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The Mongolian Plateau is located in the permafrost transitional zone between high-
altitudinal and high-latitudinal permafrost regions in the Northern Hemisphere. Current
knowledge of the thermal state and changes in the permafrost on the Mongolian Plateau is
limited. This study adopted an improved calculation method of the Mongolian Plateau air
freezing and thawing index using the monthly air temperature reanalysis dataset from the
Climate Research Unit (CRU). The spatial and temporal variation characteristics from 1901
to 2019 were further assessed by the Mann–Kendall (M–K) test and spatial interpolation
methods. The results indicate that the spatial distributions of the freezing and thawing
index show clear latitudinal zonality. Over the study period, the air freezing index decreased
by 4.1°C·d/yr, and the air thawing index increased by 2.3°C·d/yr. The change point in the air
thawing index appeared in 1995 (p < 0.05) based on the M–K method, in contrast to the
so-called hiatus in global warming. Our results reveal rapid warming on the Mongolian
Plateau, especially in the permafrost region, and are useful for studying permafrost
changes on the Mongolian Plateau.
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INTRODUCTION

Currently, the global climate is warming rapidly, especially in high-latitude and high-altitude regions
(Juřička et al., 2020). As an essential component of the cryosphere, permafrost is experiencing
significant warming and thawing trends due to climate warming (Vaughan et al., 2014), which are
mainly reflected in increasing ground temperature, a thicker active layer, earlier active layer melting
time, and later freezing time (Cheng and Wu., 2007; Biskaborn et al., 2019; Cheng et al., 2019; Qi
et al., 2021). Permafrost degradation triggers a series of ecological and environmental effects, such as
the decomposition of soil organic carbon stored in permafrost and the release of carbon-based
greenhouse gases, which can further increase the atmospheric CO2 concentration and accelerate
climate warming through positive feedback processes (Knoblauch et al., 2018; Zhang et al., 2020;
Adiya et al., 2021). Along with permafrost degradation, extreme drought events show gradually
increasing trends, and such events can cause local pasture and forest fires (Ni et al., 2019; Holloway
et al., 2020; Li et al., 2020). Permafrost warming causes the melting of ground ice, leading to ground
subsidence and related disaster events, such as thermokarst settlement and thaw slumps. These
disasters pose a great threat to the local ecological environment, infrastructure, and property safety
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(Sharkhuu, 2003; Dagvadorj et al., 2009; Yao et al., 2013; Hao
et al., 2020; Sjoberg et al., 2020). In addition, permafrost
degradation also causes significant impacts on local
hydrological processes (Qin et al., 2014; Colombo et al., 2018),
vegetation, and ecosystems (Qian, 2013; Guo et al., 2018; Peng
et al., 2020a). Therefore, the analysis of long-term permafrost
dynamics and the associated influential factors can improve the
accuracy of risk assessment and early warning predictions of the
effects caused by permafrost degradation.

The variation in air and ground temperatures affects the stability
and distribution of permafrost and is therefore important for
quantifying the permafrost variation over long time periods
(Frauenfeld et al., 2007). Permafrost thermal conditions are
usually monitored by borehole data or analyzed by experience
and a semiempirical method. The input parameters are
numerous and difficult to acquire (Gao et al., 2022). The
environmental conditions in regions with the frozen ground are
harsh. The distribution of existing boreholes is sparse, and thus, the
input parameters for the models are always limited. In contrast, the
frost number model requires fewer parameters and constructs more
straightforward, and the freezing and thawing index have been
widely used in permafrost environment studies (Lv et al., 2008;
Wu et al., 2011; Harris et al., 2014; Ran et al., 2015). The freezing and
thawing index can be divided into two categories. The first includes
the surface freezing and thawing index, which reflect the
accumulation of ground surface temperatures below or above 0°C
during the freezing or thawing period, respectively. The other
includes the air freezing and thawing index, which are specifically
based on air temperature. However, the study of the continuous
freezing and thawing index at the regional scale is constrained by
short time series and the uneven spatial distribution of measured
ground surface temperature data. These shortcomings are partly
because permafrost is mainly distributed in remote cold regions with
complex topography (Wu et al., 2011).

The freezing and thawing index are widely used to reflect
climate change and to represent permafrost distribution (Chen
et al., 2021; Hu et al., 2021). For example, in the Qinghai-Tibet
Plateau and its surroundings, the freezing and thawing index
show significant feedback with climate warming, the increase in
ground surface temperature accelerates permafrost degradation
and affects the ecology, hydrology, and environment of
permafrost regions (Jiang et al., 2008; Cao et al., 2015; Jiang
et al., 2015; Wu et al., 2018; Liu and Luo, 2019). Although the
meteorological station data are of high quality, the sparse and
uneven distribution of stations means that observational data are
rare and short in length. The application of the variations in large-
scale and long-term series is limited. In contrast, reanalysis data
have notable advantages, such as long-term series and global scale
records, in climate studies. For example, Qin et al. (2021) used
five different reanalysis databases (ERA, MERRA2, GLDAS, CFS,
and CMFD) to compare and analyze the changes in the freezing
and thawing index on the Qinghai-Tibet Plateau from 1981 to
2017. The results showed that the MERRA2 reanalysis data have
better applicability on the Qinghai-Tibet Plateau than the other
reanalysis databases. As an effective indicator, the air freezing
index can reflect the current permafrost status in the central and
northeastern regions of the Qinghai-Tibet Plateau. Shi et al.

(2019) calculated the spatial and temporal variations in the air
freezing and thawing index in the circumpolar region from 1901
to 2019 based on Climate Research Unit (CRU) and National
Centers for Environmental Prediction (NCEP) reanalysis data
and estimated the change in the area of permafrost. That study
showed that overall, the freezing index decreased significantly
after 1988 and that the thawing index increased since 2015. In
summary, from previous studies, to calculate the freezing and
thawing index, the daily temperature is used in regions where
meteorological stations are uniform and abundant, and the
reanalysis of monthly temperature is an optional dataset for
the areas without observation data.

The Mongolian Plateau is located in the transitional zone
between high-altitudinal and high-latitudinal permafrost regions
in the Northern Hemisphere (Zorigt et al., 2020). Most areas in
this region lie on the southern boundary of the continuous
permafrost zone and feature unstable thermal conditions. The
permafrost in this region is sensitive to climate change (Sharkhuu
et al., 2008; Heggem et al., 2006;Munkhjargal et al., 2020). Therefore,
this area provides a good opportunity to investigate permafrost
degradation influenced by air temperature change (Kynicky et al.,
2009; Munkhjargal et al., 2020; Wu et al., 2011). Previous studies
have mainly been conducted at a local scale (Wu et al., 2011;
Munkhjargal et al., 2020; Dashtseren et al., 2021; Ran et al.,
2021) or over a short time period. Temperature data from
borehole monitoring are sparse, and the existing studies have
mainly focused on the regions with field observations. Therefore,
our current knowledge is insufficient to understand the spatial and
temporal changes in the permafrost environment at the
regional scale.

Compared with the field observational data, the CRU
reanalysis data have the advantages of long-term series and
comprehensive spatial coverage (Simmons et al., 2004; Zhao
and Fu, 2006; Harris et al., 2014). The CRU reanalysis data
are based on the integration of multiple meteorological
datasets and produce a dataset with complete spatial coverage.
This study selected the CRU monthly air temperature dataset
with a 0.5 × 0.5 spatial resolution. We checked the quality with
meteorological station data and calculated the air freezing and
thawing index, and analyzed the variations between spatial and
temporal on the Mongolian Plateau from 1901 to 2019.

STUDY AREA AND DATA

Climate of the Mongolian Plateau
The Mongolian Plateau is located in the interior of Asia. It covers
approximately 2.72 × 106 km2, including Mongolia, southern
Russia, the northern part of the Inner Mongolia Autonomous
Region in China, and parts of the Xinjiang Uygur Autonomous
Region (Li et al., 2020) (Figure 1). The elevation of theMongolian
Plateau gradually decreases from northwest to southeast, with an
average elevation of 1,580 m above sea level (a.s.l.). The western
and northwestern regions are mainly mountainous with
elevations between 2000 and 4,000 m; the central and eastern
regions are mainly plains and hills, with elevations of
approximately 800–1,500 m; and the southern and
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southeastern regions are the Gobi Desert, with elevations of
approximately 1,000 m (Chen et al., 2020).

The Mongolian Plateau is located in the center of the Asian high-
pressure system, which is one of the origins of cold waves in the
winter monsoon climate zone (Chen et al., 2020). The climate type is
dominated by arid and semiarid climate characteristics with large
intra-annual variability in temperature and precipitation (Zhou et al.,
2012). Due to the influence of water vapor from the Arctic Ocean to
the north and the Pacific Ocean to the east, precipitation on the
Mongolian Plateau decreases spatially from southeast to northwest.
The mean annual precipitation is approximately 267mm, and the
Selenge River basin in the north can reach an annual precipitation of
500mm.The southwestern region has an annual precipitation of only
approximately 100mm (Wang et al., 2008). In addition,
evapotranspiration in Mongolia showed a gradual increasing trend
from 2001 to 2015. The maximum evapotranspiration values were
found in the continuous and discontinuous permafrost regions (Yu,
2017).

The permafrost distribution data in the Northern Hemisphere
(Figure 1A) are derived fromObu et al. (2019) via the data source
https://apgc.awi.de/dataset/pex.

Reanalysis and Observation Data
The monthly reanalysis data of air temperature were used to
analyze the spatiotemporal variations in the freezing and
thawing index on the Mongolian Plateau. These data were
obtained from the CRU time-series Version 4.05 (CRU TS
v4.05) datasets (https://crudata.uea.ac.uk/cru/data/hrg/), and
the time series is from 1901 to 2019 with a spatial resolution of
0.5 × 0.5. The CRU dataset combines centennial-scale climate
change grid data covering the global scale. The dataset is
integrated from several well-known datasets through
interpolation and other methods, which are widely used as
credible proxy data after comparison (Wen et al., 2006; Chen
et al., 2021). In addition, the CRU dataset is continuous in
space and time and can reflect long-term trends (Shi et al.,
2019). The observational records in most of the meteorological
sites are from the post-1980s period, thus limiting the study of
early climate and freezing and thawing index changes. The
long time series provided by these data can effectively support
the research in this study.

The applicability of the CRU data on the Mongolian Plateau
was examined and evaluated using observations from 106
meteorological stations in the study area obtained from the
National Oceanic and Atmospheric Administration (NOAA
https://www.climate.gov/maps-data). Since the time series
recorded at the selected meteorological stations were not
consistent, we selected temperature data from January 1975 to
December 2019 for the quality check of the CRU data.

METHODS

Quality Check of the CRU Reanalysis
Dataset
For the accuracy assessment of the CRU reanalysis dataset, four
indicators, namely, the mean deviation error (MBE), correlation
coefficient (R), normalized standard error (NSSE), and root mean
square error (RMSE) are used in this study and are calculated as
follows (Qin et al., 2021):

MBE � ∑M
n�1(CRUn − OBn)

M
(1)

RMSE �
�����������������∑M

n�1(CRUn − OBn)2
M

√
(2)

NSSE �
�����������������∑M

n�1(CRUn − OBn)2∑M
n�1(OBn)2

√
(3)

RMSE � ∑M
n�1(CRUn − CRU)(OBn − OB)������������������∑M

n�1(CRUn − CRU)2√ ���������������∑M
n�1(OBn − OB)2√ (4)

WhereM is the total number of samples and CRUn andOBn (n =
1, 2, 3, M) represent the monthly air temperature corresponding
to the CRU and meteorological stations. CRU and OB represent
the monthly mean values corresponding to the years of the CRU
and meteorological stations, respectively.

Calculation of the Freezing and Thawing
Index
The air freezing (thawing) index is the cumulative sum of the air
temperatures corresponding to the number of days when the

FIGURE 1 | The location of the Mongolian Plateau in the permafrost region of the Northern Hemisphere (A) and the distribution of meteorological stations (B). The
permafrost distribution data in the Northern Hemisphere (A) are derived from Obu et al. (2019) via the data source https://apgc.awi.de/dataset/pex.
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mean air temperature is equal to or below (above) 0°C during the
freezing (thawing) period (Eqn. 5). The freezing period is usually
defined as July 1 of each year to June 30 of the following year,
while the thawing period is defined as January 1 to December 31
of each year (Wu et al., 2011; Luo et al., 2014; Shi et al., 2019).

TDD � ∫t1

t0
|Ti|dt, Ti< 0°C

FDD � ∫t3

t2
Tjdt, Tj> 0°C

(5)

TDD � ∑MT

i�1
Tj, Tj> 0°C

FDD � ∑MF

i�1
|Ti|, Ti< 0°C

(6)

WhereTi and Tj refer to the freezing and thawing periods when the
air temperature is greater than 0°C and less than 0°C, respectively. t0
and t1 represent the beginning and end times of the freezing period,
and t2 and t3 represent the beginning and end times of the thawing
period, respectively. Eqn. 5 can be simplified to Eqn. 6.

However, the acquisition of daily air temperatures on the
Mongolian Plateau during 1901–2019 is limited by many factors,
and thus the CRU TS V4.05 monthly dataset was used to
determine the freezing and thawing index in this study, so the
equation can be further written as Eqn. 7 (Shi et al., 2019).

TDD � ∑MT

j�1
Tj ·Dj, Tj> 0°C

FDD � ∑MF

i�1
Ti ·Di, Ti< 0°C

(7)

Where Ti and Tj represent the monthly mean values of the
freezing and thawing periods, respectively. Di and Dj represent
the number of days in the months corresponding to the freezing
and thawing periods, respectively.

M–K Test Method
The M–K method (Mann, 1945; Kendall, 1948) is a
nonparametric statistical test that has been widely used in
trend analysis of time series (You et al., 2010; Wu et al.,
2011). In addition, the algorithm can obtain the year in which
the trend changes when the value of intersection points is within
the confidence intervals (Shi et al., 2019). In the M–K trend
analysis, the statistic S of the test is calculated based on the
relationship between the time series n and the corresponding
continuous values xj and xi, and is defined as follows:

S � ∑n−1
i�1

∑n
j�i+1

sgn(xj − xi)
sgn(xj − xi) � ⎧⎪⎨⎪⎩ 1, xj − xi> 0

0, xj − xi � 0
−1, xj − xi< 0

(8)

When sample number n > 10, the standard normal system
variables are given by Eqn. 9, and the variance in the sample,
Var(S) is calculated by Eqn. 10:

Z �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S − 1������
Var(S)√ S> 0

0 S � 0
S + 1������
Var(S)√ S< 0

(9)

Var(S) � n(n − 1)(2n + 5)
18

(10)

In the bilateral trend test, the trend of the time series data can
be judged by the statistic Z at a given confidence level: it is
considered an upward trend when Z >0 and a downward trend
when Z <0. The magnitude of the Z value is used to determine
whether the trend is significant.

In the M–K mutation test, the statistic is defined under the
assumption that the time series are independent as follows:

Sk � ∑k
i�1
Ri (k � 2, 3, ..., n)

UFk � Sk − E(Sk)�������
Var(Sk)√ (k � 1, 2, ..., n)

UBk � −UFk k � n, n − 1, ..., 1

(11)

Where Ri denotes the cumulative number of samples in which xi
> xj (1 ≤ j ≤ i). When k = 1, UF1 = 0, and UB1 = 0, E(Sk) and

FIGURE 2 | Air temperature correlation analysis of the CRU reanalysis
data and meteorological observations from 1901 to 2019 (A) and their
monthly comparison (B).
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Var(Sk) represent the mean and variance, respectively, which
can be calculated as follows:

E(Sk) � n(n + 1)/4
Var(Sk) � n(n − 1)(2n + 5)/72 (12)

If the two curves UFk and UBk intersect between the critical
lines, the change year is considered to correspond to the
intersection point.

RESULTS

Reliability Assessment of CRU Air
Temperature
Figure 2 shows the annual and monthly fitting results of the
meteorological station data and CRU reanalysis data from 1901 to
2019. According to the relevant impacts of different months
(Figure 2B), the CRU reanalysis data, compared with
meteorological observation data, underestimate the actual air
temperature on the Mongolian Plateau, especially in winter
(December–February) and spring (March–May). In contrast, the
results for both summer and autumn are similar, except for a slight
underestimation in July and September. The annual fitting result
from 1901 to 2019 (Figure 2A) shows a significant positive
correlation, with a Pearson’s correlation coefficient of 0.96 and an
explained variance of 0.92, indicating that the CRU dataset is credible
for studying air temperature correlation on the Mongolian Plateau.

The indicators for evaluating the applicability of monthly CRU
reanalysis data on the Mongolian Plateau were spatially visualized
via ArcMap spatial analysis (Figure 3). The monthly CRU data

underestimated the air temperature for 70% of stations, with the
mean MBE value being −0.77 and the variation ranging between
−7.38 and 2.47. The variation inMBE on theMongolian Plateau was
mostly concentrated between −1 and 0°C. The spatial distribution of
the correlation between the CRU data and the meteorological
observations at site locations is greater than 0.95 for most sites,
with a range of 0.90–0.99. The mean value of NSSE is 0.68, and the
value is less than 0.6 for approximately 68% of the sites. The range of
RMSE was 0.13–6.78°C, with a mean value of 0.80°C, and
approximately 82% of the sites had RMSE values less than 2°C.
Based on the statistical results and spatial variations in the four
evaluation indices, the R values are high, and the MBE, RMSE, and
NSSE values are low. In terms of spatial distribution, most stations
show a positive relationship, but a few stations are in the western and
northern border areas. Therefore, the CRU reanalysis dataset has
good applicability to the Mongolian Plateau region and can be used
as a proxy for a long time series for the Mongolian Plateau region.

Spatiotemporal Variations in the Freezing
Index
Based on the multivariate statistical relationship (Eqn. 8) between
the grid data of the mean freezing index calculated from 1901 to
2019 and the longitude, latitude, and elevation of the corresponding
points, it can be seen that the spatial distribution of the freezing index
on the Mongolian Plateau is influenced by latitude and altitude. As
shown in Figure 4, the spatial distribution of the freezing index on
the Mongolian Plateau exhibits a significant latitudinal gradient. It
increases with latitude, with an average value ranging from 1,200 to
3,600°C·d. On the Mongolian Plateau, the highest freezing index
value occurs in northern regions, with a value of nearly 5,600°C·d,

FIGURE 3 | Spatial distribution of four error indicators, including MBE (A), R (B), NSSE (C), and RMSE (D).
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whereas in the southern Gobi Altai and surrounding regions, the
values are less than 600°C·d. The spatial distribution of the freezing
index also shows altitude differences, and the index decreases faster
in high-elevation regions, such as the northeast and northwest on the
Mongolian Plateau, than in low-elevation regions.

FDD � 0.18lon + 0.94lat + 0.49ele − 0.31(R2 � 0.93) (13)
The overall freezing index of theMongolian Plateau from 1901

to 2019 shows a downward trend of 4.10°C·d/yr. According to
long-term changes (Figure 5A), the freezing index shows a
decreasing trend and changes at different rates. Various
characteristics of the freezing index are shown in Figure 5C.
A decreasing trend appeared in 1902–1903, and a brief increasing
trend appears in 1905–1924 and 1929–1930. A decreasing trend
with a slow rate of 0.08°C·d/yr was observed from 1930 to 2019.

Spatiotemporal Variations in the Thawing
Index
According to the spatial interpolation map of the thawing index
(Figure 6) and multivariate relationship (Eqn. 9), we found that
latitude is the main factor and that the thawing index increases
gradually with decreasing latitude on the Mongolian Plateau. The

thawing index in the northern region varies from 450 to 2,658°C·d,
with a mean value of 1,596°C·d, while in the southern region, it varies
from 2,000 to 4,000°C·d, with a mean value of 3,216°C·d. High values
occur in the Gobi Altai region and the northern part of the Inner
Mongolia Autonomous Region of China. During the study period, the
regionwith high values exceeding 3,500°C·d gradually expanded to the
south and east. The lowest values appeared in the northern part of the
Khuvsgul Mountains, Khangai Mountains, and Khentii Mountains in
Mongolia, theGreater KhinganRange inChina, and the southern part
of Russia. The thawing index varies greatly in the western part. In the
northern part of the Inner Mongolia Autonomous Region, the high
value region gradually expanded to the east over time. The lowest
value gradually increased with time, and the thawing index showed an
increasing trend, with significant increases in the Khangai and Khentii
Mountain regions located in central Mongolia.

TDD � −0.10lon − 0.89lat − 0.76ele + 1.20(R2 � 0.89) (14)
The change in the thawing index on the Mongolian Plateau

from 1901 to 2019 is opposite that of the freezing index, with an
overall upward trend and a positive slope of 2.25°C·d/yr.
According to the M–K mutation test (Figure 5D), the thawing
index began to increase abruptly after 1995 (based on the 0.05 and
0.10 significance levels) (Figure 5B). The increasing trend from

FIGURE 4 | Decadal spatial changes in the air freezing index on the Mongolian Plateau from 1901 to 2019. Labels like (A–L) represent the spatial variation of the air
freezing index for each decade from 1901 to 2019.
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1901 to 1995 had a flat slope of 0.44°C·d/yr, whereas the
increasing trend from 1995 to 2019 had a significantly steeper
slope of 6.19°C·d/yr.

DISCUSSION

Freezing and Thawing Index Variation
The permafrost on theMongolian Plateau is mainly distributed in
the northern regions, especially in the northern alpine regions
(Figure 1A). Sen’s slope can reflect the interannual variation in
the freezing and thawing index. The slope change in the air
freezing index (Figure 7) shows that the largest freezing index
occurs in the northern alpine regions, and the permafrost
temperature increases rapidly in the Khuvsgul and Khangai
Mountain regions (Kynicky et al., 2009; Zhao et al., 2010;
Ishikawa et al., 2018; Munkhjargal et al., 2020; Dashtseren
et al., 2021).

The climate determines the air thawing index, and most
regions on the Mongolian Plateau exhibit trends consistent
with global warming (Munkhjargal et al., 2020; Peng et al.,
2020b). Although the change rates of regions listed in Table 1
are based on different time periods and data sources, the
thawing index values of the regions show increasing trends

(Wu et al., 2011; Luo et al., 2014; Wang et al., 2019; Liao et al.,
2021). The influence of latitude on the thawing index in this
region is smaller than that in the Arctic Circle, which has
simple topographic conditions and is more sensitive to climate
warming (Johannessen et al., 2016) than the Mongolian
Plateau (Shi et al., 2019). The influence of latitude of the
thawing index on the Mongolian Plateau is greater than
that on the Qinghai-Tibetan Plateau, which has high
elevations and complex topographic conditions (Shi et al.,
2019).

The spatial variation in the thawing index of the Mongolian
Plateau is also affected by both latitude and altitude (Dashtseren
et al., 2021), and the change in the thawing index in the low-
latitude region is greater than that in the high-latitude region
(Figure 8). The factors that may cause variations in the freezing
and thawing index are elevation and solar radiation. Air
temperature and solar radiation both gradually decrease with
increasing elevation. In addition, the content of water vapor in the
atmosphere may also be an influencing factor. For example, in the
low-latitude regions with low water vapor content and weak solar
radiation, the freezing index changes only slightly. The air
freezing and thawing index changes reflect climate warming,
which may accelerate permafrost degradation (Dashtseren
et al., 2021).

FIGURE 5 | Interannual variation in the freezing (A) and thawing (B) index and the change point of the freezing (C) and thawing (D) index from 1901 to 2019 on the
Mongolian Plateau.
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Uncertainty Analysis
Climate change studies usually require long time series of
meteorological data, but the low number and scattered nature of

the meteorological stations and boreholes on the Mongolian Plateau
make research difficult. Thus, we selected the CRU reanalysis dataset
as the data source for analyzing the air freezing and thawing index.

FIGURE 6 | Decadal spatial changes in the air thawing index on the Mongolian Plateau from 1901 to 2019. Labels like (A–L) represent the spatial variation of the air
thawing index for each decade from 1901 to 2019.

FIGURE 7 | Sen’s slope of the freezing index over the Mongolian Plateau from 1901 to 2019.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8754508

Ma et al. Freezing/Thawing Index in Mongolian Plateau

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


However, we found that compared to the observed data, the CRU
reanalysis data underestimate the air temperature. Thismay be caused
by the fact that, first, the elevation of a grid cell in theCRU reanalysis is
higher than that of the meteorological station. This may result in a
difference because of the lapse rate of air temperature (Wang et al.,
2018; Shi et al., 2019). Generally, the air temperature decreases with
elevation at a rate of 0.65°C/100m, but there will be differences among
regions (Frauenfled et al., 2007; Wang et al., 2018). Second, the CRU
reanalysis data are produced by integrating data from meteorological
stations worldwide. The original uncertainty is present in the new
reanalysis dataset (Harris et al., 2014). Third, the CRU reanalysis
dataset still has shortcomings at a spatial resolution of 0.5 × 0.5, as each
grid corresponds to actual spatial coverage of approximately
3,000 km2 (Frauenfled et al., 2007; Chen et al., 2021), and the
spatial representativeness is low. We checked the CRU quality
based on a single station, and the deviations were inevitable.

There are also uncertainties in calculating the air freezing and
thawing index (Frauenfeld et al., 2007; Chen et al., 2021). Since the
CRU reanalysis data based on calculations in this paper provide
monthly mean temperature data, the modification of the calculation

formula will further increase the uncertainty of the freezing and
thawing index results. Moreover, we use temperature data from
January 1975 to December 2019 to perform a quality check of the
CRU data using a dependence test due to a lack of comparable data,
and thus the CRU reanalysis has uncertainty. The underestimation
by the reanalysis data undoubtedly affects the air freezing and
thawing index results. The air freezing and thawing index are
very important for assessing the permafrost status on the
Mongolian Plateau (Wu et al., 2011; Dashtseren et al., 2021; Gao
et al., 2022). Therefore, improving data accuracy and reducing the
uncertainty of the analysis results are of great importance for
studying climate change and the permafrost environment
(Frauenfled et al., 2007; Harris et al., 2014; Ran et al., 2015).

CONCLUSION

Based on CRU reanalysis data, we analyze the spatiotemporal
variation in the air freezing and thawing index on the Mongolian
Plateau from 1901 to 2019. We assess the reliability of CRU air

TABLE 1 | Result comparison of thawing index variation in different regions.

Region Thawing index Dataset Time series Change rate Literature

Qinghai-Tibet Plateau (QTP) STI ERA-Interim 1980–2013 3.75°C·d/yr Qin et al. (2016)
ATI MEERA-2 1981–2017 4.20°C·d/yr Qin et al. (2021)
ATI Observation data 1980–2013 9.3°C·d/yr Wu et al. (2018)
ATI CRUNCEP 1901–2015 0.98°C·d/yr Shi et al. (2019)

Northern Hemisphere ATI CRU, CIMP5 1950–2005 1.14°C·d/yr Peng et al. (2019)
Observation data 1980–2018 6.4°C·d/yr Hu et al. (2021)

Circum-Arctic ATI CRUNCEP 1901–1989 0.90°C·d/yr Shi et al. (2019)
1989–2015 7.19°C·d/yr

Mongolian Plateau ATI CRU reanalysis 1901–1994 0.44°C·d/yr This study
1995–2019 6.19°C·d/yr
1901–2019 2.55°C·d/yr

aSTI: surface thawing index. ATI: air thawing index.

FIGURE 8 | Sen’s slope of the thawing index on the Mongolian Plateau from 1901 to 2019.
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temperatures with data from 106 meteorological stations on the
Mongolian Plateau. The correlation coefficient is 0.96, and the RMSE
is approximately 0.80°C. The variation magnitudes of the freezing
and thawing index on the Mongolian Plateau from 1901 to 2019
show a reversal in tendencies, and the long-term trends vary from
−1.76 to −5.24°C·d/yr and from 0.44 to 6.19°C·d/yr, respectively.
Notably, the thawing index experienced rapid increases after 1995.
The spatial distributions of the freezing and thawing index are
mainly affected by latitude and altitude.With increasing latitude, the
freezing index increases from 600°C·d to 5,600°C·d, and the thawing
index decreases from 4,500°C·d to 1,000°C·d. The northern alpine
regions where permafrost exists show greater changes than the
southern desert regions. Future studies are required to improve
the spatial and temporal resolution of the air temperature data and
their effects on the permafrost environment.
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