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Air quality in China has been undergoing significant changes due to the implementation of
extensive emission control measures since 2013. Many observational and modeling
studies investigated the formation mechanisms of fine particulate matter (PM2.5) and
ozone (O3) pollution in the major regions of China. To improve understanding of the driving
forces for the changes in PM2.5 and O3 in China, a nationwide air quality modeling study
was conducted from 2013 to 2019 using the Weather Research and Forecasting/
Community Multiscale Air Quality (WRF/CMAQ) modeling system. In this study, the
model predictions were evaluated using the observation data for the key pollutants
including O3, sulfur dioxide (SO2), nitrogen dioxide (NO2), and PM2.5 and its major
components. The evaluation mainly focused on five major regions, that is , the North
China Plain (NCP), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), the Chengyu
Basin (CY), and the Fenwei Plain (FW). The CMAQ model successfully reproduced the air
pollutants in all the regions with model performance indices meeting the suggested
benchmarks. However, over-prediction of PM2.5 was noted in CY. NO2, O3, and PM2.5

were well simulated in the north compared to the south. Nitrate (NO3
−) and ammonium

(NH4
+) were the most important PM2.5 components in heavily polluted regions. For the

performance on different pollution levels, the model generally over-predicted the clean
days but underpredicted the polluted days. O3 was found increasing each year, while other
pollutants gradually reduced during 2013–2019 across the five regions. In all of the regions
except PRD (all seasons) and YRD (spring and summer), the correlations between PM2.5

and O3 were negative during all four seasons. Low-to-medium correlations were noted
between the simulated PM2.5 and NO2, while strong and positive correlations were
established between PM2.5 and SO2 during all four seasons across the five regions.
This study validates the ability of the CMAQmodel in simulating air pollution in China over a
long period and provides insights for designing effective emission control strategies across
China.
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INTRODUCTION

Due to rapid population growth, industrialization, economic
advancement, and urbanization, China has been experiencing
severe air pollution problems in recent decades (de Leeuw et al.,
2021; Zhao et al., 2021). In 2013, the Ministry of Ecology and
Environment of China initiated the setting up of nationwide air
pollution monitoring networks. Subsequently, the Air Pollution
Prevention and Control Action Plan (APPCAP) was issued and
implemented in September 2013 with a series of clean air policies,
which has led to decrease in the concentrations of fine particulate
matter with aerodynamic diameters less than or equal to 2.5 µm
(PM2.5) as well as improved air quality (Qiang Zhang et al., 2019).
Several studies have used various air quality models (Chen et al.,
2014; Chen et al., 2018) in forecasting air pollution levels in
China. The three-dimensional chemical transport models
(CTMs) can provide detailed gaseous and particulate matter
(PM) concentrations and their sources, as well as their
chemical compositions (Bell, 2006). The Community
Multiscale Air Quality (CMAQ) model, being one of the
CTMs, has been widely used in predicting air quality in recent
years (Luo and Cao, 2012; Zhang et al., 2014; Hu et al., 2016, 2017;
Liu et al., 2020; Sulaymon et al., 2021a, 2021b; Wang et al., 2021).
For instance, Zhang et al. (2014) applied the Weather Research
and Forecasting (WRF) and CMAQ model (WRF-CMAQ) to
simulate air quality in eastern United States during a 7-year
period. Hu et al. (2016) carried out a 1-year simulation of ozone
(O3) and PM in China using the WRF-CMAQ model. With the
WRF-CMAQ model, Shi et al. (2020) analyzed the sensitivity of
O3 and PM2.5 to meteorological variables in China, and the results
revealed that surface O3 and PM2.5 concentrations could change
significantly due to changes in meteorological parameters.
Sulaymon et al. (2021a) utilized the WRF-CMAQ model to
evaluate the regional transport of PM2.5 during severe
atmospheric pollution episodes in the western Yangtze River
Delta (YRD), China. The results of the study revealed the
dominant transport pathways and the heights at which they
occurred. Also, Sulaymon et al. (2021b) employed the WRF-
CMAQmodel to investigate the remote causes of PM2.5 pollution
in the Beijing–Tianjin–Hebei (BTH) region during the COVID-
19 lockdown period. The results showed that the high PM2.5

concentrations in BTH during the lockdown were caused by
unfavorable meteorological conditions and suggested that the
roles of both chemistry and meteorology in the formation of air
pollution must be taken into consideration while designing
effective emission control strategies in the region. In addition,
Yang et al. (2019) used theWRF-CMAQmodel to assess PM2.5 in
Xi’an during the winter periods of 2014–2017. Furthermore, Hu
et al. (2017) employed the WRF-CMAQ model in predicting air
quality for health effect studies in China and found that the model
performed much better in more developed regions compared to
underdeveloped regions such as western China.

Following the establishment of pollutant observation networks
across China, it was found that the pollution events show regional
differences based on the observation data in recent years. Liu et al.
(2020) found emission reduction as the major driving force for
the PM2.5 change in the YRD region during the COVID-19

lockdown period. Tan et al. (2015) elucidated and reported the
effects of spatial resolution on air quality simulation in a highly
industrialized area in the city of Shanghai, China. Li et al. (2017)
found improvement in both meteorology and air quality
simulations during a high O3 event in the YRD in 2013 by
incorporating satellite-derived land surface parameters. Sun
et al. (2016) employed the WRF-Chem model to investigate a
severe haze episode that occurred over the YRD in 2013. Wang
et al. (2021) investigated the impacts of meteorological inputs (by
using different reanalysis data in the WRF model) and grid
resolutions on air quality simulations in the YRD. Gong et al.
(2021) quantified the influence of inter-city transport on air
quality in the YRD region and suggested regional cooperative
controls of PM2.5 and O3 in the region. Qin et al. (2021)
investigated the spatial distribution and trend of double high
pollution (PM2.5 and O3) in the YRD during 2015–2019. While
some studies (Wang et al., 2015; Chen et al., 2017; Xueshun Chen
et al., 2019; Tao et al., 2020) majorly focused on the North China
Plain (NCP) region, Xiaoju Li et al. (2021) overviewed the air
quality models on air pollution in the Sichuan Basin, a highly
humid and foggy area.

In this study, a long-term (2013–2019) air quality simulation
was conducted over China using the WRF-CMAQ model. China
was divided into five regions for model evaluation, and the
simulated results were compared with observation data. All of
the cities’ data were averaged in each area for regional analysis.
The critical gas- and particulate-phase pollutants were O3, SO2,
NO2, and PM2.5. The three major components (sulfate (SO4

2-),
nitrate (NO3

−), and ammonium (NH4
+)) of PM2.5 were further

analyzed in cities with sufficient observation data in each region.
In addition, the model performances during different pollution
levels were discussed. Furthermore, the correlations between
PM2.5 and other pollutants (O3, SO2, and NO2) were investigated.

MATERIALS AND METHODS

Model Configurations
The meteorological fields were simulated using the WRF (version
4.2.1) model with the FNL reanalysis dataset. The FNL data were
obtained from the U.S. National Centre for Atmospheric
Research (NCAR), with a spatial resolution of 1.0° × 1.0°

(http://rda.ucar.edu/datasets/ds083.2/, last accessed on 15
November 2021). The physical parameterizations used in this
study include the Thompson microphysical process, RRTMG
longwave/shortwave radiation scheme; Noah land-surface
scheme; MYJ boundary layer scheme; and modified Tiedtke
cumulus parameterization scheme. The detailed configuration
settings could be found in the work of Hu et al. (2016) and Wang
et al. (2021).

The CMAQ version 5.2 (CMAQv5.2) model (Fahey et al.,
2017), configured with the gas-phase mechanism of SAPRC07tic
and the aerosol module of AERO6i, was employed in this study to
simulate the air quality over China during 2013–2019. Air quality
simulations were performed for a period of 7 years (2013–2019)
using a horizontal resolution of 36 km. The corresponding
domain covered China and the surrounding countries and
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regions with 197 × 127 grids (Figure 1A). The vertical resolution
had 18 layers. The initial and boundary conditions were provided
by the default profiles of the CMAQmodel. The simulated results
of the first three days were not included in the model analysis,
thus serving as a spin-up and reducing the effects of the initial
conditions on the simulated results.

Emission Inventory
The Multi-resolution Emission Inventory for China version 1.3
(MEICv1.3) (http://www.meicmodel.org) and Regional
Emission inventory in ASia (REASv3.2) (https://www.nies.go.
jp/REAS/) were used to provide the anthropogenic emissions.
MEIC served as the anthropogenic emissions from China, while
REAS served as the anthropogenic emissions from neighboring
countries and regions. The MEICv1.3 emissions of the year 2017
were used for the simulations of the years 2018 and 2019, as no
reliable sources for emission changes in China were currently
available. For REAS, since no emission inventory was released
for the years after 2015, we used the emission inventory in the
year 2015 for 2016–2019. Although emission inventories are
usually released 2–3 years behind, we acknowledge that this may
cause additional uncertainties in the simulation for 2018 and
2019. Biogenic emissions were generated using the Model for
Emissions of Gases and Aerosols from Nature (MEGANv2.1)
(Guenther et al., 2012) for the whole simulation period. The
open biomass burning emissions were processed using the Fire
Inventory for NCAR (FINN) during the entire study period
(Wiedinmyer et al., 2011). The spatiotemporal variations of the
total emission of PM2.5, SO2, NOx, NH3, and VOC across the
five regions are shown in Supplementary Table S3.

Observation Data
The daily observation data of meteorological variables (wind
speed, wind direction, relative humidity, and temperature) for
the selected regions were downloaded from the Chinese
Meteorological Agency (http://data.cma.cn/en, last accessed on
30 November 2021). There were 18, 11, 14, 14, and 11
meteorological stations considered in the NCP, YRD, PRD,
CY, and FW regions, respectively. In addition, the hourly
observation data of air pollutants (PM2.5, O3, NO2, and SO2)

were obtained from the Chinese Ministry of Ecology and
Environment (https://www.mee.gov.cn/, last accessed on 20
December 2021). In this study, five regions in China were
selected as target areas (Figure 1B), and they include the
North China Plain (NCP, with 70 air quality monitoring
stations), Yangtze River Delta (YRD, with 107 air quality
monitoring stations), Pearl River Delta (PRD, with 54 air
quality monitoring stations), Chengyu (CY, with 40 air quality
monitoring stations), and Fenwei Plain (FW, with 60 air quality
monitoring stations) regions. Besides the NCP and YRD, most of
the cities in other regions had a month observation data in 2013.
The cities with data of more than 3 months in each region were
selected for citywide analysis in 2013, while all of the data in each
region were selected for regional analysis. In the subsequent years
(2014–2019), the observation data of the monitoring stations in
each of the cities were used citywide, while the observation data of
all the cities located in each region were used to estimate the
average observation value of the region (Hu et al., 2016; Sulaymon
et al., 2021c). The 21 cities selected in 2013 in the five regions are
as follows: Beijing, Tianjin, Shijiazhuang, Qinhuangdao,
Chengde, and Zhangjiakou in the NCP; Shanghai, Wuxi,
Nanjing, Suzhou, Xuzhou, and Hangzhou in the YRD;
Guangzhou, Dongguan, and Shenzhen in the PRD; Chengdu,
Mianyang, and Chongqing in the CY; and Xi’an, Xianyang, and
Baoji in the FW. The details about the selected cities in each
region are shown in Supplementary Table S1. Furthermore, the
predicted major chemical components of PM2.5 (SO4

2-, NO3
−,

and NH4
+) were evaluated using the daily observation data in

nine cities (Beijing, Shijiazhuang, Nanjing, Suzhou, Xuzhou,
Hangzhou, Guangzhou, Shenzhen, and Chengdu) during the
study period.

RESULTS AND DISCUSSION

WRF Model Performance
Previous studies have investigated and documented the
impacts of meteorological conditions on the formation,
transportation, and dissipation of air pollutants (Hu et al.,
2016; Hua et al., 2021; Sulaymon et al., 2021c, 2021d). In

FIGURE 1 | (A)WRF/CMAQmodeling domain. (B) The studied five regions (North China Plain (NCP), Yangtze River Delta (YRD), Pearl River Delta (PRD), Chengyu
(CY), and Fenwei Plain (FW)).
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addition, the influences of some meteorological parameters
(such as wind speed, wind direction, temperature, and relative
humidity) on air quality modeling have been elucidated (Hu
et al., 2016; Sulaymon et al., 2021b; Wang et al., 2021).
Therefore, the evaluation of the WRF model performance
was carried out prior to the usage of its meteorological fields
in the air quality simulations. The evaluation of the WRF model
was achieved by comparing the predicted wind speed (WS) and
wind direction (WD) at 10 m above the surface, as well as the
simulated relative humidity (RH) and temperature (T2) at 2 m
above the ground level to their corresponding observed values in
each region during the entire study period. The statistical
indices used in evaluating the WRF model were the mean
bias (MB), mean error (ME), and root mean square error
(RMSE) (Table 1). The benchmarks of statistical indices
employed in this study were suggested by Emery et al.
(2017). T2 was generally over-predicted in all the regions
except the NCP, whose MB value fell below the suggested
benchmark (≤±0.5), while the ME values in all the regions,
except the CY (the southeast basin of the Tibetan Plateau, with
poor terrain and complicated weather conditions), were found
below the suggested benchmark (≤2.0). With low ME indices
(≤2.0) in four out of the five regions, it is shown that T2 was well
simulated in the four regions. Previous studies have reported
over-prediction of T2 in the YRD (Ma et al., 2021; Sulaymon
et al., 2021a; Wang et al., 2021) and PRD (Wang N. et al., 2016).
The results of this study are consistent with previously reported
ones in the studied regions. However, no benchmarks were
suggested for the MB and ME values of RH, and RH was
underestimated in the NCP and FW, while it was
overestimated in the other three regions. The MB values of
WS in all the regions except the CY greatly exceeded the
recommended criterion (≤±0.5), while the ME values in all
the five regions were below the benchmark (≤2.0). In addition,
the RMSE values of WS met the benchmark (≤2.0) in all the
regions except the PRD. Considering the ME and RMSE values,
the simulated WS reasonably captured the observations in all
the regions. Over-prediction ofWS has been previously found in
the PRD (Wang N. et al., 2016; Qing Chen et al., 2019), NCP
(Hanyu Zhang et al., 2019; Sulaymon et al., 2021b; Mengmeng Li
et al., 2021), and YRD (Sulaymon et al., 2021a; Ma et al., 2021;
Wang et al., 2021; Yu et al., 2021). Except in FW, the MB indices
of WD in other regions were greater than the suggested

benchmark (≤±10), while the ME values in all the regions
greatly exceeded the recommended criterion (≤±30),
especially in the PRD (68.98), YRD (48.83), CY (47.63), and
FW (45.84). The model performance of WD in this study was
consistent with previous studies in the YRD (Sulaymon et al.,
2021a; Wang et al., 2021; Yu et al., 2021) and NCP (Sulaymon
et al., 2021b) regions. Generally, the WRF model in this study
performed better when compared to previous studies across
China (Hu et al., 2016, 2017; Wang H. L. et al., 2016; Hanyu
Zhang et al., 2019; Qing Chen et al., 2019; Sulaymon et al.,
2021a, 2021b; Ma et al., 2021; Mengmeng Li et al., 2021; Yu et al.,
2021), and the simulated meteorological fields were further
utilized in driving the CMAQ model.

CMAQ Model Performance
Supplementary Figures S1-S5 show the comparison of the
simulated daily mean concentrations of O3, NO2, SO2, and
PM2.5 with the observations in 21 cities during 2013–2019.
The time series of pollutants’ concentrations in six major cities
in the NCP region are illustrated in Supplementary Figure S1. In
the NCP, the observed O3 was about 200 μg/m

3 in summer and
50 μg/m3 in winter; NO2 was 100 μg/m

3 in winter and 20 μg/m3

in summer; SO2 was 100 μg/m3 in winter and 10 μg/m3 in
summer before 2016 and 10 μg/m3 without seasonal change
after 2016; and PM2.5 was 200 μg/m3 in winter and 10 μg/m3

in summer. The simulated O3 and PM2.5 were captured well with
the observation data; SO2 was well simulated on monthly trends
at Beijing, Tianjin, and Shijiazhuang sites than in other cities such
as Qinhuangdao, Chengde, and Zhangjiakou, where it was high in
winter and low in summer before 2016. NO2 was underestimated
by over 20 μg/m3, without obvious seasonal change after 2016.
Supplementary Figure S2 shows the six megacities in the YRD
region. The monthly trend and simulated results of O3, NO2, and
PM2.5 were the same as in the NCP; the predicted SO2 was better
in Shanghai, Wuxi, and Hangzhou compared to Nanjing, Suzhou,
and Xuzhou, which was near the observed data within 10 μg/m3.
Supplementary Figure S3 shows the three cities in the PRD
region. The monthly trends of O3 and PM2.5 were the same as
those of the NCP and YRD. SO2 was well simulated in
Guangzhou and Dongguan sites relative to Shenzhen, which
was overestimated by more than 20 μg/m3; NO2 was well
simulated in Shenzhen with a little seasonal change.
Supplementary Figure S4 shows the three urban stations in

TABLE 1 | Model performance of meteorological factors in the five regions during 2013–2019.

Area T2, ◦C RH, % WS, m/s WD, ◦

MB ME RMSE MB ME RMSE MB ME RMSE MB ME RMSE

NCP -0.02 1.28 1.62 -4.76 9.23 11.50 0.56 0.84 1.04 13.48 38.12 50.02
YRD 1.25 1.90 2.41 3.50 7.28 9.56 0.60 0.94 1.21 -21.48 48.83 186.81
PRD -0.64 1.27 1.61 1.69 5.53 7.33 1.77 1.87 2.18 -43.53 68.98 92.34
CY -2.15 2.38 2.85 3.38 7.35 9.67 0.41 0.77 0.98 -19.08 47.63 108.49
FW 0.91 1.66 2.29 -1.34 8.64 11.07 0.69 0.92 1.17 7.10 45.84 59.09

Benchmarks ≤±0.5 ≤2.0 ≤±0.5 ≤2.0 ≤2.0 ≤±10 ≤±30

MB: mean bias; ME: mean error; RMSE: root mean square error. The benchmarks were suggested by Boylan and Russell (2006). The values that do not meet the benchmarks are
highlighted in bold.
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the CY region. The simulated O3 was close to the observation
data; NO2 was well simulated in Chengdu without seasonal
changes; PM2.5 and SO2 were generally overestimated. FW
(Supplementary Figure S5) was similar to CY on monthly
trend, and both O3 and PM2.5 were well predicted, while NO2

and SO2 were underestimated.
Figure 2 shows the comparison of simulated pollutants with

observed data in the five regions. The observed data of all stations
and the simulated results in the five regions were grouped into three
(2013–2014, 2015–2016, and 2017–2019) for model evaluation. The
statistical metrics of normalized mean bias (NMB), normalized
mean error (NME), and the correlation coefficient (R) were
calculated to evaluate the pollutant predictions in each region
(Table 2). The model performance criteria for O3 and PM2.5

were suggested by Emery et al. (2017). In the NCP, O3 was
slightly overpredicted during 2013–2014 (NMB: 0.19), while it
was well predicted during the 2015–2016 and 2017–2019 periods

(NMB less than the benchmark), and the model performance
improved with an increase in years as observed in R-values. The
model performance in predicting PM2.5 and SO2 also improved
significantly with an increase in years with higher R-values during
2015–2016 and 2017–2019 compared to the 2013–2014 period and
with the statistical metrics of PM2.5 meeting the suggested
benchmarks (Table 2). NO2 was underestimated, but the model
performance also improved with increased R-value as the years
increased. Similar to the NCP, O3 was slightly overpredicted in the
YRD during 2013–2014 (NMB: 0.16), while it was well predicted
during the 2015–2016 (NMB: 0.02) and 2017–2019 (NMB: 0.02)
periods. The model performance improved with higher R-values
with an increase in years. In terms of NMB and R-values, the model
performance of SO2 in the YRD decreased with an increase in years.
PM2.5 was well estimated with the NMB and R-values of 0.22–0.30
and 0.83–0.87, respectively, while NO2 was underestimated with
fluctuating R-values, a similar scenario to what was found in the

FIGURE 2 | Model performance of O3, NO2, SO2, and PM2.5 in the five regions during the 2013–2014, 2015–2016, and 2017–2019 periods.
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TABLE 2 | Model performance of the air pollutants in the five regions during the 2013–2014, 2015–2016, and 2017–2019 periods.

Area 2013–2014 2015–2016 2017–2019 Benchmarks

NCP YRD PRD CY FW NCP YRD PRD CY FW NCP YRD PRD CY FW

MDA8 O3 PRE 100.14 101.47 100.20 85.47 86.10 98.28 98.60 101.47 87.65 103.22 102.16 105.05 107.26 88.62 104.69
OBS 83.22 87.44 89.57 73.10 55.22 88.70 108.79 83.87 84.56 85.02 109.67 105.57 96.62 84.68 93.41
NMB 0.19 0.16 0.14 0.21 0.58 0.08 -0.02 0.20 0.09 0.21 -0.03 0.02 0.11 0.09 0.11 <±0.15
NME 0.23 0.21 0.31 0.34 0.60 0.16 0.13 0.28 0.22 0.29 0.15 0.13 0.24 0.23 0.22 <0.35
R 0.90 0.86 0.64 0.82 0.80 0.92 0.87 0.80 0.88 0.87 0.92 0.88 0.78 0.88 0.85 >0.5

NO2 PRE 28.56 26.67 23.33 38.74 26.31 26.78 25.60 22.15 38.80 22.68 27.68 25.59 22.06 39.54 23.14
OBS 44.00 36.21 34.73 41.96 42.40 48.37 33.85 33.50 46.29 39.53 41.36 35.96 34.72 43.31 44.68
NMB -0.34 -0.26 -0.33 -0.08 -0.38 -0.44 -0.25 -0.34 -0.16 -0.42 -0.33 -0.28 -0.36 -0.08 -0.48
NME 0.37 0.29 0.36 0.27 0.39 0.45 0.28 0.35 0.26 0.42 0.35 0.32 0.39 0.24 0.48
R 0.10 0.53 0.48 0.07 0.08 0.19 0.52 0.58 0.12 0.43 0.42 0.60 0.55 0.26 0.54

SO2 PRE 46.20 23.61 16.57 131.68 71.80 27.52 14.13 11.79 72.56 30.57 19.89 9.35 10.49 49.85 23.82
OBS 48.20 24.86 19.11 22.68 40.31 36.21 18.65 12.35 14.96 18.92 19.57 10.92 9.13 9.40 14.20
NMB 0.00 -0.04 -0.13 4.79 0.74 -0.21 -0.28 -0.04 3.78 0.62 0.07 -0.10 0.19 4.38 0.82
NME 0.36 0.24 0.29 4.79 0.81 0.31 0.30 0.27 3.78 0.66 0.36 0.29 0.36 4.38 0.87
R 0.73 0.72 0.53 0.23 0.64 0.81 0.70 0.62 0.32 0.79 0.78 0.64 0.59 0.25 0.79

PM2.5 PRE 105.40 69.46 38.82 186.94 106.51 83.44 61.15 31.83 138.85 59.36 68.80 52.95 31.12 116.92 55.34
OBS 89.94 63.92 47.60 71.46 114.68 75.08 47.10 33.14 57.87 59.94 56.67 40.98 31.51 42.95 61.32
NMB 0.02 0.28 -0.08 1.71 0.00 0.14 0.22 -0.04 1.38 0.01 0.21 0.30 0.01 1.66 -0.09 <±0.3
NME 0.34 0.35 0.30 1.73 0.29 0.34 0.33 0.32 1.39 0.38 0.41 0.40 0.34 1.67 0.34 <0.5
R 0.56 0.87 0.67 0.42 0.79 0.82 0.85 0.71 0.66 0.74 0.78 0.83 0.64 0.69 0.75 >0.4
PRE 100.14 101.47 100.20 85.47 86.10 98.28 98.60 101.47 87.65 103.22 102.16 105.05 107.26 88.62 104.69

NMB: normalized mean bias; NME: normalized mean error; R: correlation coefficient. The performance criteria were suggested by Emery et al. (2017). The values in bold were above the benchmarks.

Frontiers
in

E
nvironm

entalS
cience

|w
w
w
.frontiersin.org

A
pril2022

|V
olum

e
10

|A
rticle

872249
6

M
ao

et
al.

Long-Term
M
odeling

in
C
hina

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


NCP. The trio of O3, SO2, and PM2.5 was well predicted in the PRD
region with their NMB values found below the suggested
benchmarks during the grouped study periods, except for O3

with NMB value slightly higher than the criterion during
2015–2016. The model performance of O3, SO2, and PM2.5

significantly improved with higher R-values as the years
increased. NO2 was underestimated during the three periods, and
the bias increased with an increase in years. It should be noted that
the four pollutants (O3, NO2, SO2, and PM2.5) had their highest
R-values during the 2015–2016 period. In the CY region, O3 was
slightly overpredicted during 2013–2014 (NMB: 0.21), while it was
well predicted during the 2015–2016 and 2017–2019 (NMB: 0.09)
periods. The model performance of O3 improved with higher
R-values with an increase in years. NO2 was underestimated
while SO2 and PM2.5 were highly overestimated, with the NMB
and NME values of PM2.5 greatly exceeding the suggested criteria
during the three periods. The R-values of PM2.5 also increased with
the increase in years, while fluctuation was noted in the R-values of
SO2. PM2.5 in the FW region was well predicted with very low NMB
values. The R-value decreased as the years increased, an indication
that the best model performance occurred during the 2013–2014
period (Table 2). NO2 was underestimated throughout the three
periods, while O3 was overestimated during the 2013–2014 and
2015–2016 periods. The overall model performance improved as the
years increased. Above all, the model exhibited better performances
in reproducing O3, SO2, and PM2.5 in the NCP, YRD, and PRD
regions.

Figure 3 shows the results of the model performance of SO4
2-,

NO3
−, and NH4

+ in the nine selected cities across the five regions.
In Beijing and Shijiazhuang, SO4

2- had an NMB value of ~ -0.2, an
indication of underprediction, while NO3

− and NH4
+ were well

simulated. The NMB value of NO3
− (0.15) in Shijiazhuang was

relatively the same as that of PM2.5 in the NCP (Figure 2),
indicating that NO3

− was more dominant in the NCP. In
Nanjing, Suzhou, Xuzhou, and Hangzhou (YRD), SO4

2- was
well simulated, while NO3

− and NH4
+ were overestimated. The

NMB of PM2.5 in the YRD (Figure 2) was similar to the NMB of
SO4

2- in the selected four cities in the YRD (Figure 3), suggesting
that SO4

2- significantly dominated PM2.5 in the YRD compared to
NO3

− and NH4
+. NO3

− and NH4
+ in Guangzhou and Shenzhen

were also well simulated, while SO4
2- was underestimated. All of

the three major components dominated PM2.5 in the PRD. In
Chengdu, NO3

− andNH4
+ were overestimated withNMB values of

2.55 and 0.87, respectively. This feature was also observed in PM2.5

in the CY (overprediction) (Figure 2), and this shows that NO3
−

and NH4
+ were the important components of PM2.5 in the CY.

The analysis of the spatial and temporal variations shows that
effective emissions control strategies are needed in eastern China.
The control of PM2.5 is always complicated as it is related to its
major components. For instance, it was found that NO3

− was
significant in the NCP and SO4

2- was dominant in the YRD, while
all of the three components equally influenced PM2.5 in the PRD
region. In addition, NO3

− and NH4
+ were more dominant than

SO4
2- in the CY. From the abovementioned analysis, it can be

concluded that NO3
− and NH4

+ were the main components of
PM2.5 in heavily polluted regions, where the maximum PM2.5

concentration was above 250 μg/m3. However, in clean regions
such as the PRD (with high temperature and precipitation),
where the maximum PM2.5 concentration was below 150 μg/
m3, each component equally influenced PM2.5.

FIGURE 3 | Model performance of SO4
2-, NO3

−, and NH4
+ in the

selected cities during 2013–2019.
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Model Performance During Different
Pollution Levels
The model performance during different pollution levels was also
evaluated. The pollution levels used in this study were based on
ambient air quality standards of the Chinese Ministry of Ecology
and Environment. Table 3, Supplementary Table S2, and Figure 4
show the model performance during different pollution levels in
different regions. O3 was overestimated during the “Good” level and
underestimated during the “Lightly Polluted” and “Moderately
Polluted” levels in all regions (Table 3). PM2.5 was overestimated
in the NCP, YRD, and CY. NCP was overpredicted (<10 μg/m3)
during low-pollution and underestimated (<10 μg/m3) during high-
pollution events. In the YRD and CY, PM2.5 was overestimated
(>20 μg/m3). In the CY, PM2.5 was highly overpredicted as all of the
statistical metrics breached the suggested standards for all the
pollution levels. This could be attributed to the poor terrain and
complicated weather conditions in the CY region. In the PRD and
FW, PM2.5 was generally underpredicted (>20 μg/m3), especially
during the four pollution stages. As shown in Supplementary Table
S2, NO2 was underestimated in all the five regions (>10 μg/m3) with
different pollution levels except in the CY. SO2 in the NCP, YRD,

and PRD regions was underestimated (>5 μg/m3), while it was
overestimated in the CY and FW (>10 μg/m3).

Monthly and Annual Trends of Pollutants
During the Study Period
Supplementary Figure S6 illustrates the monthly trends and the
highest and lowest concentrations of the pollutants (O3, NO2,
SO2, and PM2.5), while Figure 5 shows the annual trends of the
pollutants in the five regions during 2013–2019. In addition,
Figure 6 shows the total trends of the pollutants, which were
obtained as the difference between 2019 and 2013 annual average
concentrations in each region. Considering the model
performance of the pollutants, NO2 was generally
underpredicted on a monthly basis in all the regions during
the whole study period except in the CY, while other pollutants
exhibited better monthly predictions as illustrated in
Supplementary Figure S6. It should be noted that SO2 was
also overpredicted in the CY region.

In the NCP, the changes in the four pollutants during the study
period followed the same pattern (Figure 5). Overall, the

TABLE 3 | Model performance of O3 and PM2.5 during different pollution levels in the five regions.

Area Components Statistics Good Moderate Lightly
polluted

Moderately
polluted

Heavily
polluted

Severely
polluted

Benchmarks

NCP MDA8 O3 NMB 0.19 0.03 -0.09 -0.16 - - <±0.15
NME 0.25 0.14 0.12 0.16 - - <0.35
R 0.80 0.49 0.39 0.23 - - >0.5

PM2.5 NMB 0.37 0.20 0.16 0.05 0.06 -0.02 <±0.3
NME 0.53 0.39 0.38 0.33 0.26 0.19 <0.5
R 0.47 0.39 0.35 0.14 0.33 0.33 >0.4

YRD MDA8 O3 NMB 0.15 -0.001 -0.07 -0.10 - - <±0.15
NME 0.21 0.12 0.10 0.10 - - <0.35
R 0.65 0.58 0.39 -0.83 - - >0.5

PM2.5 NMB 0.28 0.24 0.28 0.21 - - <±0.3
NME 0.41 0.35 0.35 0.30 - - <0.5
R 0.58 0.57 0.35 -0.11 - - >0.4

PRD MDA8 O3 NMB 0.35 0.003 -0.08 -0.18 - - <±0.15
NME 0.40 0.17 0.15 0.20 - - <0.35
R 0.53 0.43 0.22 -0.22 - - >0.5

PM2.5 NMB 0.08 -0.07 -0.25 -0.30 - - <±0.3
NME 0.39 0.28 0.32 0.30 - - <0.5
R 0.55 0.27 0.33 0.19 - - >0.4

CY MDA8 O3 NMB 0.20 0.08 -0.04 -0.15 - - <±0.15
NME 0.37 0.18 0.10 0.15 - - <0.35
R 0.69 0.47 0.20 0.50 - - >0.5

PM2.5 NMB 2.64 1.64 1.36 0.83 0.68 - <±0.3
NME 2.64 1.65 1.38 0.84 0.72 - <0.5
R 0.20 0.23 0.24 -0.09 0.09 - >0.4

FW MDA8 O3 NMB 0.47 0.04 -0.11 -0.28 - - <±0.15
NME 0.49 0.14 0.12 0.28 - - <0.35
R 0.67 0.31 0.50 0.58 - - >0.5

PM2.5 NMB 0.32 0.03 -0.11 -0.15 -0.26 -0.40 <±0.3
NME 0.51 0.34 0.34 0.30 0.30 0.40 <0.5
R 0.18 0.38 0.23 0.10 0.16 0.15 >0.4

NMB: normalized mean bias; NME: normalized mean error; R: correlation coefficient. The performance criteria were suggested by Emery et al. (2017). The values in bold were above the
benchmarks.
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FIGURE 4 | Comparison of the predicted (column) and observed (black dot) O3, NO2, SO2, and PM2.5 in the five regions for different pollution levels during the
2013–2019 period. Units are µg/m3.

FIGURE 5 | Comparison of the predicted (in blue) and observed (in red) annual averaged concentrations of O3, NO2, SO2, and PM2.5 in the five regions. Units are
µg/m3.
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observed and simulated SO2 and PM2.5 decreased by about 40 μg/
m3 (Figure 6), while they both decreased by ~8 μg/m3 per year.
NO2 and O3 also decreased by 3 μg/m3 per year. It can be
observed from the monthly average variation (Supplementary
Figure S6) that O3 had high concentrations in summer (~200 μg/
m3) and low concentrations in winter (~20 μg/m3). Contrary to
O3, other pollutants exhibited high and low concentrations in
winter and summer, respectively. The difference between the
simulated and observed O3, SO2, and PM2.5 was less than
10 μg/m3.

In the YRD, the trio of O3, SO2, and PM2.5 followed the same
trends as observed in the NCP (Figure 6). The observed value of
NO2 decreased to 31 μg/m3 in 2017 and later increased in the
subsequent year (Figure 5). Similar to the NCP, O3 had high
concentrations in summer (~140 μg/m3) and low concentrations
in winter (~50 μg/m3), while the reverse was the case for other
pollutants. Regarding the model performance, NO2 was
underestimated (>10 μg/m3) while other pollutants were well
simulated with better model performances. The annual trends
of observed pollutants in the PRD were not different from those
of NCP and YRD (Figure 6). It can be observed from the monthly
average variation (Supplementary Figure S6) that O3 had high
concentrations in summer (~140 μg/m3) and low concentrations
in winter (~80 μg/m3). Contrarily, other pollutants displayed high
and low concentrations in winter and summer, respectively. The
simulated O3 was overestimated (~10 μg/m3) (Figure 5) and
increased during the study period (Figure 6). NO2 was
underestimated, while PM2.5 and SO2 were well simulated with
minimum bias (Figure 5).

The trends of the observed SO2 and PM2.5 in the CY were
similar to the previously discussed regions (Figure 6). SO2

decreased by 55 μg/m3 between 2013 and 2014 (Figure 5).
During the entire study period (Figure 5), SO2 and PM2.5

were overpredicted and NO2 was underpredicted, while O3

was well simulated with minimum bias. The simulated SO2

during the first 4 years (2013–2016) exhibited apparent
seasonal variations, while the levels of observed SO2 were
generally the same with no significant changes during the

entire study period. In the FW region, the observed O3

increased steadily (Figures 5, 6), while SO2 and PM2.5 showed
a decreasing trend during 2013–2019. Similar to other regions,
high and low concentrations of O3 were observed in summer and
winter, respectively, while the other three pollutants had their
high and low concentrations during winter and summer,
respectively. PM2.5 and SO2 were well simulated (Figure 5),
NO2 was underpredicted (Supplementary Figure S5, S6), and
O3 was highly overestimated during 2013–2015 (Figure 5), while
the model performance for O3 greatly improved during
2016–2019.

Generally, O3 in the PRD and FW increased significantly
during the study period and was about 110 μg/m3. No
significant change was found in NO2 during 2013–2019. SO2

and PM2.5 decreased on yearly basis. All of the pollutants were
well predicted in 2019 except SO2 and PM2.5 in the CY region.

Correlations Between PM2.5 and Other
Pollutants
Figure 7 shows the correlation coefficients (R) between PM2.5 and
O3, while the correlation coefficients between PM2.5, NO2, and
SO2 are illustrated in Supplementary Figure S8. Considering the
simulated concentrations, there was an apparent seasonal change
between PM2.5 and O3 across the five regions (Supplementary
Figure S7). The seasonality and correlation gradually weakened
from north to south, with the difference of the NCP being more
obvious than that of the YRD in different seasons. In the NCP,
there was no correlation between PM2.5 and O3 in spring
(Figure 7). PM2.5 was positively correlated to O3 in summer
(0.2) and negatively correlated in autumn (-0.3) and winter (-0.8).
The observed concentrations also exhibited similar correlations,
but the correlations were closer to zero compared to the simulated
concentrations (Figure 7). In the YRD, the simulated PM2.5 was
positively correlated with simulated O3 during spring and
summer, while negative correlations were found between them
in autumn and winter. The correlation coefficients were all below
0.5. For the observed concentrations, positive correlations (<0.5)

FIGURE 6 |Changes in the predicted (column) and observed (black dot) O3, NO2, SO2, and PM2.5 in the five regions during the 2013–2019 period. Units are µg/m3.
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were found between the two pollutants during the four seasons.
The difference between the correlation coefficients of the
simulated and observed concentrations might be attributed to
the overprediction of PM2.5 as O3 was well simulated (Figure 4).
In the PRD, positive correlations were found between PM2.5 and
O3 during the four seasons for both simulated and observed
concentrations. In the CY and FW regions, the relationships
between the simulated PM2.5 and O3 were all negative during the
four seasons except in summer in the FW, which was positive.
The poor correlations found with the simulated concentrations
might be attributed to the location of the CY and FW in an inland
area. Considering the observed concentrations, positive
correlations were noted in spring and summer, while negative
correlations were found during autumn and winter in the CY. In
the FW, however, the observed PM2.5 and O3 displayed positive
relationships during summer and autumn and negative
correlations in both spring and winter.

In addition to the relationship between PM2.5 and O3, the
correlations between PM2.5, NO2, and SO2 were also assessed
(Supplementary Figures S7, S8). Low-to-medium correlation
coefficients were noted between the simulated PM2.5 and NO2,
while high coefficients were found between the observed PM2.5

and NO2 during the four seasons across the five regions, an
indication of the strong relationship between PM2.5 and NO2

across China during the study period. The low correlation
between the simulated PM2.5 and NO2 could be associated
with the underestimation of NO2 across the five regions
during the four seasons. In addition, in both simulation and
observation scenarios, there were strong and positive correlations
between PM2.5 and SO2 during the four seasons in all five regions,
and the correlation coefficients for the two scenarios were
relatively similar.

CONCLUSION

In this study, the WRF-CMAQ model was employed to simulate
the concentrations of O3, NO2, SO2, and PM2.5 in China during
2013–2019. The WRF model showed better performance in

predicting reasonable and acceptable meteorological fields,
which were used in driving the CMAQ model. O3 was well
simulated, while NO2 was underestimated in the five selected
regions. The model performance of SO2 improved with an
increase in years except in the CY region, which is an inland
characterized by complex terrain and complicated weather
conditions. PM2.5 was well simulated in the NCP, YRD, and
PRD, while it was overestimated in the CY and FW regions with
NMB and NME values greatly exceeding the suggested criteria.
NO3

− and NH4
+ were the main components that dominated

PM2.5 in heavily polluted regions, while PM2.5 was influenced by
SO4

2- in moderately polluted regions. In clean regions, such as the
PRD with high temperature and precipitation, PM2.5 was equally
dominated by each of NO3

−, SO4
2-, and NH4

+. During different
pollution levels, all of the pollutants were overpredicted and
underpredicted for clean and polluted levels, respectively. The
concentrations of O3 were found increasing in each year, while
those of other pollutants gradually reduced during 2013–2019
across the five regions. Substantive reductions were observed in
SO2 and PM2.5 in the CY and FY regions during the 2013–2019
period. The reductions in the concentrations of the pollutants
could be attributed to China’s strict emission control policies,
which were implemented across the country in 2013. Considering
the correlations between PM2.5 and other pollutants, PM2.5 and
O3 showed seasonal variations in each region, while the variations
reduced from north to south. Generally, in all of the regions
except the PRD (all seasons) and YRD (spring and summer), the
correlations between PM2.5 and O3 were negative during the four
seasons. Low-to-medium correlations were noted between the
simulated PM2.5 and NO2, while high coefficients were found
between the observed PM2.5 and NO2 during the four seasons
across the five regions, an indication of the strong relationship
between PM2.5 and NO2 across China during the study period. In
addition, in both simulation and observation scenarios, there
were strong and positive correlations between PM2.5 and SO2

during the four seasons in all five regions. The results of this study
improve the understanding of the ability of the CMAQ model in
simulating air pollution in China over a long period and provide
useful information for designing effective emission control

FIGURE 7 |Correlation coefficients (R) between PM2.5 and O3 during the four seasons in the five regions. The columns represent the predicted, while the black dots
represent the observed.
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policies toward abating the levels of pollutants in the five regions
and China as a country.
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