types (Figure 3). The functional space
area of fish assemblage in the TGR was 93.9% of the total
functional space area, which was larger than that of other
habitats. The functional space area in the UTGR and CSR was
87 and 81%, respectively (Figure 3). The fish assemblage in the
TGR showed the most specific traits. For example, some species,

FIGURE 3 | Functional space of fish assemblages in the different habitat types in the upper reaches of the Yangtze River.
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including Polyodon spathula, Anguilla japonica, and Monopterus
albus were located at the margins of the functional space.

The functional dissimilarity between the fish assemblages
in the UTGR and TGR was 0.157, of which the functional
nestedness value was 0.064, and the functional turnover value
was 0.093 (Figure 3A). The functional dissimilarity between the
fish assemblages in the UTGR and CSR was 0.166, comprising
functional nestedness of 0.058 and functional turnover of 0.108
(Figure 3B). The functional dissimilarity between the fish

assemblages in the TGR and CSR was 0.21, comprising
functional nestedness of 0.12 and functional turnover of 0.09
(Figure 3C).

3.2 Temporal Changes in Taxonomic and
Functional Diversity and Composition
The multivariate analysis based on the Mann–Kendall trend test
showed that the temporal trends of the taxonomic and functional

FIGURE 4 | Temporal changes in the species diversity of fish communities in the different habitat types in the upper reaches of the Yangtze River. (A) Species
richness; (B) Shannon-Wiener diversity; (C) Pielou’s evenness. Temporal changes in the species diversity of fish communities in the different habitat types in the upper
reaches of the Yangtze River.
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diversity indices among the different habitat types were
inconsistent from 2008 to 2015 (Figures 4, 5). The species
richness and Shannon–Wiener diversity of AHT showed a

significant increasing trend (Figures 4A, B, p < 0.05);
however, Pielou’s evenness index showed a significant
decreasing trend (Figure 4C, p < 0.05). No significant trend

FIGURE 5 | Temporal changes in functional diversity of fish communities in different habitat types in the upper reaches of the Yangtze River. (A) Functional richness;
(B) Functional divergence; (C) Functional dispersion; (D) Rao’s quadratic entropy index.
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was observed in species richness and taxonomic diversity indices
in each type of habitat (Figure 4). The functional diversity indices
in the different habitat types also showed varying trends
(Figure 5). All the functional diversity indices of AHT showed
no significant trend, except for the RaoQ index, which showed a
significant decreasing trend (Figure 5D, p < 0.05). The TGR
showed a significant decreasing trend in functional divergence
(Figure 5C, p < 0.05), while the CSR showed a significant
increasing trend in functional dispersion (Figure 5D, p < 0.05).

The species composition in the TGR, UTGR, and CSR had
directional trends from 2008 to 2015 (p < 0.05) (Figure 6). The
variation value of the temporal trend in the TGR was 0.17, which
was more than that in the CSR (0.12) and UTGR (0.07).

4 DISCUSSION

The distribution of fish species in the upper Yangtze River basin was
associated with the habitat after the impoundment of the TGR. Fish
species composition is determined by the habitat-trait relationship
(Chittaro, 2004; Villéger et al., 2010). The lentic fish and generalist
dominated in the TGR, while the lotic fish were still the dominant
groups in the UTGR. In particular, endemic fish such as Coreius
guichenoti, Rhinogobio ventralis, and Rhinogobio cylindricus
preferred inhabiting the UTGR, rather than the TGR
(Supplementary Table S1). Moreover, in this study, more non-
native species such as Piaractus brachypomus and Micropterus
salmoides occurred in the TGR. Twenty-three non-native fish
species were recorded in the TGR (Ba and Chen, 2012). The fish
assemblage composition of the tributary was different from that in
the main channel (Gorman, 1986). Shi et al. (2020) reported that the
fish assemblage structures in the tributaries varied from that in the
mainstreamwithin the Ganjiang River basin, China. Our results also
indicated the significant differences in the fish species composition

between the tributary and mainstream (Figure 2). Fish with small
body sizes and omnivorous feeding patterns preferred the CSR as
their habitat (Liu F. et al., 2019).

The functional diversity offers complementary information
for taxonomic diversity when ecologists study the mechanisms
driving assemblage assembly (Larson et al., 2021). Our results
revealed increased species richness and intact functional richness
in the entire survey area after the impoundment. This implied
that the species with equivalent functionality were benefited, and
the functional redundancy was increasingly high, which indicated
that the neutral process was primarily responsible for fish
assemblage assembly under the disturbance (Larson et al.,
2021). Fish assemblage assembly in each habitat was, however,
dominated by a combination of species sorting and neutral
process due to the unchanged species and functional richness.
All local communities do not respond similarly to the regional
assembly processes (Legendre and De Cáceres, 2013). Because of
the differences in environmental factors, species composition,
and functional traits among local communities, the assembly
mechanisms of some local communities and the global
metacommunities may vary (Leibold et al., 2022).

The present results indicated that the directional change of species
composition was more apparent in the TGR than in the UTGR and
CSR (Figure 6). Directional change in community structure is a
response to a long-term persistent disturbance (Collins et al., 2000).
For example, biodiversity and species composition in a biological
community will change significantly in response to the changes in the
habitat environment caused by land usage or climate change
(Dornelas et al., 2014; Hoover et al., 2014; Frishkoff et al., 2016).
Disturbances with high frequency and intensity make communities
more prone to directional changes (Collins et al., 2000). The effects of
disturbances are related to the distance from a dam (Gao et al., 2019).
The CSR also showed a directional change in species composition. Liu
et al. (2021a) found significant temporal changes in the structures of
the local fish communities. However, these changes were primarily
caused by human activities on a local scale, such as the construction of
small dams in the branches, overfishing, pollution, and navigation
(Liu et al., 2021b).

The species richness in the upper Yangtze River basin increased
after the impoundment. However, even though species richness can
increase on a local scale, the species number could decrease on
regional and global scales (Sax and Gaines, 2003). The yield of
captured fish in the entire Yangtze River did not significantly change
from 2008 to 2016 (Zhang H et al., 2020). Assuming a positive
relationship between fish diversity and catch (McIntyre et al., 2016),
we roughly inferred that the fish species richness did not significantly
change in the entire Yangtze River after the impoundment. The fish
species richness in the Yangtze River is currently possibly decreased
to a low level because the yield has decreased to only 25% of a
historical peak in the late 1950s (Zhang H. et al., 2020).

Since 2021, the 10-year fishing closure has been imposed
completely in the Yangtze River, which is predicted to recover
the fish resources effectively (Zhang H. et al., 2020; Mei et al.,
2020). However, other disturbances such as dams and pollution
are still influencing fish diversity and population density. Our
results revealed that the fish species distribution and temporal
changes in fish species composition varied among the different

FIGURE 6 | Directional changes in the composition of fish communities
in different habitat types in the upper reaches of the Yangtze River.
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habitats. For protecting the fish biodiversity, in the context of
fishing closure, we suggested conservation measures related to the
different habitats. For example, the removal of small dams should
be initiated to restore the continuum of the tributaries. Ecological
regulation should be implemented in the mainstream. Moreover,
the monitoring of fish biodiversity should be conducted
continuously to gain long-term data, which could provide an
important basis for explaining the impact of multiple
disturbances on the river ecosystems (Daufresne et al., 2015;
Counihan et al., 2018).
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