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Ambient PM2.5 (fine particulate matter with aerodynamic diameters ≤2.5 μm) is a major
threat to human health. Environmental fates and human exposure to PM2.5 can be affected
by various factors, and environmental greenness have been documented to be
significantly associated with the exposure disparities; however, the relationship
between the greenness and ambient PM2.5 on the region and city levels, and
variations across different land cover types remain unclear. In this study, PM2.5

changes from 2001 to 2020 varying over different land cover types and cities were
analyzed, and discussed for the relationships with environmental greenness, by taking
Shanxi province as an example. The results showed in the past 2 decades, the mean
annual NDVI (normalized difference vegetation index) of the study area showed a significant
increasing trend (p < 0.01), and the PM2.5 concentration decreased as environmental
greenness get better. The same trends were observed across different land cover types
and cities. The negative correlation was stronger in the construction land with more
frequent human activities, especially in the built-up areas with low vegetation coverage; but
limited in the high green space coverage areas. These results provide quantitative
decision-making references for the rational development, utilization and management
of land resources, but also achieving regional coordinated controls of PM2.5 pollution by
optimizing land use.
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1 INTRODUCTION

Along with the fast development of urbanization and industrialization, environmental quality
changes rapidly in most areas. Emissions from sources like industry sector, diesel or gasoline vehicles,
coal and biomass burning in power plants and residential stoves lead to serious air pollution (Shi Y
et al., 2020). In China, air pollution has been recognized as the 4th largest risk factor, following
dietary risks, tobacco, and high blood pressure, and causing millions of premature deaths every year.
Although efforts have been taken to fight against the serious air pollution issue and many
countermeasures effectively reduced pollution levels, fine particulate matter (PM2.5) remains a
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significant contributor to high burdens of disease (Liu et al.,
2017). Several large-scale epidemiological studies highlighted
significant correlations between exposure to air pollutants and
premature mortality (Lu et al., 2015; Fang et al., 2016; Cohen
et al., 2017; Huang et al., 2017). The Chinese Longitudinal
Healthy Longevity Survey (CLHLS) showed that each 10 μg/m3

increase in the past 3-years average PM2.5 was associated with 8%
higher mortality in adults aged 65 years or older, and extrapolated
that more than 1.7 million premature deaths among Chinese
older adults was associated with exposure to ambient air pollution
(Li et al., 2018).

Characteristics, fates and influencing factors of PM2.5 that can
be affected by many factors have been widely discussed in
literature studies. Natural meteorological conditions such as
wind speed, temperature, humidity, etc., can affect transport
and deposition of airborne particles, and meanwhile, factors
associated with human activities, like combustion emissions
and land use/cover change (LUCC), especially the
deterioration of natural ecological environment such as
grassland and woodland being caused by urban expansion and
increase of cultivated land, influence PM2.5 fates notably (Lin
et al., 2014; Shi K et al., 2020). It has been realized that it is
necessary to include the LUCC into researches of PM2.5

influencing factors from the perspective of environmental
geography (Fan et al., 2019). Usually, resident, road and
industry lands in urban are associated with high PM2.5

intensities as activities like biomass burning and coal
combustions in these areas contribute obviously to increased
PM2.5 concentration (Huang et al., 2014; Zhang et al., 2016), while
forest usually acts as the adsorption sink reducing ambient PM2.5

concentration significantly (Dzierżanowski et al., 2011). She et al.
found that PM concentration was proportional to patch area and
patch number of LUCC (She et al., 2017). Different landscape
patterns cam also affects the interaction between woodland, water
and atmospheric PMs (Wu et al., 2015).

The relationship between land cover patterns and air pollution
is complex and usually pattern-process relationships (Lam and
Niemeier, 2005; Bandeira et al., 2011; Chen et al., 2013; Zhang
et al., 2013). Results primarily focusing on urban land cover types
(e.g., urban forests, built-up land) may be not generalized to
settings where greenspace largely represents regional woodland,
grassland, farmland, and open areas (Taylor and Hochuli, 2017).
Vegetation was found to have potentially offsetting effects in
increasing PM2.5 levels driven by industrial structure and energy-
related emissions (Wang et al., 2018). It was suggested that the
response of PM pollution to LUCC had obvious differences across
different regions, and the correlation between PM pollution and
LUCC was weak in coastal areas but strong in inland areas (Sun
et al., 2016). According to an investigation of spatial scale effect by
Chen et al., the capability for a neighborhood green space to
attenuate PM2.5 pollution would be vanished when its size smaller
than 200 m, and would be maximized when its size within
400–500 m (Chen et al., 2019). Impacts of land cover pattern
changes on the spatial distribution of PM2.5 from the view of
different scales, i.e., regional, city and district levels, is still limited.

In China, Shanxi Province, as the country’s main energy base,
has vigorously developed the coal industry. Its industrial

development, population growth, and urban expansion have
caused significant changes in land use patterns and
increasingly serious air pollution problems in the past several
decades, which directly threaten the physical andmental health of
local people and severely hinder its regional sustainability
(Bandeira et al., 2011). Development and in-depth study of the
relationship between land cover pattern and typical air pollutant
PM2.5 can enrich relevant research on the impact of land cover
pattern caused by human activities on the ecological
environment. Taking Shanxi Province as the research area,
this study aims at analyzing 1) the land cover pattern and
environment greenness characteristics, which has rapidly
developed urbanization in the past 20 years; 2) characteristics
of the spatiotemporal changes of PM2.5 pollution in these 20 years
under the background of air pollution prevention and control; 3)
how does the environment greenness change affect PM2.5

pollution. Carrying out researches on the impact of changes in
land cover patterns on PM2.5 can not only provide quantitative
decision-making references for the rational development,
utilization and management of land resources, but also achieve
regional coordinated controls of PM2.5 pollution by optimizing
land use methods.

2 MATERIALS AND METHODS

2.1 Study Area
Shanxi Province (ranging from 110°14′-114° 33′E, 34°34′ -40°
43′N) is in the hinterland of China, with an area of about
156,300 km2 (Figure 1), relying on Taihang Mountain and
neighboring Hebei in the east, acing Shaanxi across the Yellow
River in the west, and adjoining the Inner Mongolia to the north
and Henan Province to the south. There are 11 prefecture-level
cities, namely Taiyuan, Datong, Yangquan, Changzhi, Jincheng,
Shuozhou, Jinzhong, Xinzhou, Linfen, Yuncheng and Lvliang.
Shanxi Province has a very complex topography, with mountains,
hills, plateaus and basins widely distributed.With the acceleration
of urbanization and industrial development, the emission of
particulate pollutants is increasing, and the air pollution
pressure is becoming more and more urgent, which has
become an important constraint factor for the opening-up and
sustainable economic development of Shanxi Province.

2.2 Data Source
The land cover data in this study (including 2000 and 2020) were
obtained from the 30-m spatial resolution global land cover data
(GlobeLand30, http://www.globallandcover.com/). The images
used for classification in this dataset are mainly multi-spectral
images of 30-m spatial resolution, including TM5 (Thematic
Mapper), ETM+ (Enhanced Thematic Mapper), OLI
(Operational Land Imager) multi-spectral images of Landsat
and HJ-1 multi-spectral images. The selection principle of
these images includes the multispectral image of vegetation
growth season within ±2 years of the data production base
year or the update year, under the premise of ensuring that
the image is cloudless (less cloud). The confusion matrix was used
to verify the accuracy of GlobeLand30 data, and its overall
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accuracy reached over 80%. Based on the existing GlobeLand30
classification system, this study divides land cover types into
seven categories: cropland, woodland, grassland, wetland, water
body, built-up land, and barren land.

In this study, NDVI (normalized differential vegetation
index), a symbolic index representing vegetation growth
status and coverage, was selected to reflect environment
greenness. NDVI is the ratio of the difference between the
near-infrared region and red visible reflectance to the sum of
these two measures, ranging from −1.0 to 1.0. Negative NDVI
values are often thought of as blue space or water, whereas
larger values indicate denser green vegetation (Tucker et al.,
2020). We measured NDVI values from the Moderate-
Resolution Imaging Spectro-Radiometer (MODIS) in the
National Aeronautics and Space Administration’s Terra
Satellite (http://wist.echo.nasa.gov) from 1 January 2001 to
31 December 2020. MODIS has a temporal resolution of
16 days and varying spatial resolution up to 250 m. After
the projection transformation, format conversion and
splicing processing of the original data set, the annual
average of NDVI was calculated for analysis. This
calculation process was conducted using Google Earth
Engine.

Estimates of ground-level concentrations of PM2.5 were
obtained from the ChinaHighPM2.5. It is generated from
MODIS/Terra + Aqua MAIAC AOD products together with
other auxiliary data (e.g., ground-based measurements, satellite
remote sensing products, atmospheric reanalysis, and model
simulations) using artificial intelligence by considering the
spatiotemporal heterogeneity of air pollution. Hourly PM2.5

were obtained from the China National Environmental
Monitoring Center. Daily PM2.5 values were then averaged
from valid hourly observations at each monitoring station.
Auxiliary data, including meteorological variables, surface
conditions, pollutant emissions, and population distributions,
that may potentially affect PM2.5 concentrations, were

collected to improve PM2.5-AOD relationships in China. In
this study, meteorological variables considered included
temperature, relative humidity, precipitation, evaporation,
surface pressure, wind speed, and wind direction, as described
in detail elsewhere (Wei et al., 2021). Annual PM2.5 estimates
were calculated from 2000 to 2020, at 1 × 1 km spatial resolution,
which was averaged from the Level 2 daily products. Since the
data for the year 2000 is averaged from March 2000 to December
2000, we extract the annual PM2.5 data from 2001 to 2020 for
analysis. The annual PM2.5 estimates are highly related to ground-
based measurements (R2 = 0.94) with an average root-mean-
square error (RMSE) of 5.07 μg/m3, as described in detail
elsewhere.

2.3 Data Analysis
2.3.1 Land Cover Change Rate
To analyze and assess the dynamic degree of land cover types
objectively, the land change rate (LCR) of each land cover type
was calculated, which is expressed as follows:

LCR � Ub − Ua

Ua
× 100%

where Ua and Ub represent the area of each land cover type at the
beginning year and ending year of the study period, respectively.

2.3.2 Correlation Analysis Between Vegetation
Dynamics and PM2.5 Change
The Pearson correlation analysis model is used to calculate the
correlation coefficient between NDVI and PM2.5 from 2001 to
2020, and to study the relationships between environmental
greenness and air pollution on the spatial scales and pixel
scales. The equation is as follows:

rxy � ∑n
i�1(xi − �x)(yi − �y)�����������∑n

i�1(xi − �x)2
√ �����������∑n

i�1(yi − �y)2√

FIGURE 1 | Location of the study area (Shanxi Province).
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where n is the number of years, xi represents the value of
variable x in the year i, and yi represents the value of variable y
in the year i. x and y represent means of the two variables,
respectively. rxy represents the correlation coefficient between
x and y ranging from -1 to 1. If the rxy > 0, it indicates variables
x and y have a positive correlation. On the contrary, if the rxy <
0, it indicates variables x and y have a negative correlation. In
addition, if the absolute value of rxy is closer to 1, the
correlation between variable x and variable y is stronger. In
this study, x and y refer to NDVI, which represents
environmental greenness, and PM, which represents air
pollution, respectively.

2.3.3 Trend Analysis of Normalized Difference
Vegetation Index and PM2.5

In this study, we applied a simple linear regression analysis
method based on ordinary least squares (OLS) (Jiang et al.,
2017) to detect the trend of mean annual NDVI, and PM2.5 at
the regional or pixel scale from 2001 to 2020. The expression of
the slope is:

Slope � n∑n
i�1i × Ni − ∑n

i�1i × ∑n
i�1Ni

n × ∑n
i�1i2 − (∑n

i�1i)2
where Ni is the value of parameter (NDVI or PM2.5) in the year i,
and n represents the number of years. If the Slope >0, it means the
parameter exhibits an upward trend. Otherwise, if the Slope <

Zero, it means the parameter exhibits a downward trend. In
addition, the T-test method was operated to examine whether
the trend of the parameter was significant at the basin or
pixel scale.

3 RESULTS

3.1 Land Cover Change Between 2000 and
2020
The distribution of land cover types showed significant spatial
and temporal differences (Figure 2). Cropland is the most widely
distributed type, accounting for more than 40% of the total area,
mainly distributed in basin located in the central, northeast and
southeast, and southwest in Shanxi Province. Woodland and
grassland accounted for 28.28 and 23.78% of the total area in
2020, respectively, comprising two dominant natural land cover

FIGURE 2 | The spatial distribution of land cover types in 2000 and 2020.

TABLE 1 | Areas and changes of land cover types from 2000 to 2020 in
study area.

Land cover type 2000 2020 2000–2020

Area/km2 Area/km2 Change Area/km2 LCR

Cropland 70710.4 65639.9 −5070.5 −7.17%
(44.97%) (41.91%)

Woodland 42747.2 44295.2 1548.0 3.62%
(27.18%) (28.28%)

Grassland 39042.0 37245.6 −1796.4 −4.60%
(24.83%) (23.78%)

Wetland 155.4 234.3 79.0 50.81%
(0.10%) (0.15%)

Water body 386.0 592.7 206.7 53.53%
(0.25%) (0.38%)

Built-up land 4153.3 8515.9 4362.7 105.04%
(2.64%) (5.44%)

Barren land 51.3 93.5 42.2 82.30%
(0.03%) (0.06%)
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types. Woodland is distributed mainly along mountain ranges,
such as Taihang Mountain, Lvliang Mountain and other
mountains. Grassland is mainly distributed in the west and
center part. Built-up land is mainly distributed in the central
and southeastern basin, accounting for 5.44% of land cover types.
The proportions of wetland, water body and barren land in the
study area are few, accounting for ~0.15, 0.38, and 0.06%,
respectively. The area statistics of different land cover types
are shown in Table 1.

The statistical area change of land cover types results are
shown that areas of cropland and grassland had a decrease rate of

7.17 and 4.60%, respectively. Our estimates showed a 5070.5 km2

and 1796.4 km2 net loss areas of cropland and grassland,
respectively (Table 1). Grassland loss occurred mainly in the
forest-grass ecotone of the northern and central parts, with
woodland (contribution to 74.13%) and built-up land
(contribution to 23.25%) expansion being the main proximate
driver. While cropland decrease was also extensive in these
regions, decreased croplands occurred mainly in the central
and southwestern basins. As can be seen from Figure 3, the
main proximate driver of cropland reduction is built-up
extension (contribution to 77.94%), followed by conversion of

FIGURE 3 | The spatial location (A) and contribution of proximate driver (B) of decreasing and increasing land cover type.
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farmland to woodland and grassland (contribution to 16.73%).
The area of built-up land increased the most (4362.7 km2) and the
increase rate was the highest (105.04%), followed by the area of
woodland, the increase area was 1548.0 km2. The increase rates of
wetland, water body and barren land were high, but the increase
areas were very small due to the low distribution area. Expanded
built-up lands were mainly due to the occupation of cropland
(contribution to 86.34%) and grassland (contribution to 11.5%),
with Taiyuan, Datong and Yuncheng as the center, and other
cities also expanded. Woodland expansions were mainly
distributed in the central part, and returning grassland
(contribution to 84.89%) or cropland (contribution to 15.11%)
to forest were the main proximate driver.

3.2 Spatiotemporal Patterns of Normalized
Difference Vegetation Index and PM2.5
At the regional scale, the mean annual NDVI of the study area is
0.36 from 2001 to 2020, which showed significant increasing
trends, and the increased rate is 0.0058/year (p < 0.01, Figure 4A).
Of the total pixels, 93.67% of the entire area had significant
increase detected, while only 0.97% experienced significant NDVI
decreases in the study area, which were detected mainly in the
central construction area (Figure 5). It indicates that the
environmental greenness of Shanxi Province has been
improved in the last 20 years. We analyzed the mean annual
NDVI changes of four main land cover types (Table 2) and found
that the mean annual NDVI of Woodland is 0.49, which is the
highest value of four main land cover types. The mean annual
NDVI of Built-up land had lowest value. Significant increase in
mean annual NDVI was found in woodland (0.0064/year, p <
0.01), grassland (0.0065/year, p < 0.01), cropland (0.0055/year,
p < 0.01), and built-up land (0.0029/year, p < 0.01). The analysis
of the mean annual NDVI in different cities shows that the mean
annual NDVI of different cities in Shanxi Province is significantly
increased, but the change trends are different (Table 2). The
mean annual NDVI value of Jincheng from 2001 to 2020 is the
highest among different cities in Shanxi Province, with an
increased trend of 0.005/year. Shuozhou has the lowest mean
annual NDVI from 2001 to 2020, which is 0.27, lower than the

mean annual NDVI of the entire region. The city with the slowest
increase of the mean annual NDVI is Jincheng, with an increase
rate of 0.005/year, and the city with the fastest increase of the
mean annual NDVI is Lvliang (0.0073/year).

The annual average of PM2.5 concentration in Shanxi Province
was 50.77 μg/m3 from 2001 to 2020, showing a significant
decrease trend (over 99% of the entire area), especially in the
central and southern regions, whose decrease trend was faster
than that of other regions, indicating that the atmospheric
environment in Shanxi Province was getting better during
these 2 decades (Figure 4B, and Figure 5). Different decrease
trends were observed in four main land cover types (Table 2). The
annual average of PM2.5 concentration of Woodland is 46.59 μg/
m3, which is the lowest value of four main land cover types, and
the annual average of PM2.5 concentration of the Built-up land
had highest value (62.10 μg/m3). The most significant decrease
was found in the built-up land (1.388 μg/m3year−1) from 2001 to
2020, followed by the cropland and grassland, and the lowest in
the woodland. According to the regional statistics of the annual
average of PM2.5 concentration in different cities, the annual
average of PM2.5 concentration of different cities in Shanxi
Province showed a significant decrease trend from 2001 to
2020 (Table 2). More than half of the cities have higher
annual average of PM2.5 concentration than the average value
in Shanxi Province, with Yuncheng having the highest annual
average of PM2.5 concentration at 69.33 μg/m3. The city with the
slowest decrease of the annual average of PM2.5 concentration is
Datong, with a decrease rate of 0.882 μg/m3year−1, and the city
with the fastest decrease of the annual average of PM2.5

concentration is Yuncheng (1.680 μg/m3year−1).

3.3 Spatially Different Correlation Between
Normalized Difference Vegetation Index
Dynamics and PM2.5 Variations
The relationship between the NDVI dynamics and PM2.5

variations over the period 2001–2020 was analyzed by using
the Pearson correlation method in the overall region at Shanxi
Province (Figure 6). The annual average of PM2.5

concentration had significant negative correlation with the

FIGURE 4 | Change trend of NDVI (A) and PM2.5 (B) in the Shanxi Province from 2001 to 2020.
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mean annual NDVI (R = −0.723, p < 0.01). Thus,
environmental greenness was influential in the decrease of
PM2.5 concentration in this region. Of the total pixels, PM2.5

concentration showed significant negative correlation with
NDVI in most areas of Shanxi Province, with proportion of
83.77%, which were mainly distributed in vegetated areas.
While 15.56% of the entire area showed insignificant
correlation between PM2.5 concentration and NDVI, and

only 0.67% showed significant positive correlation,
which mainly occurred in the areas with expansion of built-
up land.

The correlations of PM2.5 concentration with NDVI by the
main land cover types and different cities were also calculated,
and listed in Table 3. PM2.5 concentration of four main land
cover types was significantly negative correlated with NDVI. It
is important to note that PM2.5 concentration had the

FIGURE 5 | Difference in the NDVI change trend (A,B) and PM2.5 trend (C,D) in Shanxi Province from 2001 to 2020.
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strongest negative correlation with NDVI (R = −0.827, p <
0.01) in the built-up land, followed by the cropland (R =
-0.726, p < 0.01) and then the woodland (R = −0.710, p <
0.01), and grassland has the weakest negative correlation with
NDVI. The relationship between PM2.5 concentrations with
NDVI in different cities showed similar results (Table 3), and
the trend of correlation coefficient was different among
different cities. PM2.5 concentrations were negatively
correlated with NDVI for all cities, and the correlation

coefficient ranged from −0.626 to −0.817, with Datong
showing the strongest significant correlation (R = −0.817,
p < 0.01), following by Yuncheng (R = −0.772, p < 0.01)
and then Lvliang (R = −0.743, p < 0.01). The weakest
negative correlation between PM2.5 concentration and
NDVI was occurred in Jinzhong.

At the pixel scale, the correlation analysis between PM2.5

concentrations and NDVI in the main land cover types and
different cities revealed that PM2.5 concentrations had

TABLE 2 | The changes of mean annual NDVI and PM2.5 in main land cover types and different cities.

Main
Land cover types

Mean NDVI Trend NDVI Mean PM2.5 Trend PM2.5

Woodland 0.49 0.0064* 46.59 −1.012**
Grassland 0.34 0.0065* 47.28 −1.033**
Cropland 0.31 0.0055* 54.51 −1.218**
Built-up land 0.24 0.0029* 62.10 −1.388**
Different cities
Datong 0.28 0.0052* 40.53 −0.882**
Shuozhou 0.27 0.0058* 42.65 −0.833**
Xinzhou 0.33 0.0059* 42.24 −0.859**
Taiyuan 0.35 0.0063* 48.99 −0.992**
Yangquan 0.38 0.0055* 51.57 −1.027**
Lvliang 0.35 0.0073* 48.30 −1.128**
Jinzhong 0.39 0.0056* 50.91 −1.092**
Linfen 0.40 0.006* 57.66 −1.370**
Changzhi 0.41 0.0051* 54.28 −1.118**
Jincheng 0.45 0.005* 58.85 −1.350**
Yuncheng 0.40 0.0052* 69.33 −1.680**

The symbol * meant that the trend NDVI of the four land cover types and different cities had significant increase and the value of p is below 0.01. The symbol ** meant that the annual mean
decrease value of PM2.5 concentration of the four land cover types and different cities and the decrease trends were all significant and the value of p is below 0.01.

FIGURE 6 | The correlation between NDVI and PM2.5. The pie charts illustrate the area percentage of different spatial patterns of the correlations.
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significantly negative correlations with NDVI in most areas of
woodland, grassland, cropland and built-up land, with
proportion of 91.12, 87.15, 79.57 and 72.58%, respectively (see
Table 3). The insignificant correlation areas are relatively few,
mainly in the built-up land (26.28%), followed by cropland
(19.91%). Among different cities, Lvliang has the highest
proportion of significant negative correlation between PM2.5

concentrations and NDVI (92.59%), and almost the same
result was showed in Datong (92.58%). The areas that PM2.5

concentrations showed insignificant correlation with NDVI
mainly occurred in Changzhi and Jinzhong, with proportion

of 29.42 and 26.95%, respectively. There are few areas with
significant positive correlation between PM2.5 concentrations
and NDVI in all cities, and the highest proportion occurs in
Taiyuan, accounting for only 1.75%. The trends of the correlation
coefficient between PM2.5 concentration and NDVI were
different with the change of NDVI, PM2.5 concentration, and
area of land cover type (Figure 7). The correlation coefficient
becomes stronger with the decrease of NDVI. At the same time,
the smaller ratios of woodland and grassland area were, the higher
the negative correlation coefficient between PM2.5 concentration
and NDVI is, while the larger the built-up land area is, the higher

TABLE 3 | Correlations between NDVI and PM2.5 in different land cover types and cities.

Correlation of PM2.5 and NDVI

Main Land cover types Trend Negative (%)pixels, p < 0.05) Positive (%)pixels, p < 0.05) Insignificant (%)pixels, p > 0.05)
Woodland −0.710** 91.12 0.26 8.62
Grassland −0.700** 87.15 0.29 12.56
Cropland −0.726** 79.57 0.51 19.91
Built-up land −0.827** 72.58 1.14 26.28
Different cities
Datong −0.817** 92.58 0.69 6.73
Shuozhou −0.705** 86.47 0.45 13.09
Xinzhou −0.704** 87.24 0.56 12.21
Taiyuan −0.737** 81.64 1.75 16.60
Yangquan −0.656** 83.29 0.64 16.07
Lvliang −0.743** 92.59 0.64 6.77
Jinzhong −0.626** 71.85 1.21 26.95
Linfen −0.664** 81.03 0.26 18.71
Changzhi −0.631** 70.09 0.49 29.42
Jincheng −0.727** 87.22 0.31 12.47
Yuncheng −0.772** 83.20 0.92 15.88

The second column of table meant that the annual mean decrease values of PM2.5 concentration of the four land cover types and different cities. The symbol ** meant that the decrease
trends were all significant and the value of p is below 0.01.

FIGURE 7 | The trends of the correlation coefficient between PM2.5 concentration and NDVI with the change of NDVI, PM2.5 concentration, and area of land
cover types.
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the negative correlation coefficient between PM2.5 concentration
and NDVI is. These indicate that in the region with lower
vegetation coverage, the increase of environmental greenness
has a stronger reduction effect on PM2.5 concentration. Thus,
increasing environmental greenness has a stronger effect on
PM2.5 concentration reduction in low-vegetation areas than
that in high-vegetation areas.

4 DISCUSSION

Results here are expected to be informative for regional land use
planning and ecological environment construction to improve air
quality, especially to control PM2.5 pollution. With the
construction of the Beautiful China in recent years, China’s
ecological environment has improved and air pollution has
been effectively controlled. With the implementation of the
Air Pollution Prevention and Control Action Plan (APPCAP)
since 2013, significant declines in pollutants concentrations have
achieved in nationwide of China (Bai et al., 2021); however, there
are significant differences in PM2.5 concentrations across
different regions (Huang et al., 2018). Previous studies
revealed that more than 70% of Chinese cities were found to
exceed Grade II of the Chinese National Ambient Air Quality
Standard, with the highest levels in the North China (Wang et al.,
2018). This study found that PM2.5 pollution in Shanxi province
has decreased significantly since 2013, which is consistent with
the overall pollution trend in China.

As an important energy base in China, the economic
development of Shanxi Province has been dominated by
the energy consumption, which produces large amounts of
harmful emissions (Wei et al., 2018). Different from previous
studies that mainly discussed the relationship between urban
green space and PM2.5 concentration, this study explored the
impact of environmental greenness on PM2.5 concentration
from multiple perspectives of different land cover types and
different cities at the regional scale (Feng et al., 2017; Chen
et al., 2019). The results showed that less vegetation cover has
limited ability to deal with high PM2.5 concentration, which
was consistent with a previous observation showing that
higher green space coverage the site had, the lower the
PM2.5 concentration were there (Yang and Jiang, 2021). It
has been recognized that vegetation may play an important
role in reducing air pollution and improving air quality. For
example, Sun et al. found that the concentrations of pollutants
including SO2, NO2, CO, PM2.5, and PM10 all have a negative
correlation with the NDVI value (Sun et al., 2019). Some
studies pointed out that the vegetation cover and PM2.5

concentration correlated negatively (Jin et al., 2020;
Kulsum and Moniruzzaman, 2021). The results of this
study further confirmed the importance of environmental
greenness in mitigating air pollution.

Some scholars studied the mechanism of green vegetation
reducing air particulate pollution, and found that plants absorb
pollutants through root absorption and leaf absorption pathways,
as well as three mitigation mechanisms of green space on
particulate matter: deposition, dispersion and modification

(Diener and Mudu, 2021). Greenness, on the contrary, can
effectively reduce the amount of fine particulate matter in the
air. However, in the present study, we found that although
environmental greenness has a significant reduction effect on
PM2.5 concentration, the reduction effect of NDVI on PM2.5 is
affected by green space coverage and PM2.5 concentration level.
With the increase of woodland and grassland area, the reduction
effect of NDVI on PM2.5 is weakened, and with the expansion of
built-up area (that is, the area of green space decreases), the
reduction effect of NDVI on PM2.5 is enhanced. Woodlands may
be more effective than grasslands in removing particulate matter,
but the ability of green space to reduce PM2.5 also has its
limitations (Qiu et al., 2018). In high-density urban areas with
low vegetation coverage, PM2.5 concentration is high and
pollution is serious. Improving environment greenness can
more effectively control particulate pollution, while in high-
density vegetation areas, air particulate concentration is
relatively low, and continuously increases of environment
greenness will reduce PM2.5 reduction efficiency (Chen et al.,
2019). In addition, as the concentration of PM2.5 in the
environment continues to increase, the reduction effect of
NDVI on PM2.5 is weakened. In the environment with high
concentration of PM2.5, the absorption of particulate matter by
leaves will eventually reach saturation, and then the protection
efficiency of particulate pollution is reduced (Hui et al., 2020).
This suggests that, in densely populated residential or commercial
areas, increasing environmental greenness may offer greater
opportunities to improve air quality.

However, the mechanism, process, and outcome of PM
mitigation by green space are complex and subjected to
various influencing factors. Because of limited sample sites,
evidence to quantitatively define the level of influence of green
space on PM reduction is insufficient in this study. In addition to
the land cover types and environmental greenness, researchers
found that the landscape pattern (e.g., Patch area, degree of urban
cluster, etc.), can also strongly affect PM2.5 concentration (Wu
et al., 2015), which was not addressed here due to limited
information available. It is also necessary to note that the
study did not consider possible time-lag effect, as it was found
that the LUCC caused by natural disasters or human activities
may have smaller impacts on air pollution in a short period of
time, but stronger impacts over a few years (Sun et al., 2016). The
time-lag effect is an interesting issue to be investigated in future.

5 CONCLUSION

Based on GlobeLand30, MODIS NDVI and ChinaHighPM2.5

data, this study investigated the spatiotemporal patterns of
land cover types and environmental greenness in Shanxi
province, and their relationships with ambient PM2.5 over a
period from 2001 to. This study found that although the
vegetation area in Shanxi Province decreased since 2000,
the environment greenness did show an upward trend. The
PM2.5 concentration fluctuated before 2013, and then started
to decline continuously. Through the multi-scale analysis, it is
found that there is a significant negative correlation between
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the PM2.5 concentration and environment greenness,
confirming the important role of regional greenness on
PM2.5 reduction. The study further demonstrates the
multiscale effects of the relationship between PM2.5

concentration and environment greenness, that is, PM2.5

concentration is negatively correlated with environmental
greenness, and the reduction effect of greenness on PM2.5

was stronger with the low green space coverage areas than in
high green space coverage areas, and higher in the low PM2.5

concentration area than in high concentration area. This
indicates that the reduction effect of environmental
greenness on air particulate pollution is limited, but in
construction land with frequent human activities, especially
in built-up areas with low vegetation coverage, improving
environmental greenness can effectively reduce PM pollution.
The results of this study provide a theoretical basis for

regional environmental planning and prevention and
control of regional PM2.5 pollution.
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