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Short-term load forecasting plays a significant role in the management of power plants. In
this paper, we propose a multivariate adaptive step fruit fly optimization algorithm (MAFOA)
to optimize the smoothing parameter of the generalized regression neural network (GRNN)
in the short-term power load forecasting. In addition, due to the substantial impact of some
external factors including temperature, weather types, and date types on the short-term
power load, we take these factors into account and propose an efficient interval partition
technique to handle the unstructured data. To verify the performance of MAFOA-GRNN,
the power load data are used for empirical analysis in Wuhan City, China. The empirical
results demonstrate that the forecasting accuracy of the MAFOA applied to the GRNN
outperforms the benchmark methods.
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INTRODUCTION

It is well known that the role of short-term power load forecasting is increasingly crucial in the
management of power plants. Short-term power load forecasting mainly refers to electric load
forecasting in the next few hours, 1 day to several days. Accurate short-term power load forecasting
can reasonably arrange the operation of units, ensure the safety of operation of the power grids, and
improve the economic benefits of power enterprises (Friedrich and Afshari, 2015; Dudek, 2016). On
the contrary, inaccurate forecasts will produce unnecessary electricity and result in considerable
electrical power system losses (Yang et al., 2017). Hobbs et al. (1999) pointed that the reduction of 1%
in load forecasting error of 10,000 MW utility can save up to $1.6 million annually. So, it is of vital
importance to achieve high accuracy for short-term power load forecasting nowadays.

With the development of computer technology, the theory of artificial neural networks (ANNs)
has been applied in a wide range of fields such as power market, system engineering, and control
system (Jiang et al., 2014; Liu et al., 2018; Du et al., 2019; Yang et al., 2022). The forecast of power load
considers not only the load but also the factors that affect the load, so the use of ANNs has been
highly concerned by researchers. For example, Xuan et al. (2021) combined the convolutional neural
network (CNN) and bidirectional gated recurrent unit (Bi-GRU) to forecast the short-term load. In
the meantime, the random forest was used to select features. The final result showed that this hybrid
method had a higher accuracy. Wang et al. (2020) applied an extreme learning machine model to
electricity price forecasting, as well as considering the influence of outliers. The Elman neural
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network (ENN) model was also used to forecast the electrical
power system (Zhen Wang et al., 2018). Abedinia and Amjady
(2016) presented a new stochastic search algorithm to find the
optimum number of neurons for the hidden layer, and they used
the proposed method to predict the power load. They compared
the obtained results with those of several other recently published
methods, and it confirmed the validity of the developed approach.
Lu et al. (2016) used the weighted fuzzy C-means clustering
algorithm based on principal component analysis to determine
the basis function centers, and they used the gradient descent
algorithm to train the output layer weights. The proposed model
was implemented on real smart meter data, and simulation results
showed that the proposed method had good forecasting accuracy.
Ding et al. (2016) applied variable selection and model selection
to power load forecast to ensure an optimal generalization
capacity of the neural network model, and the results showed
that the neural network–based models outperform the time series
models.

The generalized regression neural network (GRNN) is a type
of ANNs based on mathematical statistics, proposed by Specht
(1991). Instead of listing the equations in advance, the network
uses a probability density function to predict the output.
Therefore, the GRNN has strong non-linear mapping
capability and quick learning speed, which is better than the
radial basis function neural network. In addition, even if the
number of input training samples is small, its output can
converge to the optimal value, which is very suitable for
solving the problem of non-linearity (Jiang and Chen, 2016;
Zhu et al., 2018). It has been applied in a wide range of fields
such as prediction of wind speed (Kumar and Malik, 2016), two-
dimensional spectral images (Jianzhou Wang et al., 2018),
automated emotion detection systems (Talele et al., 2016),
short-term load forecasting (Hu et al., 2017), mineral resource
estimation (Das Goswami et al., 2017), and the estimation of peak
outflow (Sammen et al., 2017). The optimization of smoothing
parameter is a crucial step in the application of GRNN. There are
a few ways to estimate its value. For example, Agarkar et al. (2016)
applied particle swarm optimization (PSO) to the smoothing
parameter of GRNN, which reduced the time complexity and
produced more accurate results than random selection of spread
factor. Gao and Chen (2015) presented an improved GRNN
algorithm, using phase space reconstruction to strike GRNN
training samples, applying adaptive PSO algorithm to optimize
the smoothing parameter. Zhao et al. (2020) applied PSO-GRNN
for risk prediction of urban logistics and found that the model can
handle the high-frequency influencing factors well. The result
showed that PSO-GRNN can better improve the accuracy of
prediction than others.

Recently, Pan (2012) proposed a fruit fly optimization
algorithm (FOA) to optimize the financial distress model, which
was based on the foraging behavior of fruit flies. This algorithm has
been effectively applied in a few fields including the dual-resource
constrained flexible job-shop scheduling problem (Zheng and
Wang, 2016), monthly electricity consumption forecasting
(Jiang et al., 2020), multidimensional knapsack problem (Meng
and Pan, 2017), seasonal electricity consumption forecasting (Cao
and Wu, 2016), joint replenishment problems (Wang et al., 2015),

steelmaking casting problem (Li et al., 2018), and optimization of
support vector regression (Samadianfard et al., 2019; Zhang and
Hong, 2019; Sattari et al., 2021). With the extensive applications of
FOA, more and more scholars studied the optimization of this
algorithm. Hu et al. (2017) changed the step length of the fruit fly
from a constant to a decrement sequence to improve the
optimization abilities of FOA, and the empirical results showed
that the performance of the proposed algorithmwas improved. Pan
et al. (2014) introduced a new control parameter that adaptively
adjusted the range of search space around the location of the
cluster, and the accuracy and convergence speed were improved.

In this paper, we propose a multivariate adaptive step fruit fly
optimization algorithm (MAFOA) to optimize the smoothing
parameter of GRNN for short-term load forecasting. We make
three contributions as follows. Firstly, we consider factors that affect
the power load as much as possible, such as temperature, weather
type, and date type. Secondly, we propose an efficient interval
partition technique to handle the structured and unstructured data.
Finally, we improve the selection of step size, which has a
multivariate adaptive step and can achieve high adaptability.

The remainder of this paper is organized as follows. FOA and its
improvement are presented in The Improvement of Fruit Fly
Optimization Algorithm. Improvement of Generalized Regression
Neural Network shows the MAFOA-optimized GRNN for short-
term load forecasting. We carry out the empirical analysis and
compare the proposed model with other models in Empirical
Analysis. Finally, the summary of this study is drawn inConclusion.

THE IMPROVEMENT OF FRUIT FLY
OPTIMIZATION ALGORITHM

Considering the problems of local optimum in the ordinary FOA,
we propose the MAFOA to optimize the smoothing parameter of
GRNN. In this section, we first briefly introduce the ordinary
FOA in Fruit Fly Optimization Algorithm, and then we propose
the MAFOA in Multivariate Adaptive Step Fruit Fly Algorithm.

Fruit Fly Optimization Algorithm
Fruit fly is a kind of flying insect, which is very sensitive to the
external environment because of its superior olfactory and vision.
Firstly, the olfactory organ is used to obtain the odor floating in
the air. Then, it will distinguish the general direction of the food
source and fly to the source of food. Finally, the fruit fly can
discover the position of food by its keen vision, and then fly to the
position. The process of searching food for the fruit flies can be
simulated as follows (Mitić et al., 2015):

1) Randomly initialize the population size, maximal number of
iterations, and position coordinates (x, y) of the group in a set
interval.

2) Choose the search radius of the fruit fly. Then, determine the
new position coordinates (xi, yi) of individual fruit fly by using{ xi � x + L0 × rands(−1, 1),

yi � y + L0 × rands(−1, 1), (1)
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where L0 is a fixed step size and rands(−1, 1) is a sample of
uniform distribution on (−1, 1).

3) Estimate the distance (di) between the individual fruit fly and
the coordinate origin and then calculate the judgment value
(Si) of smell concentration:

di �
������
x2
i + y2

i

√
, (2)

Si � 1/di. (3)

4) Calculate the smell concentration (smelli) by substituting Si
into the fitness function (f) of the taste concentration:

smelli � f(Si). (4)

5) Find out the best smell concentration (smelli) among the fruit
fly swarm:[bestsmell bestindex] � best(smelli), (5)

where bestsmell is the extreme value of smelli and bestindex is the
position coordinate of the individual fruit fly with best smell
concentration.

6) Determine whether the smell concentration is better than the
previous one. If yes, implement step 7; otherwise, repeat the
process from step 2 to step 6.

7) Retain the best smell concentration value (Smellbest) and the
position coordinate of the individual fruit fly with the best
smell concentration (xbest, ybest):

Smellbest � bestsmell, (6)

{ xbest � x(Smellbest),
ybest � y(Smellbest). (7)

8) Determine whether the end condition is reached. If yes, find
out the location of the best smell concentration value;
otherwise, return to step 2.

Multivariate Adaptive Step Fruit Fly
Algorithm
In the ordinary FOA, the individual fruit fly seeks the food source
with the pre-set step size. Obviously, if the step size is too small,
the search space will be limited, and it will cause the problem of
local optimum. On the contrary, if the step size is too large, its
local search ability will become weaker, and the convergence rate
will slow down. To deal with these issues, the setting of step size
should adhere to the following principles. In the initial phase of
iterations, the step size should be large to ensure global
optimization performance. On the contrary, in the later stage,
the step size should be small to ensure local search performance.

Therefore, there are a few successful algorithms for the
improvement of step size of fruit flies, such as the decreasing
step fruit fly optimization algorithm (DSFOA) (Hu et al., 2017),
self-adaptive step fruit fly optimization algorithm (FFOA) (Yu
et al., 2016), and improved fruit fly optimization algorithm
(IFFO) (Pan et al., 2014). In the DSFOA and IFFO, the step
size decreased quickly in the initial phase of iteration, which
cannot guarantee the global optimization performance of the
algorithm. In this paper, we propose the multivariate adaptive
step size, which can be demonstrated as follows:

FIGURE 1 | Multivariate adaptive step size corresponding to different values of N and α: (A) N = 10, (B) N = 15, (C) N = 20, and (D) N = 25.
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Li � L0 · exp[ −N( Gi

Gmax
)α], (8)

where L0 is the initial step size, Gi is the current number of
iterations, Gmax is the maximum number of iterations, N is a
positive integer, and the exponential factor α is a constant within
(0, 10). The positive integer N and the exponential factor α
control the decreasing rate of step size and realize the better
local search performance. In order to choose proper values of N
and α, the convergence ability of algorithm under different
parameter values is compared. The initial step size L0 is set to
20, and the maximum number of iterations Gmax is set to 100.
Figure 1 gives the variations of step size in Eq. 8 corresponding to
different values of α when N � 10, N � 15, N � 20, and N � 25,
respectively.

As shown in Figure 1, the step size decreases gradually from
20 to 0 with the increasing iteration number and different values
of α correspond to different step size change trends. In the initial
stage of iterations, the algorithm has the largest step size, which
can guarantee the global optimum. As the iteration number
increases, the capability of local search is gradually enhanced
to find the local optimum value, which can be seen from the rapid
decline in the curves. Therefore, the dynamic step size can realize
the balance of global search capability and local optimization
ability.

Besides, from the subfigures in Figure 1, the step size
changes relatively symmetrical when α � 3, α � 5, and α � 7.
When α � 1, the curve drops sharply from the beginning,
which means the step size will become small even before
achieving the global optimum, and the step size cannot
achieve 20 at the beginning of iteration. The moment when
step size begins to decline is a bit later when α � 9. There seems
to be no difference in convergence performance when N takes
different values. So in Empirical Analysis, we will test the
performance of the proposed model with different values of
N and α to search for the optimal value, and we will substitute
the optimal N and α into the model for short-term load
forecasting.

IMPROVEMENT OF GENERALIZED
REGRESSION NEURAL NETWORK

Generalized Regression Neural Network
The GRNN is a kind of neural network using the radial basis
function and has been very popular in applications in recent
years. It can establish the implicit mapping relationship according
to the sample data, so that the output can converge the optimal
regression surface. Once the sample is determined, the only goal
is the determination of smoothing parameter in the kernel
function (Ozturk and Turan, 2012; Kumar and Malik, 2016).

Assuming that f(x, y) is the joint probability density function
of random variable X and variable Y, the observed value of X is
x0, and the regression of Y with respect to X is

Ŷ(x0) �
∫∞

−∞yf(x, y)dy∫∞

−∞f(x0, y)dy . (9)

Based on the Parzen non-parametric estimation, the density
function f(x0, y) can be estimated by the sampled
dataset {xi, yi}ni�1:

f(x0, y) � 1

n(2π)p+12 σ1σ2 . . . σpσy

∑n
i�1
e−d(x0 ,xi)e−d(y,yi), (10)

d(x0, xi) � ∑n
j�1
[(x0j − xij)/σj]2, (11)

d(y, yi) � (y − yi)2, (12)
where n is the sample size, p is the dimension of random variable
X, and σ is the width coefficient of the Gaussian function, which
is called the smoothing parameter.

Substituting Eq. 10 into Eq. 9 yields

Ŷ(x0) �
∑n
i�1
(e−d(x0 ,xi)∫∞

−∞ye
−d(y,y0)dy)

∑n
i�1
(e−d(x0 ,xi)∫∞

−∞e
−d(y,y0)dy) . (13)

Note that ∫∞

−∞ ze−z2dz � 0, (Eq. 13) can be simplified as follows:

FIGURE 2 | Flowchart of the MAFOA-GRNN model.
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Ŷ(x0) �
∑n
i�1
yie−d(x0 ,xi)∑n

i�1
e−d(x0 ,xi)

. (14)

The predicted value in Eq. 14 is the weighted sum of the
observations of the dependent variable, and the weights are
e−d(x0 ,xi). The GRNN is composed of input layers, pattern layers,
summation layers, and output layers. Once the learning samples
are determined, the structure of neural network and the
connection weights between neurons are completely
determined. Therefore, the GRNN does not need to adjust
the connection weight values between neurons, but to adjust
the transfer function of each unit by changing the smoothing
parameter to obtain the best regression result, which is different
from the traditional error backward propagation algorithm.
Thus, a key step in the GRNN is to determine the value of
the smoothing parameter.

Optimization of Generalized Regression
Neural Network Based on Multivariate
Adaptive Step Fruit Fly Optimization
Algorithm
In this paper, the MAFOA is applied to optimize the smoothing
parameters in the GRNN. The MAFOA-GRNN takes the root
mean square error (RMSE) of GRNN as the fitness function of
MAFOA, so as to calculate the smell concentration in each
iteration. Part of the training data are used in the MAFOA to
select the best parameters for the GRNN. When the algorithm
reaches the maximum number of iterations, the location of the
fruit fly with best smell concentration is obtained. Then, these
optimal parameters will be used in the GRNN to get the optimal
prediction model. The flowchart of the MAFOA-GRNNmodel is
shown in Figure 2.

EMPIRICAL ANALYSIS

In this section, the power load data in Wuhan are used to test the
performance of MAFOA-GRNN. The data description is
introduced in Data Description. Then, Data Processing is
discussed. The evaluation criteria and empirical results are
further discussed in Evaluation Criteria and Experimental
Analysis.

Data Description
The power load data used in this paper are hourly and obtained
from a power grid in Wuhan with 2,880 observations ranging
from January 1, 2014, to April 30, 2014, which are shown in
Figure 3. In this section, we predict the power load of the last day
of each month. The in-sample data are power load data of each
month except the last day, and the out-of-sample data are the
power load data of the last day of each month.

As shown in Figure 3, the short-term power load has obvious
periodicity. Therefore, historical load data are an important
reference for forecasting. In order to accurately predict the
power load, the factors influencing the power load should be
considered as much as possible. The factors related to load
forecasting include date classification (weekday, weekend,
holiday), daily temperature (maximum, minimum, average
temperature), and weather condition.

Combining the influence factor, the improved GRNN adopts a
three-layer network structure. The input variables of the GRNN
are shown in Table 1, and the corresponding output vector is the
power load value at t o’clock on day d.

Data Processing
The original load data are normalized to eliminate the impact of
the dimensions between indicators. In addition, the input
variables of GRNN in Table 1 should be numerical data, so
we quantify the above weather factors and date type factors.

FIGURE 3 | Historical power load curve: (A) January 2014, (B) February 2014, (C) March 2014, and (D) April 2014.
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Meanwhile, we propose an efficient interval partition technique
to handle temperature and weather types:

1) Normalization of load data. All load data are normalized by
using the linear transformation method, given by

y � x − xmin

xmax − xmin
, (15)

where xmin is the minimum load value in the dataset and xmax is
the maximum load value in the dataset.

2) Quantization of temperature. In the previous studies,
temperature is standardized by direct standardization (Hu
et al., 2017). When the temperature changes in a suitable
range, the effect of the load is small. However, when the
temperature increases or decreases to a certain extent, the
effect on the load will be larger gradually. Therefore,
standardization may not be an appropriate choice. In this
work, we propose an efficient interval partition technique. The
temperature is partitioned by intervals, and different
quantitative values are taken according to the situation. For
example, when the temperature is 0°C, the temperature is
coded as 1; when the temperature is 5°C, the temperature is
coded as 0.8. The specific code value can be adjusted within a
small range according to the previous prediction result.

Therefore, the temperature is partitioned by intervals, as
shown in Table 2.

3) Quantization of weather types. The weather types can be
divided into six categories, as shown in Table 2, which can
affect the power load by influencing the use of lighting
equipment and other household appliances. Their
corresponding quantized values are also shown in
Table 2.

4) Quantization of date types. As a result of the social
production modules, the electricity consumption generally
shows the alternation of work and rest. The date types can be
divided into three categories: weekday (Monday to Friday),
weekend (Saturday to Sunday), and holiday (holiday or
major event day). On holiday, people often go out to
relax or take a rest, which has a substantial impact on the
changes in power load. According to the degree of influence
on power load, the date type is coded as three categories:
weekday is coded as 0, weekend is coded as 0.5, and holiday is
coded as 1.

Evaluation Criteria
This paper uses the normalized root mean square error
(NRMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) as the evaluation
criteria, given by

NRMSE � 100
�y

������������
1
N

∑N
i�1
(yi − ŷi)2

√√
, (16)

MAE � 1
N

∑N
i�1
|yi − ŷi|, (17)

MAPE � 1
N

∑N
i�1
|yi − ŷi

yi
|, (18)

where �y is the mean of value, ŷi is the predicted value, yi is the
observation value, and N is the number of data.

Although the NRMSE, MAE, and MAPE can be used as
criteria to obtain model predicted loss values, it cannot be
verified whether the comparison result is statistically
significant. To solve this problem, Diebold and Mariano
(1994) proposed the Diebold–Mariano (DM) test to test the
statistical significance of different prediction models. Assume
that model B andmodel T do the forecasting task in period t at the

TABLE 1 | Input variables of the GRNN.

Number Input variables

1 Power load value at t o’clock on day d − 2
2 Power load value at t − 1 o’clock on day d − 2
3 Maximum temperature on day d − 2
4 Minimum temperature on day d − 2
5 Weather condition on day d − 2
6 Date type on day d − 2
7 Power load value at t o’clock on day d − 1
8 Power load value at t − 1 o’clock on day d − 1
9 Maximum temperature on day d − 1
10 Minimum temperature on day d − 1
11 Weather condition on day d − 1
12 Date type on day d − 1
13 Maximum temperature on day d
14 Minimum temperature on day d
15 Weather condition on day d
16 Date type on day d

TABLE 2 | Quantitative value of meteorological factors.

Temperature (°C) Quantitative value Weather type Quantitative value

−5–0 (0.7, 1.0) Sunny (0, 0.1)
0–5 (0.5, 0.8) Sunny–cloudy (0.1, 0.2)
5–10 (0.3, 0.6) Cloudy (0.2, 0.4)
10–15 (0.2, 0.4) Cloudy–rainy (0.3, 0.6)
15–20 (0.1, 0.2) Rainy (0.5, 0.8)
20–25 (0, 0.1) Snowy (0.7, 1.0)
25–30 (0.1, 0.4)
30–35 (0.4, 0.7)
35− (0.1, 1.0)
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same time, and we wonder if there are significant differences in
the performance between the twomodels. The original hypothesis
is that the forecast accuracy for two models is the same, which is
equivalent to the mean value of relative loss function of 0. The
DM statistics is defined as follows:

DM �
�d�����

2πfd(0)
T

√ , (19)

where

�d � 1
T
∑T
t�1
dt (20)

is the sample mean loss differential, in which

dt � LossT − LossB (21)
is the relative loss function, where LossT and LossB are the loss
function of predicted errors of test model T and benchmark
method B at time t, respectively.

Note that, in this paper, the mean-squared prediction error
(MSPE) is used as the loss function:

Lossi � 1
N

∑N
i�1
(yt − ŷit)2, (22)

where ŷit is the predicted value of model i at time t.

fd(0) � 1
2π

∑∞
τ�−∞

γd(τ) (23)

is the spectral density of relative loss function at frequency
zero.

γd(τ) � E[(dt − μ)(dt−τ − μ)] (24)

is the autocovariance of dt at displacement τ, where μ is the
population mean loss differential.

If the p-value corresponding toDM is less than the significant
level, which normally is 0.01 or 0.05, the original hypothesis is
rejected; otherwise, it cannot be rejected.

Experimental Analysis
To determine the values of parameters α and N, we apply α �
1, 3, 5, 7, 9 and N � 10, 15, 20, 25 into the model to test the
performance of the model. In this section, the data from
January 1, 2014, to January 30, 2014, in Wuhan are used as
training data, and the load data on January 31, 2014, are
regarded as test data. Finally, the anti-normalization
processing is carried out, and the NRMSE, MAE, and MAPE
are calculated.

Table 3 shows the prediction errors for different α andN. We
can see that whatever value N takes, three types of errors are
obviously higher than others when α � 1. When α � 3 and

TABLE 3 | Errors of the test set for different α and N.

n Error type α � 1 α � 3 α � 5 α � 7 α � 9

N = 10 NRMSE 33.3898 22.8639 15.8455 7.3671 7.4929
MAE 7.2234 7.0068 6.5260 5.2611 6.1537
MAPE 0.0093 0.0083 0.0080 0.0072 0.0081

N = 15 NRMSE 34.4198 23.7839 27.4610 1.0415 5.5455
MAE 7.0454 7.0378 6.5378 6.5242 6.6737
MAPE 0.0086 0.0087 0.0089 0.0087 0.0097

N = 20 NRMSE 38.8445 35.8757 10.7160 4.7947 0.0072
MAE 7.3071 6.5455 5.8260 5.6311 6.2587
MAPE 0.0098 0.0083 0.0080 0.0076 0.0081

N = 25 NRMSE 39.7045 20.3099 11.6360 5.6547 8.2882
MAE 7.2102 6.5139 6.5072 5.9937 6.8254
MAPE 0.0098 0.0094 0.0093 0.0084 0.0082

FIGURE 4 | Fitness of variation with the increase of iterations: (A) α � 7; (B) N = 15.
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TABLE 4 | Forecast results of power load.

Time January February March April

Actual
values

Forecast
values

Relative
errors

Actual
values

Forecast
values

Relative
errors

Actual
values

Forecast
values

Relative
errors

Actual
values

Forecast
values

Relative
errors

(MW) (MW) (%) (MW) (MW) (%) (MW) (MW) (%) (MW) (MW) (%)

1:00 677.40 689.79 0.0183 709.82 720.35 0.0148 692.63 690.92 0.0025 658.30 657.68 0.0009
2:00 653.06 672.15 0.0292 694.35 685.74 0.0124 680.72 675.48 0.0077 647.19 645.88 0.0020
3:00 653.51 658.18 0.0071 670.91 672.69 0.0027 673.70 673.74 0.0001 637.70 637.16 0.0009
4:00 642.52 650.65 0.0127 677.20 661.16 0.0237 670.04 670.97 0.0014 630.18 644.47 0.0227
5:00 639.44 641.16 0.0027 662.21 660.71 0.0023 671.82 671.71 0.0002 637.72 643.55 0.0091
6:00 653.05 658.27 0.0080 684.66 687.16 0.0036 698.88 686.72 0.0174 676.44 667.54 0.0132
7:00 690.42 695.86 0.0079 731.70 729.71 0.0027 745.87 747.82 0.0026 722.95 717.03 0.0082
8:00 803.07 812.36 0.0116 814.08 814.16 0.0001 795.26 812.49 0.0217 751.95 762.93 0.0146
9:00 874.77 873.36 0.0016 889.29 889.97 0.0008 833.28 835.70 0.0029 788.23 791.43 0.0041
10:
00

853.36 853.67 0.0004 885.28 888.98 0.0042 814.67 809.35 0.0065 777.08 776.24 0.0011

11:
00

851.10 850.23 0.0010 884.13 880.51 0.0041 803.69 804.61 0.0011 767.25 769.31 0.0027

12:
00

813.58 811.36 0.0027 848.45 846.00 0.0029 783.17 769.67 0.0172 745.26 740.57 0.0063

13:
00

809.11 808.87 0.0003 831.73 828.58 0.0038 786.08 771.60 0.0184 730.55 722.46 0.0111

14:
00

788.90 799.90 0.0139 818.47 822.24 0.0046 777.79 779.13 0.0017 742.14 731.85 0.0139

15:
00

790.56 800.82 0.0130 826.27 826.70 0.0005 780.92 779.61 0.0017 739.81 742.17 0.0032

16:
00

797.75 807.82 0.0126 824.00 830.17 0.0075 788.51 784.73 0.0048 753.58 737.04 0.0219

17:
00

826.79 825.41 0.0017 856.85 847.88 0.0105 797.58 803.80 0.0078 771.64 770.39 0.0016

18:
00

859.40 857.91 0.0017 859.35 865.93 0.0077 787.30 787.15 0.0002 748.37 753.00 0.0062

19:
00

899.44 894.48 0.0055 896.94 899.66 0.0030 814.22 807.29 0.0085 756.61 767.41 0.0143

20:
00

894.75 904.78 0.0112 909.69 911.58 0.0021 804.24 809.36 0.0064 760.59 770.73 0.0133

21:
00

871.66 880.29 0.0099 887.56 883.48 0.0046 779.43 786.43 0.0090 728.23 741.39 0.0181

22:
00

828.78 838.28 0.0115 824.59 828.39 0.0046 760.20 767.66 0.0098 707.18 717.41 0.0145

23:
00

776.42 788.16 0.0151 760.49 764.49 0.0053 739.43 751.64 0.0165 696.21 707.82 0.0167
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N � 25, the NRMSE andMAE are small. The NRMSE, MAE, and
MAPE are small at the same time when α � 5 andN � 20, which
is consistent with that reported in the FFOA proposed by Yu et al.
(2016).When α � 9 andN � 20, the NRMSE andMAPE are both
small. But the smallest values of NRMSE, MAE, and MAPE are
obtained when α � 7 and N � 15, which means the forecasting
performance is the best at this moment. So, we can initially claim
that when α � 7 andN � 15, the step size can realize the balance
of global search capability and local optimization ability. Figure 4
shows the fitness curves of MAFOA when α � 7 and N � 15.

Figure 4 provides the fitness variation with the increase of
iteration number. Figure 4A shows the convergence situation
of different N when α � 7, and Figure 4B shows the
convergence performance of different α when N � 15. It
can be seen that, under the condition of α � 7, when we
choose N � 15, the algorithm has the minimal fitness value
and arrives at its optimal value much more quickly than other
conditions; under the condition of N � 15, when we choose
α � 7, the algorithm has the same performance. Accordingly,
α � 7 and N � 15 are perceived as an ideal choice in the step
size formula.

After choosing α � 7 andN � 15, we train the power load data
of each month except the last day to predict the load of the last
day of each month. Table 4 shows the prediction results obtained
by the MAFOA-GRNN algorithm from January to April 2014,
respectively. The relative errors are basically within 2%, and the
accuracy is high.

In order to test the forecasting performance of the
proposed model, the backpropagation (BP) neural network,
support vector machine (SVM), GRNN, PSO-GRNN, FOA-
GRNN, and DSFOA-GRNN are regarded as benchmark
models to be compared with MAFOA-GRNN in short-term
power load forecasting. The PSO was proposed by Kennedy
and Eberhart in 1995, which was inspired by the swarm
behavior of birds. The FOA proposed by Pan in 2012 was

also used in this work. Since PSO and FOA are both classical
optimization algorithms that have been widely utilized in
research, we have chosen PSO-GRNN and FOA-GRNN as
benchmark models. The DSFOA proposed by Hu et al. in 2017
is an improvement algorithm of FOA. With the decreasing
step size in mind, the DSFOA performed well in optimizing
the spread parameter of GRNN. The flight distance is updated
referring to the sigmoid function. So, DSFOA-GRNN has also
been compared with our proposed model. Besides, some other
basic prediction models are also taken into account, such as
the BP neural network and SVM. Figure 5 shows the relative
error curves of the single models on January 31. Figure 6
shows the relative error curves of the hybrid models on
January 31.

It can be seen from Figure 5 that, in the commonly applied
forecasting methods, the GRNN has the best prediction ability.
Figure 6 shows that the proposed method can accurately predict
the overall trend of power load, and the fitting effect is very
good. From the relative error curves, it can be seen that
MAFOA-GRNN can offer a better predicting performance
and higher precision than DSFOA-GRNN, FOA-GRNN, and
GRNN. In addition, the relative errors of MAFOA-GRNN are
more stable, and the majority are below 0.02, which
demonstrates that the improved FOA is perceived as an ideal
method in optimizing model parameters during GRNN
training.

Then, the anti-normalization processing is carried out, and the
comparison results of NRMSE, MAE, and MAPE evaluation
criteria are shown in Figures 7–9. Table 5 shows the error
analysis of the training set and test set.

Obviously, MAFOA-GRNN has the smallest NRMSE,
MAE, and MAPE, followed by FOA-GRNN, but the BP
neural network has the worst performance. Besides, the
prediction error of the training set and test set has no
obvious difference, which indicates that MAFOA-GRNN

FIGURE 5 | Relative errors of the single models. FIGURE 6 | Relative errors of the hybrid models.
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has high generalization performance. According to the
comparison results, it can be concluded that MAFOA-
GRNN outperforms other models in both accuracy and
stability. Table 5 demonstrates the same conclusions
as above.

Although the NRMSE, MAE, and MAPE can be used as
criteria to obtain model-predicted loss values, it cannot be
verified whether the comparison result is statistically
significant. To statistically compare the differences
between the prediction accuracy of different models, the
DM statistics test is carried out in this paper, and the
results are shown in Table 6. For all the benchmark

models, the values of the MAFOA-GRNN model proposed
in this paper are below 0.05, which indicates that the
predictive ability of the MAFOA-GRNN model is better
than that of DSFOA-GRNN, DSFOA-GRNN, GRNN,
SVM, and BP neural network under the confidence
interval of 95%.

According to the above comparisons, the following three main
conclusions can be summarized:

1) The proposed MAFOA-GRNN outperforms the GRNN,
which indicates that the MAFOA can optimize the
smoothing parameter of GRNN effectively.

FIGURE 8 | Performance comparison of models in terms of MAE criteria.

FIGURE 7 | Performance comparison of models in terms of NRMSE criteria.
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2) The performance of MAFOA-GRNN is better than that of
FOA-GRNN, which shows that the multivariate adaptive step
can effectively improve the optimization ability of FOA.

3) From January to April 2014, MAFOA-GRNN has reached
high prediction accuracy, which shows that the proposed
algorithm is a stable and effective forecasting framework.

TABLE 5 | Error comparison between MAFOA-GRNN and the benchmark models.

Month Error
type

BP SVM GRNN PSO-GRNN FOA-GRNN DSFOA-GRNN MAFOA-GRNN

January NRMSE 4.4106 3.7301 3.0477 3.5618 3.5189 2.7762 1.0415
MAE 27.6808 23.1618 18.6411 23.4856 23.5662 18.4538 6.5242
MAPE 0.0351 0.0293 0.0234 0.0317 0.0315 0.0253 0.0087

February NRMSE 4.9501 3.7416 2.5321 1.9097 1.4507 1.2274 0.7050
MAE 31.1464 23.7110 16.2740 11.7292 8.7336 7.4065 4.3071
MAPE 0.0378 0.0296 0.0204 0.0151 0.0113 0.0096 0.0056

March NRMSE 3.4144 3.0825 2.7506 2.1027 1.8578 1.5972 0.9859
MAE 22.2451 19.4858 16.7246 12.6088 10.8888 9.2868 5.5455
MAPE 0.0291 0.0262 0.0214 0.0171 0.0143 0.0127 0.0072

April NRMSE 3.1352 2.5490 1.9609 1.9380 1.7843 1.4344 0.6178
MAE 18.3732 14.9324 11.4907 10.9833 9.9950 9.0616 6.8816
MAPE 0.0260 0.0216 0.0166 0.0163 0.0139 0.0128 0.0096

TABLE 6 | DM results of the different models.

Tested model Benchmark model (January)

DSFOA-GRNN FOA-GRNN PSO-GRNN GRNN SVM BP

MAFOA-GRNN 2.4083 (0.0036) 4.9502 (0.0120) −2.5780 (0.0073) 2.8360 (0.0048) −2.5430 (0.0160) −3.4426 (0.0012)
DSFOA-GRNN 3.8311 (0.0280) −3.7578 (0.0260) 4.1183 (0.0000) −3.5324 (0.0180) 4.3981 (0.1802)
FOA-GRNN −1.1790 (0.0370) 0.5811 (0.7165) −3.5824 (0.0000) −1.5424 (0.0686)
PSO-GRNN 4.4083 (0.0480) −1.8246 (0.0190) 3.2784 (0.0735)
GRNN −2.4083 (0.0370) −2.6555 (0.0072)
SVM 4.1736 (0.0078)

FIGURE 9 | Performance comparison of models in terms of MAPE criteria.
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CONCLUSION

In this paper, we have proposed MAFOA-GRNN and applied it
to short-term load forecasting. Firstly, we discussed a number of
external factors including weather types and date types as input
variables of the GRNN, in order to optimize the structure of
NNs. Then, we propose an efficient interval segmentation
technique for temperature types and weather types. Finally,
we use the MAFOA to obtain the optimal GRNN model instead
of the ordinary FOA, which solves the problem of local
optimum in the implementation of FOA. The hybrid model
proposed in this paper has a higher accuracy than the BP neural
network, SVM, GRNN, PSO-GRNN, FOA-GRNN, and
DSFOA-GRNN, and the majority of relative errors are
below 0.02.

The proposed models can accurately predict the load of the
power system, especially in short-term load forecasting. Electric
energy cannot be stored in large quantities, and its generation and
consumption are almost completed at the same time. Therefore,
in order to arrange the work of power plants economically and
reasonably, short-term load forecasting is indispensable.
Furthermore, the proposed model can also predict other time
series by adjusting the input vector and parameters.

In addition to short-term load forecasting, the proposed
MAFOA-GRNN can be applied to solve other complex
multivariable problems, including solar radiation forecasting,
crude oil price forecasting, and wind load forecasting.
Furthermore, the factors considered in this article are limited,
and the forecasting performance may be better if other valuable

factors are taken into consideration. Finally, further research may
improve the performance of proposed model such as training the
data of weekdays and holidays separately.
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