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Urban heat islands (UHIs) have become one of the most critical issues around the world,
especially in the context of rapid urbanization and global climate change. Extensive
research has been conducted across disciplines on the factors related to land surface
temperature (LST) and how to mitigate the UHI effect. However, there remain deficiencies
in the exploration of LST changes across time and their relationship with underlying
surfaces in different temperature ranges. In order to fill the gap, this study compared the
LST of eachmonth by using the quantile classificationmethod taking the Landsat 8 images
of Nanjing on May 18th, July 21st, and October 9th in 2017 as the subject and then
calculated the differences between July and May as well as that between July and October
by an intersection tool taking the LST classes of July as the baseline. Additionally, the
spatial pattern of each temperature class and intersection area was analyzed with the help
of several landscape metrics, and the land contribution index (LCI) was utilized to better
quantify the thermal contribution of each underlying surface to the area. The results
indicated that the difference between months mainly reflected in the medium temperature
area, especially between July and October, in which landscape patterns illustrated a trend
of fragmentation and decentralization. The proportions of underlying surfaces in different
types of intersection revealed the distinction of their warming and cooling degrees over
time, in which the warming degree of other rigid pavement was higher in the warming
process from May to July, and the cooling degree of buildings was greater in the cooling
process from July to October. The LCI of each underlying surface in the entire study area
was different from that in each temperature class, indicating that underlying surfaces had
distinguished thermal contributions in different temperature ranges. This study is expected
to fill the gap in previous studies and provide a new perspective on the mitigation of UHI.
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INTRODUCTION

The global climate change has become an indisputable fact.
According to the report Climate Change 2021: Fundamentals
of Natural Science released by the IPCC in August 2021, “The
temperature of the past 10 years is likely to be the highest in
125,000 years. . .extreme high temperatures (including heat
waves) continue to increase in frequency and intensity over
most land areas of the world” (Veal, 2021). More than
356,000 heat-related deaths were reported in 2019, according
to the Lancet, and that number is likely to increase with the rise in
global temperature (Ebi et al., 2021; Jay et al., 2021).

With the expansion of the global population, urban areas are
expected to absorb virtually all of the future growth of the world’s
population as well as provide necessary resources and services,
leading to more rapid urbanization than ever before (Desa, 2019).
However, it is accompanied by a series of urban issues, among
which the UHIs effect has attracted the most attention. Due to the
energy imbalance caused by changing underlying surfaces and
increased anthropogenic heat in urban areas (Oke, 1982), UHIs
would bring not only an unpleasant thermal comfort experience
(He et al., 2020) but also a series of social equality, energy
consumption, and ecological environment issues (He et al.,

2022). Heat waves pose a great threat to human health,
especially to vulnerable groups in cities (Markevych et al.,
2017). It not only directly threatens human health through
high temperature but also indirectly increases the incidence of
respiratory diseases, and cardiovascular and cerebrovascular
diseases (Anderson and Bell, 2011; Xu et al., 2020). In hot
weather, people have to increase the frequency of indoor air
conditioning and other refrigeration appliances, resulting in
higher energy consumption. In turn, the heat discharged from
these devices to outdoor spaces will aggravate the local heat island
effect and reinforce a vicious circle (Xu et al., 2019). Particularly,
high temperatures would affect the economic production of
certain industries and increase excess spending on electricity,
water, cooling facilities, healthcare, and medical services (He
et al., 2022). More seriously, rising temperature could lead to
environmental pollution and drought (Makhelouf, 2009;
Mazdiyasni and AghaKouchak, 2015; Van Ryswyk et al.,
2019), with significant negative effects on plant growth and
wildlife habitat, further worsening ecosystems (United Nations,
2021).

UHIs effect is usually quantified in terms of temperature
differences between urban and rural areas or between heat
islands, cold islands, and their surroundings. The distinction

TABLE 1 | Measurement methods of the UHI effect in the literature (Wang et al., 2020).

Number Index Calculation method

1 Surface UHI (Rasul et al., 2015) SUHI = Tu−Tr, SUCI = Tr−Tu, where SUHI = surface urban heat island, SUCI = surface urban cool
island, Tu = mean LST of urban or core, and Tr = mean LST of rural buffer. A 10-km buffer zone around
the city is used here to define the reference “rural” surface temperature

2 Surface UHI intensity (Li and Zhou, 2019) SUHII = mean (LSTurban)−mean (LSTbuffer), SUHII was calculated as the difference of mean LST between
the urban area and its buffer zone, in which the buffer zone is delineated with the equal size of the
corresponding urban area

3 UHI intensity index (Huang et al., 2019) UHIER = ΔT/Ts=(Ti−Ts)/Ts, UHIER refers to the UHI intensity index, expressed in relative LST in the area
and ΔT represents the difference between the LST of the i-th pixel (Ti) and the mean LST of rural
areas (Ts)

4 Urban cool island (Kong et al., 2014) UCI = ΔT=(Ti− �T ) (ΔT≤0), where �T � ∑n
1Ti/n, that is to say, the summary of each pixel’s land surface

temperature (Ti) divided by the total number of pixels in the study area
5 Cooling intensity of UGS (Yu et al., 2018) Defining the cooling effect of greenspace patches as the LST difference between the patch and its

surrounding urban area. Defining the maximum cooling extent as the distance between the edge of the
greenspace and the first turning point of a temperature drop compared with the greenspace’s
temperature. This turning point is the maximum ΔLST, which refers to as the cooling intensity

6 Greenspace cool island cooling capability (Zhang Y
et al., 2017)

UCI = ΔT=(Ti− �T ) (ΔT<0), where Ti is the LST of a given pixel and �T is the corresponding mean LST
CS = A_UCIi−A_GCIi(ΔT<0), where CS represents the GCI cooling capability; A_UCI and A_GCI
represent the areas of UCI and GCI, respectively; and i is the ID of the corresponding grid

7 Greenspace cool island (Du et al., 2017) GCI effect is evaluated by the LST difference between greenspaces and their surroundings. From the
edge of a greenspace, and its surrounding buffer is sliced into annulus-shaped areas with a fixed width.
1) GCI range (GR): The distance between the first turning point of the temperature curve and the edge of
greenspace. The unit is km. 2) Temperature drop amplitude (TA): The LST drop between the turning
point and greenspace interior. The unit is °C. 3) Temperature gradient (TG): The gradient (temperature
drop with unit distance) of surrounding LST. The unit is °C/km

8 Greenspace cooling island intensity (Zhang X et al.,
2017)

GSCI = ΔT = Tu−Tgs, where Tgs is the daily average LSTm for a certain UGS interior and Tu is the daily
average land surface temperature measured by temperature and humidity probes LSTm in the external
10 m buffer of the corresponding UGS

9 Surface urban cool island (Chen et al., 2014) Surface UCI was represented by the minimum LST of each urban green patch
10 Surface UHI intensity (Liu et al., 2016) SUHII was defined as the mean LST difference between the urban region and its surrounding suburban

area. A threshold of impervious surfaces percentage (60%) was used to separate the ISA percentage
map into dense-intensity and low-intensity impervious surface areas. The urban border was produced
by aggregating the dense impervious surfaces regions with an aggregation distance of 1 km. The region
within the delineated border was considered an urban area, while the outside of it was defined as the
suburban area
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lies in the definition of a rural area or the scope of the surrounding
environment. This article summarizes the commonly used
methods for calculating the UHI effect, as listed in Table 1.
Apparently, many scholars have proposed a variety of calculation
methods according to their research focus, which is helpful to
understand the UHI effect from different perspectives but will
possibly lead to contradictory results that are not universal across
regions (Huang et al., 2018; Peng et al., 2018; Li and Zhou, 2019).
The Local Climate Zone scheme proposed by Stewart and Oke
addresses this issue and standardizes the surface structure and
cover description, thereby standardizing urban and suburban/
rural sites for temperature comparison (Oke and Stewart, 2012),
which is a very useful tool for studying the UHI effect across
regions. However, the LCZ requires a large amount of detailed
information about the study sites through survey and assessment,
which is more suitable for an in-depth study of surface properties
and their relationship with the UHI effect (Das and Das, 2020;
Zhao et al., 2021). In this study, which focuses on the qualitative
research of LST and underlying surface types at an early stage, a
more feasible and replicable way is applied to classify the LST into
several classes based on the quantile method, which may help
diminish the error between different definitions of UHI intensity.

A number of research studies have discussed the annual
and seasonal variations of LST as well as its driving factors,
including the local climate (Zhou et al., 2016), terrain (Abbas
et al., 2021), urbanization level (Chao et al., 2020), land use
types (Zhou et al., 2014; Guha and Govil, 2020; Guha et al.,
2021), landscape metrics (Masoudi and Tan, 2019; Zhang and
Wang, 2020), biotope types (Vulova and Kleinschmit, 2019),
building morphology (Chen et al., 2021), and tree canopy
(Elmes et al., 2017). But most of them place emphasis on high-
temperature areas while neglecting medium-temperature
areas, and mainly aim at a specific time while barely
analyzing it from a continuous-time sequence. To better
understand the formation mechanism of urban climate and
the roles of various factors, it is of great significance to
investigate the changing trend of temperature at all ranges
over time.

It has come to an agreement that underlying surfaces play a
leading role in the formation of a UHI (Zhang X. et al., 2017;
Stanganelli and Gerundo, 2017; Huang et al., 2019), in which
natural surfaces like urban green spaces (UGS) and water
bodies can effectively alleviate the UHI (Zhao et al., 2011;
Sun et al., 2019; Erdem et al., 2021). Due to photosynthesis,
evapotranspiration, and shadowing effects, vegetation in the
UGS influences the physical environment of cities by
selectively absorbing and reflecting incident radiation, and
regulating latent and sensible heat exchange (Oke, 1987). At
the same time, the water bodies could absorb and store more
heat because of their high specific heat capacity (Ghosh and
Das, 2018; Dudorova and Belan, 2019). It should be noticed
that their cooling effect has thresholds regarding the size,
shape, connectivity, complexity (composition and
configuration), seasonal and diurnal difference, latitude, and
climate difference (Yu Z. et al., 2020). However, most studies
study the relationship between surface temperature and
underlying surface focusing on the whole area, while little

attention is paid to the differences within the area; in other
words, areas with different temperature ranges may have
various performances due to different thermal properties.

Based on the aforementioned discussion, the previous studies
have a few deficiencies in the neglect of the LST change from a
continuous-time sequence, and its relationship with the
underlying surface in different temperature ranges. In order
to make up for those deficiencies, this study uses the quantile
method to classify the LST of different months into several
classes for better normalized research and uses an intersection
tool to compare the difference in spatial distribution between
months. In addition, the thermal contribution of different
underlying surfaces in different LST classes and its variation
with time are analyzed. This article is a great reference for cities
going through rapid urbanization and attempting to integrate
natural elements into urban centers as it takes Nanjing as the
research subject due to its predominant geological location and
typical urban morphology in China. In summary, this article
focuses on addressing the following two issues: (1) how the
spatial distribution of LST changes in different months and (2)
how the thermal contribution of different underlying surfaces
changes across time.

MATERIALS AND METHODS

Study Area and Data Source
Nanjing (31°14′–32°37′N, 118°22′–119°14′E) is a megacity in
the Yangtze River Delta economic development zone of
China with a history of over 1800 years. The total area of
Nanjing is approximately 6,587 km2, and the population of
permanent residents is about 9.3 million (Nanjing Bureau of
Statistics, 2019). Located in a subtropical monsoon climate
zone with four distinct seasons and abundant rainfall, the
average temperature of Nanjing is 17.1°C and the total
precipitation is 1,294.4 mm in 2020 (Nanjing Bureau of
Statistics, 2019). The topography of Nanjing comprises low
mountains, hills, plains, rivers, and lakes, with elevations
ranging from 7 to 448 m a.s.l. This study selected
approximately 280 square kilometers in the city center

FIGURE 1 | Location of the study area.
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area of Nanjing for study (shown in Figure 1), which is
bounded by large rivers and main roads in the city,
including the Yangtze River, the Qinhuai New River, the
Round City Highway, and the Ningluo Highway.

Three clear Landsat 8 images with little cloud are downloaded
from the USGS Data Center (https://earthexplorer.usgs.gov/) for
study, and the acquisition dates are May 18th, July 21st, and
October 9th in 2017, respectively. Weather conditions of the
selected dates and detailed information on the data sets are
listed in Table 2. ENVI 5.3 software is applied to perform the
data preprocessing including geometric correction, radiometric
calibration, atmospheric correction, and clipping of the
study area.

Classification of the Underlying Surfaces
The underlying surface of the study area is divided into four
types based on the Landsat data and Baidu Map, namely, UGS,
water bodies, buildings, and other rigid pavements. As the
research area is in the urban center with little bare land or
farmland, except for UGS, water bodies, and buildings, other
rigid pavements mainly include open squares and roads.

First, the modified normalized difference water index
(MNDWI) is used to extract water from the image, which is
proved to be more accurate than the original normalized
differential water index (Xu, 2006). The thresholds of each
underlying surface are determined based on the original
Landsat 8 images and Baidu map after repeated tests of
different thresholds and manual calibration. In this study,
the threshold of MNDWI is determined as 0.20. Second, the
normalized differential vegetation index (NDVI) is used to
extract UGSs from the image (Weng et al., 2004). Removing
water bodies obtained from the previous steps, the threshold
value of 0.35 is used for UGS identification. Third, all the water
bodies and UGS are removed, which leaves only the
impervious surface. Based on the building footprint
information acquired from the Baidu map using Python
(Sun et al., 2020), buildings are extracted from the
impervious surface. Finally, the remaining pixels are
classified as other rigid pavements. As a result, the four
types of underlying surface map of the study area are
complete. The equations of MNDWI and NDVI are as follows:

MNDWI � (GREEN −MIR)/(GREEN +MIR), (1)
NDVI � (NIR − RED)/(NIR + RED) , (2)

where GREEN, MIR, NIR, and RED correspond to the value of
bands 3, 6, 5, and 4 of Landsat 8 images, respectively.

Retrieval of Land Surface Temperature
This study applied the radiative transfer equation (RTE) to
calculate the LST, which is based on the thermal infrared
radiative transfer equation by removing the influence of
atmosphere on thermal radiation in the process of radiative
transfer to accurately obtain the surface temperature (Yu et al.,
2014). The RTE has wide applicability and can be applied to the
thermal infrared remote sensing data on any sensor; especially, it
can achieve the highest LST accuracy in environments with high
atmospheric water vapor (Sekertekin, 2019). The calculation is
based on Eq. 3:

Lλ � [εB(Ts) + (1 − ε)L ↓]τ + L ↑, (3)
where Lλ is the brightness value of thermal infrared radiation
received by the satellite sensor, ε is the surface emissivity, Ts is the
real surface temperature (Kelvin), B(Ts) is the brightness
temperature, τ is the atmospheric transmittance in the thermal
infrared band, andL ↓ and L ↑ are the atmospheric downward
and upward radiation brightness, respectively. The last three
parameters can be obtained on one of the NASA websites
(http://atmcorr.gsfc.nasa.gov/) by inputting the acquisition
time and central latitude and longitude. Using Eq. 4, the LST
can be calculated as follows:

Ts � K2

ln( K1
B(Ts)+1)

, (4)

where K1 � 774.89W/(m2 · sr · μm) and K2 � 1321.08K for the
Landsat TM images.

Analysis of Temperature Pattern
Classification Method of LST
The commonly used classification method of LST is the
mean–standard deviation method (Sun et al., 2020), which
divides different temperature classes according to the mean
value and standard deviation of LST in the research area.
However, this method may classify more areas as moderate
and a much smaller proportion as hot. Taking the LST in July
as an example and using the mean–standard deviation
method to classify the temperature, the proportion of
moderate temperature was 42.29%, and that of high
temperature was only 0.49%. In addition, the proportion of
each temperature class may vary a lot when comparing
different months. Therefore, in order to minimize the
error of comparison between months, the quantile method
is used to sort all pixels in a certain order and then divide
them according to a percentage (Sun et al., 2020). As a result,

TABLE 2 | Weather condition of the selected days and detailed information of the Landsat 8 images.

Date Air temperature Weather condition Cloud cover of the
images (%)

The acquisition time
of the images

(GMT)

May 18th 18–30°C Cloudy to sunny 6.64 02:36:34
July 21st 29–38°C Sunny to cloudy 1.12 02:36:58
October 9th 22–29°C Sunny 0.07 02:37:22
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the data amount of each temperature class, namely, the area
of each temperature class is the same. In this study, the LST is
divided into seven classes, from low to high, namely,
extremely low-temperature class, low-temperature class,
sub-low-temperature class, medium-temperature class, sub-
high-temperature class, high-temperature class, and
extremely high-temperature class. For the sake of concise
expression, cls_1 to cls_7 is used as the abbreviation of each
class, in which the cls_1 is the extremely low-temperature
class and cls_7 is the extremely high-temperature class. The
steps are to import the raster map of LST into ArcGIS, and use
the quantile method in the reclassify tool to classify the raster
into seven classes.

Landscape Pattern of Temperature Class
Five landscape metrics were selected to calculate the landscape
pattern of different temperature classes as different types of
patches (shown in Table 3). The coefficient of variation (CV)
of the landscape metric is calculated to intuitively compare the
differences between each temperature class in different months.
The calculation method of CV is the standard deviation divided
by average value, which is not affected by scale and dimension,
and can be used to reflect the dispersion degree of a group of data
(Lee and Stat, 1994). Similarly, different types of intersection
areas are taken as patches to calculate the landscape pattern of
each intersection area.

Spatial Distribution of Temperature Class
The overlap degree in each class of July and May as well as that of
July and October is calculated by taking the LST classes of July as
the baseline using the intersect tool in ArcGIS, in which the
overlapped areas of the same class and different classes are
subdivided. The higher the overlap degree of the same class in
2 months, the higher the similarity of the LST distribution in
these 2 months. Meanwhile, the proportion of different
underlying surfaces in each overlapped area is calculated to
analyze the reasons for these differences. Then, the overlapped
types of different temperature classes are divided into cold–hot
overlapped type and hot–cold overlapped type. The cold–hot
overlapped type refers to the area belonging to the lower
temperature class in July that overlap with that belonging to
the higher temperature class in another month, and the hot–cold
overlapped type is the opposite. Moreover, the difference between
the two overlapped types in different temperature classes is
analyzed.

Calculation of the Land Contribution Index
In order to clarify the thermal impact of each underlying surface
in different areas, the land contribution index (LCI) introduced
by Huang et al. (2019) is calculated for comparison. The LCI is a
quantitative indicator for determining the thermal contribution
of the respective underlying surface to the temperature change of
the entire area. It considers the temperature difference of each
underlying surface and its proportion to the area into
consideration shown as follows:

LCI � (Ti − Tm) × Pi，i � 1, 2, 3, 4 (5)
where Ti is the average temperature of the i-th underlying surface,
Tm is the average temperature of the research area, i represents
four kinds of underlying surfaces, and Pi refers to the proportion
of the i-th underlying surface to the entire area. The LCI of each
underlying surface in the whole research area and each
temperature class as well as in the different overlapped types
area are calculated, respectively. An LCI ≥ 0 means that the
corresponding underlying surface has a positive effect on the
temperature rise of the area. On the contrary, an LCI < 0 indicates
that the corresponding underlying surface has a positive effect on
the temperature drop of the area.

The analysis framework of this study is shown in Figure 2.
In short, the LST of each month is classified into different
classes, and then the LST classes of July are intersected with
those of the other 2 months and categorized into different
types. Meanwhile, the landscape pattern and underlying
surface of each temperature class and intersection area are
analyzed.

RESULTS

Classification of LST in Different Months
LST Classes in Different Months
The LST classes in different months and the temperature range in
each class are shown in Figure 3; Table 4. The temperature is
highest in July, followed by May and then October. It is clear that
the distribution of LST classes in different months has similar
patterns in general. The cold island effect is significant near Zijin
Mountian, Xuanwu Lake, Mufu Mountain, and other large
mountains and water bodies. In May, the heat island effect is
more prominent in the northwest area, while it aggregates in the
city center area in July. However, in October, the heat islands are

TABLE 3 | Selected landscape metrics (Marks, 1995).

Landscape metrics Abbreviation Description

Percentage of landscape PLAND Proportional abundance of the corresponding patch type in the landscape (unit: %)
Patch density PD Number of patches of the corresponding patch type divided by total landscape area (unit: number per km2)
Mean patch area AREA_MN Total patch area of the corresponding patch type divided by patch number (unit: ha)
Mean Euclidean nearest neighbor
distance

ENN_MN Mean distance to the nearest neighboring patch of the same type based on the edge-to-edge distance (unit: m)

Aggregation index AI Number of like adjacencies involving the corresponding class, divided by the maximum possible number of like
adjacencies involving the corresponding class, which is achieved when the class is maximally clumped into a
single, compact patch; multiplied by 100 (unit: %)
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relatively small and scattered in the central area but more intense
in the southeast and southwest areas.

Landscape Pattern of Each LST Class in Different
Months
The variation coefficients of different LST classes in each month are
shown in Table 5. The specific value of each landscape metric is

shown in Supplementary Appendix Table A1. The larger the CV is,
the higher the dispersion degree of this set of data is, that is, the
greater difference in the landscape metric of this LST class in
different months. According to the result, the CV of PD,
AREA_MN, and ENN_MN are the highest in cls_1, that is, the
extremely low-temperature class, while the CV of PLAND and AI
are much smaller. It is indicated that the density, area, and distance

FIGURE 2 | Analysis framework.

FIGURE 3 | LST classes in different months.

TABLE 4 | Temperature range of each temperature class in different months
(unit: °C).

LST class May July Oct

cls_1 27.71–33.96 29.46–35.98 23.02–27.22
cls_2 33.97–36.89 35.99–39.19 27.23–28.71
cls_3 36.90–38.03 39.20–40.56 28.72–29.45
cls_4 38.04–38.88 40.57–41.48 29.46–30.03
cls_5 38.89–39.64 41.49–42.31 30.04–30.60
cls_6 39.65–40.59 42.32–43.32 30.61–31.43
cls_7 40.60–51.85 43.33–52.86 31.44–44.04

TABLE 5 | CV of landscape metrics of different temperature classes in 3 months
(unit: %).

PLAND PD AREA_MN ENN_MN AI

cls_1 0.08 27.08 24.90 8.65 0.48
cls_2 0.27 14.51 13.09 3.31 1.92
cls_3 2.05 17.33 18.22 8.20 3.45
cls_4 1.17 18.96 17.23 5.69 2.95
cls_5 0.52 14.08 13.81 3.01 1.98
cls_6 1.50 5.46 4.21 1.19 0.52
cls_7 1.13 5.63 5.81 0.49 0.33
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of patches in the extremely cold area vary greatly from month to
month, while the proportion and aggregation degree of patches have
no remarkable difference. The CV of cls_6 and cls_7, that is, the
high-temperature area and the extremely high-temperature area, is
relatively small in all landscape metrics, that is to say, the landscape
pattern of the hot area in different months is close to each other.
Moreover, cls_3 and cls_4, that is, the sub-low-temperature area and
the medium-temperature area, show a higher degree of variances in
all metrics, while cls_2 and cls_5, that is, the low-temperature area
and the sub-high-temperature area, show a lower degree of
difference. In general, the landscape pattern of each temperature
class in 3months present great differences in the area with the lowest
temperature and the area with the medium temperature, while there
is little difference in the area with high temperature, that is, the area
with strong heat island intensity.

Particularly, PLAND has the smallest CV among the 5 landscape
metrics, which is reasonable due to the principle of the quantile
classification method applied in this study. The CV of PD and
AREA_MN is the largest, especially in the cls_1 to cls_5 areas, in
which the CV of cls_1 is the largest. Combined with actual data, in
October, the PD is always the highest and the AREA_MN is always
the lowest among 3months in all classes. Meanwhile, the difference
between July and May is small, in which the PD in July is the lowest
and the AREA_MN in July is the highest or slightly lower than
in May.

With regard to the ENN_MN, the CV of ENN_MN is the highest
in cls_1 and cls_3, while lowest in cls_7. The value of ENN_MN in
July is the highest in cls_1 to cls_5, while slightly lower than that in
other months in cls_6 and cls_7. The CV of AI is generally small,
amongwhich the CVof cls_3 is the highest and cls_7 is the lowest. In
cls_2 to cls_5, where the CV is relatively high, AI in October is the
smallest, and AI in July is the largest. Only in cls_4, AI in May is
slightly higher than that in July.

In conclusion, the difference in landscape patterns between
May and July is small but more obvious between July and
October, especially the PD and AREA_MN are significantly
varied among 3 months. The discrepancy is mostly reflected in
the extremely cold area and the area with medium temperature,
while not so remarkable in the hot area. Based on the meaning
and the concrete value of each landscape metric, it is
demonstrated that the LST classes in October are a large

number of small patches densely distributed compared with
the other 2 months, while LST classes in July and May are
quite the opposite.

Underlying Surfaces of Each LST Class in Different
Months
The type of the underlying surfaces and their proportions in each
LST class is calculated as shown in Figure 4. With the rising
temperature, the proportion of UGS in each LST class reduces
gradually, while the proportion of buildings increases. The
proportion of other rigid pavement first increases then slightly
reduces. Water bodies are mainly distributed in cls_1 and cls_2,
especially in the former. In the extremely low-temperature class, the
proportion of UGS is the highest, more than 80%, followed by water,
around 11%, and the proportion of buildings is the lowest, which is
2.48% in October and less than 1% inMay and July. In the extremely
high-temperature class, the proportion of UGS is the lowest, ranging
from 5 to 8%; buildings account for more than 60%, and other rigid
pavement accounts for about 27%.

By comparing the proportion of underlying surfaces in the same
LST class between different months, it is shown that there is a slight
variance between May and July, which is between 0 and 1.31%, while
the high difference of up to 13.67% is found between July andOctober.

As for each underlying surface, the proportion of UGS in cls_1 to
cls_3 in October is significantly lower than that in the other
2 months, while in cls_4 to cls_7, it is completely the opposite. In
cls_1 to cls_3, the proportion of buildings in October is higher than
that in May and July. In cls_4, the proportion of buildings in
3 months is the same, and in cls_5 to cls_7, the proportion of
buildings is lower than that in May and July. The water bodies are
mainly distributed in cls_1 and cls_2, in which the proportion of
water bodies in cls_1 is higher in October than that in the other
2 months, while in cls_2, it is just the reverse. As for the other rigid
pavements, the proportion in cls_1, cls_2, and cls_7 is the highest in
October, while in cls_3 to cls_6, the proportion in October is the
lowest among 3months.

LCI of Each Underlying Surface
The LCI of each underlying surface in the entire area and each
temperature class is shown in Figure 5. Figure 5A shows the LCI of
each underlying surface in the entire area and Figures 5B–D show
the LCI of each underlying surface in each temperature class of May,
July, and October, respectively. It is clear that UGS and water are the
prominent cooling surfaces, while buildings and pavement are the
opposite. Because the research area is the central part of the city with
mountains and lakes, such as Zijin Mountain and Xuanwu Lake,
which play a remarkable role in cooling the area, the LCI of UGS and
water are significantly high in this study, especially in July, reaching
up to 0.94 for UGS. The LCI of each underlying surface in July is the
highest and lowest in October, indicating that the underlying
surfaces have a more obvious impact on LST in the summer.

However, there are a few differences comparing LCI between
each temperature class. In cls_1, only the LCI of water is a negative
number and has the highest value; UGS, buildings, and pavement are
all positive numbers. In cls_2, the LCI of water lowers a lot, and the
LCI ofUGS turns to be negative with the highest value. That is to say,
the water bodies are prominent in mitigating heat in the extremely

FIGURE 4 | Underlying surfaces of different temperature classes in
3 months.
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low-temperature area, while the cooling effect of UGS is more
significant in the low-temperature area. The LCI in cls_3 to cls_6
is much lower than that in the first two classes. In cls_7, buildings
have the highest positive value, while the other surfaces have negative
value, meaning that buildings are the dominant heating surfaces in
the highest temperature area, and even the pavement contributes to a
cooling impact compared with buildings in this area. In general,

water bodies have a positive effect on cooling down the
corresponding area, and buildings have a significant warming
effect in all classes, while the cooling effect of UGS is more
remarkable in cls_2 to cls_6, especially in cls_2. As for the other
rigid pavement, its thermal contribution is warming up the area in
cls_1 to cls_3, then turning to cool down the area in cls_4 to cls_7,
and the high values are in cls_2 and cls_7. Comparing different

FIGURE 5 | LCI of each underlying surface in the whole area (A) and in each LST class in May (B), July (C), and October (D).

FIGURE 6 | Proportions of overlapped areas in different temperature classes in different months.
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months, it is indicated that the LCI of each underlying surface in
May is the highest in cls_1, cls_2, and cls_4 to cls_6. In cls_3, the
highest LCI is in July, and in cls_7, it is in October. It is shown that
the thermal contribution of each underlying surface in different
temperature classes is distinguished in different months.

Intersection of Each LST Class in Different
Months
Proportion of Each Intersection Area
Taking the LST classes of July as the benchmark, the
intersection of each class between May and July
(intersection_July/May) as well as July and October
(intersection_July/Oct) are analyzed, respectively, as shown
in Figure 6. The colors in the figure represent different LST
classes, in which the color red means high temperature and the
color blue means low temperature. The middle column in the
figure is the LST class in July, and the upper and lower sides
illustrate the LST classes of May and October that overlap with
the corresponding class of July and their proportions,
respectively. For example, 48.86% of cls_3 in July overlaps
with cls_3 in May, which is the overlap of the same class in
these 2 months. Apart from that, the overlap of the different
classes represents the differences in the spatial distribution of
LST between the 2 months. Particularly, 17.75% of cls_3 in July
overlaps with cls_2 in May that can be grouped into hot-cold
overlapped type, simply expressed as Jcls3_Mcls2, and 24.85%
of cls_3 in July overlap with the cls_4 in May, which is a
cold–hot overlapped type, abbreviated as Jcls3_Mcls4.

It is indicated that the overlap degree of the same LST class is
higher (58.03%) in the intersection_July/May, while lower
(47.12%) in the intersection_July/Oct. As for each LST class,
the overlap degree of cls_1, that is, the extremely low-temperature
area, is the highest, reaching 92.82% in the intersection_July/May
and 88.69% in the intersection_July/Oct. As temperature rises,
the overlap degree of the same class first decreases and then
increases, presenting a U-shaped trend. The overlap degree of
cls_7 is the second highest, 73.18% in the intersection_July/May
and 65.01% in the intersection_July/Oct. The overlap degree of
cls_5 is the lowest, only 36.00% in the intersection_July/May and
27.54% in the intersection_July/Oct.

The overlapped areas of different LST classes are mainly
distributed in one or two adjacent classes before and after this
specific class, that is, the cold–hot type and hot–cold type defined
in this study. Along with the rising temperature, the proportion of
the overlapped area of different temperature classes first increased
and then decreased slightly, reaching the highest ratio in cls_5
(27.14%). In the lower temperature class, the cold–hot type is
more prevalent, and in the higher temperature class, the hot–cold
type is dominant.

In general, the spatial distribution of extremely low-temperature
area, low-temperature area, and extremely high-temperature area is
similar in different months, while the greatest differences among
different months are reflected in the medium temperature area,
mainly cls_3 to cls_6, which is the sub-low-temperature area,
medium-temperature area, high-temperature area, and sub-high-
temperature area.

Landscape Pattern of Each Intersection Area
Taking the intersection area of different classes as the research
focus, the landscape metrics of cold–hot and hot–cold
overlapped types in the intersection_July/May are compared
with those in the intersection_July/Oct, as shown in Table 6.
Based on the results, it is indicated that PLAND in the
intersection_July/Oct is higher than that in the
intersection_July/May, coinciding with the conclusion in the
last section. PD of the intersection_July/Oct is much lower
than that in the intersection_July/May, while the AREA_MN
and AI are the opposite, demonstrating that the difference of
the LST class between July and October is presented in larger
patches and is more aggregated in the spatial distribution. As
for the ENN_MN, the hot–cold type in the intersection_July/
Oct is higher than that in the intersection_July/May; however,
the cold–hot type is lower than that in the latter, revealing that
the distance of the patches in different overlapped types varies
a lot in different months.

Furthermore, comparing the difference between the two
overlapped types, it is found that the PLAND of the cold–hot
type is higher than the hot–cold type in both intersection areas
of July/May and July/Oct, indicating that the differences
among 3 months can be more categorized into cold–hot
type, that is, the colder area in July overlaps with the
warmer area in the other 2 months. The PD of the cold–hot
type is lower than that in the hot–cold type in the
intersection_July/May and higher than that in the latter in
the intersection_July/Oct, while the AREA_MN, ENN_MN,
and AI are quite the opposite. On the whole, in the
intersection_July/May, the patches of cold–hot type are
relatively large with a small number and are more
aggregated with a longer distance to each other. However,
in the intersection_July/Oct, the patches of cold–hot type are
relatively small with a large number and are less aggregated
with a shorter distance to each other.

Underlying Surfaces of Each Intersection Area
The proportions of each underlying surface in the overlapped
area of the intersection_July/May are compared with those of
the intersection_July/Oct. The results of different overlapped
types are shown in Figure 7. It is clear that the differences
between the cold–hot overlapped type and the hot–cold
overlapped type are obvious. For the hot–cold overlapped
type, the proportion of UGS in the intersection_July/May is
significantly higher than that in the intersection_July/Oct,
while the proportion of buildings is remarkably lower than
that in the latter. The proportion of other rigid pavement is

TABLE 6 | Landscape metrics of each intersection area.

Month Type PLAND PD AREA_MN ENN_MN AI

July/May Hot–cold 22.01 40.14 2.49 88.24 69.06
Cold–hot 23.01 37.75 2.64 89.10 72.46

July/Oct Hot–cold 26.85 22.90 4.37 94.66 75.31
Cold–hot 28.13 25.18 3.97 87.60 73.79
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lower than that in the latter in cls_2 to cls_4 but higher than
that in the latter in the following temperature LST classes.
Quite the opposite, in the cold–hot overlapped type, the
proportion of UGS in the intersection_July/May is
significantly lower than that in intersection_July/Oct, and
the proportion of buildings is higher than that in the latter.
The proportion of other rigid pavement is higher than that in
the latter in cls_1 to cls_3 and lower than that in the latter in
the other LST classes.

Furthermore, the two overlapped types of different LST
classes can be regarded as the differences along with the
overall warming or cooling process from May to July to
October. From May to July, although the overall
temperature has increased, the warming degree of the
hot–cold overlapped area is higher than that of other areas,
so its LST class in May upgrades when it is in July. Similarly,
the cold–hot overlapped type indicates that the warming
degree of this area is relatively low, resulting in the
downgrading of its LST class. Combined the proportion of
each underlying surface in the areas of different overlapped
types (Table 7), it is shown that from May to July, buildings
account for the most in the cold–hot type and higher than that
in the hot–cold type, revealing that buildings have lower
warming degree in some extent. The proportion of other
rigid pavement is the highest in the hot–cold type and
higher than that in the cold–hot type, indicating the
warming degree of other rigid pavement is relatively high.
In addition, the proportion of water bodies in the hot–cold
type is much higher than that in the cold–hot type,
demonstrating that water bodies have higher warming
degrees from May to July.

In the sameway, the hot–cold overlapped area can be regarded as
the cooling degree of this area is higher than other areas in the
process of overall cooling process from July to October, so its LST
class downgrades. The cold–hot overlapped type indicates that the
cooling degree of this area is lower leading to the upgrading of its
LST class. Based on the underlying surface in the intersection_July/
Oct, it is shown that the ratio of UGS in the cold–hot overlapped
type is significantly higher than that in the hot–cold overlapped area,
and the proportions of the building, water bodies as well as other
rigid pavements are lower than the latter, suggesting that the last
three kinds of underlying surfaces account for more in the area of
higher cooling degree, while UGS has a lower cooling degree.

DISCUSSION

Spatial Differences of LST Among Three
Months
In previous studies, annual and seasonal variation of LST is one of
the basic research on urban climate (Peng et al., 2018; Zhang and
Wang, 2020; Shi et al., 2021). However, most studies focus on the
high or low temperature in the area, namely, the heat islands and
cold islands, and little attention is paid to the medium temperature
area. According to the aforementioned results, here is a small
difference in the high and low temperature areas between
different months, while there is a noticeable difference in the
medium temperature area. Specifically, the overlap degree of the
same LST class in July and May is higher than that in July and
October. The highest degree of overlap is in the extremely low-
temperature area, followed by the extremely high-temperature area.
Along with the increase in temperature, the overlap degree of the
same LST class will decrease first and then increase, showing a
U-shape change trend, indicating that the distribution of the cold
and the hot islands in the city is similar in different months, while
that of medium-temperature area significantly differs. One plausible
reason is that the LST of medium-temperature area is not only
dependent on its ground and spatial feature but also influenced by
surrounding heat and cold islands. Although the spatial pattern of
heat and cold islands may not significantly change over 3months,
their ability or extent to regulate their surroundings fluctuates over
time (Yu et al., 2019; Yu K. et al., 2020).

FIGURE 7 | Underlying surfaces of (A) hot–cold overlapped type and (B) cold–hot overlapped type in different intersections.

TABLE 7 | Proportions of underlying surfaces in different overlapped types.

July–May July–Oct

Cold–hot (%) Hot–cold (%) Cold–hot (%) Hot–cold (%)

UGS 26.77 25.91 37.32 18.64
Buildings 39.13 35.50 28.48 43.41
Water 0.35 0.80 0.25 0.95
Pavement 33.75 37.79 33.95 37.00
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In this study, the LST differences across time are subdivided into
cold–hot and hot–cold overlapped types, and the distinctions
between those two types turns out to be significant, in which the
cold–hot type accounts for more in both intersections of July/May
and July/Oct. Furthermore, in the intersection_July/May, the patches
of cold–hot type are relatively large with a small number and more
aggregated with a longer distance to each other. However, in the
intersection_July/Oct, the landscape pattern of the cold–hot type is
quite the opposite. According to the spatial distribution of different
overlapped types shown in Figure 8, in the intersection_July/May,
most of the cold–hot type areas are distributed densely in the
northwest of the research area, and other small parts are
scattered in the central area, along the southeast edge and the
southwest corner. On the contrary, the hot–cold type areas are
mainly located in the east and south of the study area, especially
aggregated in the south of Zijin Mountain. In the intersection_July/
Oct, the cold–hot type areas are mostly distributed along the
surrounding boundary of the study area, while the hot–cold type
areas occupy themajority of the city center. In other words, there is a
difference in the warming and cooling degrees within the research
area, and it needs to be further explored.

Temperature Changes of Different
Underlying Surfaces
The main reason for the LST difference lies in the variances of
underlying surfaces (Liu et al., 2013; Guo et al., 2020; Parvez
et al., 2021). It is concluded that UGS and water bodies
contribute the most in the cool area, while buildings and
other rigid pavements account for the most in the hot area,
in which buildings are the dominant factor. However, it is
worth noting that UGS occupies around 5% even in the highest
temperature area, indicating that UGS may not always be the
cold island, and its surrounding environment should be taken
into consideration (Yuan et al., 2021). Combined with the LCI
of each underlying surface, the results show that the
performance of the underlying surface in the whole region
is different from that in different temperature classes,
indicating that the role of each underlying surface in
different temperature areas is different. Both UGS and
water bodies contribute a cooling effect to the area, and the
LCI of UGS is higher than that of water bodies, but the cooling

effect of the latter is more significant in the extremely cool area,
while UGS plays a dominant role in the cool area. Previous
studies have investigated the cooling effect of UGS and water
bodies. Some studies have come to the same conclusion that
the LCI of UGS is higher than that of water bodies (Tarawally
et al., 2018), while others have obtained the opposite results
due to the different research scale (Huang et al., 2019), but few
research has further investigated the thermal contribution of
underlying surface in different temperature classes. According
to Wang et al. (2019), the impact of urban water bodies on the
LST does vary across different LCZ types, which supports the
aforementioned conclusion to a certain extent. Therefore,
specific mitigation and adaption efforts should be made
according to the actual conditions.

By comparing the underlying surfaces between different
months, it is found that there is little difference between the
underlying surface in May and July, but a significant difference
between the underlying surface in July and October. In
summary, water bodies contribute more to the cooling
effect in October, while the contribution degree of UGS in
October is relatively lower than that in the other 2 months. In
addition, other rigid pavements contribute more to high
temperature in October. Furthermore, there are great
differences between the two overlapped types. In the
hot–cold overlapped type, the proportion of UGS in the
intersection_July/May is significantly higher than that in the
intersection_July/Oct, while that of the building is significantly
lower than that of the latter. The proportion of other rigid
pavements is lower than that of the latter in cls_2 to cls_4 but
higher than that of the latter in the following LST class.
However, in the cold–hot overlapped type, it is totally the
opposite case.

Combining with the meaning of the cold–hot and hot–cold
overlapped types, that is, the warming and cooling degrees of
different underlying surfaces, it is concluded that the warming
degree of buildings is relatively low, while other rigid
pavements and water bodies have a higher warming degree
in certain areas in the warming process from May to July. In
the cooling process from July to October, the cooling degree of
UGS in some areas is low, while that of buildings, water bodies,
and other rigid pavement is higher, especially buildings. Zhang
et al. (2021) defined the urban surface heating rate (SHR) as the

FIGURE 8 | Spatial distribution of the (A) cold–hot type in the intersection_July/May, (B) hot–cold type in the intersection_July/May, (C) cold–hot type in the
intersection_July/Oct, and (D) hot–cold type in the intersection_July/Oct.
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change in LST per percentage of impervious surface area (ISA)
and the urban surface cooling rate (SCR) as the change in LST
per percentage of fractional vegetation cover (FVC). They also
concluded that the trend of SHR and SCR, along with the
percent of ISA and FVC, had remarkable seasonal differences.
The difference is that Zhang et al. (2021) considered the
specific heating and cooling rate of the underlying surface
and its variation trend with temperature within a day, while
this study focuses on the heating and cooling degrees of each
underlying surface and its variation trend across time.
Moreover, the former research did not distinguish the
impervious surface between buildings and other rigid
pavements, which is proved to have great differences in the
influence of the UHI formation in this study.

Implications, Limitations, and Future
Research
This study may provide a new perspective on mitigating the
UHI effect at the different stages of LST change. In addition to
focusing on the UHIs effect at a particular time, temperature
changes before and after that particular time, may help
understand the formation of the heat island effect. From
July to October, the landscape pattern of low- and
medium-temperature areas exhibits a trend of
fragmentation and decentralization, while the high-
temperature area does not significantly change. Conversely,
if heat island patches could be more fragmented and
decentralized, their intensity might be reduced. Yu et al.
(2021) came to a similar conclusion in the research of heat
networks, that is, when links and pinch points are blocked,
SUHI connectivity is reduced, thus breaking the network and
significantly alleviating the SUHI effect. Therefore, effective
cooling measures should be taken in high-risk and key areas
to prevent corridor connectivity. In other words, heat patches
are prevented from being aggregated and linked by
fragmenting them into small patches and breaking the
linkages. Similarly, Wang et al. (2017) pointed out that
large temperature contrasts between adjacent patches and
fragmental patches are recommended for heat release.

Considering the significant relationship between LST and
underlying surfaces, it is essential to optimize the spatial
distribution of underlying surfaces. This study reveals that
UGS and water bodies show distinguished thermal
contributions to the different temperature classes, which
means that the more specific mitigation and adaption
efforts should be carried out under different
circumstances. It seems that water bodies contribute the
highest cooling effect to the coolest area, while UGS has a
sustained cooling effect from a cool to a hot area. With
limited resources, there might be relative thresholds for
both UGS and water bodies to fulfill a win–win cooling
efficiency in the whole area (Yu Z. et al., 2020; Wu et al.,
2020). Previous studies have generally regarded buildings and
other rigid pavements together as impervious surfaces and
examined their positive impact on temperature rise (Liu et al.,
2016). However, it turns out that buildings contribute the

most to the highest temperature area, while other rigid
pavement has a relative cooling effect in the same area,
even though its thermal contribution in the whole area is
the opposite. Therefore, it may be a feasible method to
explore more about the properties of other rigid
pavements and enhance their cooling effect in high-
temperature areas.

There are a few limitations that need to be mentioned. First,
this study selects May, July, and October as the representative
of different seasons that could be haphazard due to
unpredictable weather events. Second, the underlying
surfaces are classified based on the Landsat image with
30 m resolution in order to coincide with the LST data, but
it is not enough for more detailed research on the
characteristics of each underlying surface. Third, this study
focuses on the impact of different underlying surface types on
LST variation, while other factors such as the vegetation
volume in different seasons, energy consumption, and other
indexes related to production activities are not involved.

Future studies will detail the characteristics of different
underlying surfaces, for example, building height and density,
greenspace morphology, the area and shape of water bodies,
the impervious rate of other rigid pavement, and the influence
of the surrounding environment. Furthermore, the spatial
differences between cold–hot and hot–cold overlapped types
and their distribution regularities will be thoroughly analyzed
based on the detailed aforementioned factors. It is believed
that it can provide applicable references for future urban
design.

CONCLUSION

Taking the LST of Nanjing in different months as an example, this
study divided temperature into different classes by using the
quantile method and then compared the spatial distribution of
each LST class in different months. The results indicate that there
is a small difference in the distribution of heat and cold islands
between months, while a major difference in medium-
temperature area. In particular, the spatial pattern of each LST
class illustrates a trend of fragmentation and decentralization
from July to October. Further analysis of the intersection of each
LST class in different months shows that the overlap degree of the
low-temperature area and high-temperature area is higher than
that of the medium-temperature area. The overlapped area of
different LST classes is divided into hot–cold and cold–hot types.
In the process of temperature change from May to July and
October, different overlapped types can be regarded as different
cooling degrees in different areas to a certain extent. It turns out
that the warming degree of other rigid pavements is higher in the
warming process from May to July, and the cooling degree of
buildings is greater in the cooling process from July to October.
Meanwhile, the thermal contribution of each underlying surface
is different among LST classes, so it is necessary to formulate
more targeted strategies. This study provides a new perspective
for the mitigation of UHI based on the comprehensive
understanding of the temperature change from a continuous-
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time sequence, expecting to be a reference for sustainable urban
design in the future.
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