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Despite the documented effects on human and animal health, particles smaller than 0.1 µm
in diameter found in soils, sediments, and the atmosphere remain unregulated. Yet, cerium
and titanium oxide nanoparticles associated with traffic increase mortality, cause
behavioral changes, and inhibit the growth in amphibians. Mites of the genus
Hannemania spend their early stages in the soil before becoming exclusive parasites of
amphibians. Unlike other mites, Hannemania is found inside the epidermis of amphibians,
thus facilitating the intake of particles, and leading to direct and chronic exposure. To better
understand this exposure path, we sampled amphibians hosting mites in a river potentially
polluted by traffic sources. Particles collected from mites were studied by scanning
electron microscopy and Raman spectroscopy while sediment samples were analyzed
for total metal content by portable X-ray fluorescence. Our results indicate that sediment
samples showed significant correlations between elements (Zr, Mn, Ti, Nb, Fe) often
associated with components in catalytic converters and a level of Zr that exceeded the
local geochemical background, thus suggesting an anthropic origin. Furthermore, particles
adhered to mites exhibited the characteristic Raman vibrational modes of ceria (CeO2,
465 cm−1), ceria-zirconia (CeO2-ZrO2, 149, 251, and 314 cm−1), and rutile (TiO2,
602 cm−1), pointing out to the deterioration of catalytic converters as the most likely
source. This research highlights both the importance of unregulated catalytic converters as
a source of ultrafine Ce-Ti particle pollution and the role of sub-cutaneous mites as a vector
of these particles for amphibian exposure.
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1 INTRODUCTION

The global amphibian population decline is estimated at 3.79% per year (USGS, 2021). Together with
freshwater fish, amphibians are the most endangered class among the vertebrate groups, with a
functional loss of 27% (Toussaint et al., 2021). Causes for these declines are diverse including habitat
destruction (Calderón et al., 2019; Borzée et al., 2021), disease (Kriger and Hero, 2009; Herczeg et al.,
2021), exposure to pesticides and chemicals (Pinto-Vidal et al., 2021; Goessens et al., 2022), and
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climate change (Velasco et al., 2021; Villamizar-Gomez et al.,
2021). Even in natural protected areas, the steady decline of
amphibian populations calls for more studies to be undertaken in
pristine or rural areas to assess the extent of the threats worldwide
(Green et al., 2020).

Amphibians are indicator species of ecosystem stress, as they
are twice as sensitive to environmental factors due to their
biphasic phases (Leduc et al., 2016; Velasco et al., 2021). Early
life-history stages of semiaquatic or fully aquatic amphibians
develop in water bodies where pollutants from urban runoff,
vehicular traffic, agriculture, or mining effluents are common
(Pounds et al., 2006; Brühl et al., 2013; Sievers et al., 2019). Under
such environmental stress, amphibians may modify their
behavior and physiology (Wong and Candolin, 2015), causing
erratic swimming and altering their survival, growth, and
reproduction (Sievers et al., 2018). For instance, in mining
environments, high levels of copper (Cu) increase tadpole time
spent swimming at the water surface (Hayden et al., 2015;
Azizishirazi et al., 2021). Consequently, amphibians living in
Cu-polluted environments show a higher-level of mortality
(Azizishirazi et al., 2021) with disruptions in thyroid hormone
metabolic pathways during metamorphosis (Thambirajah et al.,
2019). In addition, Amphibians exposed to intensive vehicle
traffic have a significant reduction in body size, body
condition, and lower corticosterone concentrations compared

to unexposed individuals (Cayuela et al., 2017). Yet, our
understanding of the indirect effects associated with toxic
exposure resulting from traffic on Amphibian life stages is still
limited.

Catalytic converters have exhaustive and non-exhaustive
emissions, the latter emissions associated with traffic are
released from the catalytic converters, leading to
contamination into soils and sediments (Meza-Figueroa et al.,
2021). Chemical elements (Zr and Ce) used to manufacture three-
way catalytic converters (TWCC) have low crustal abundances
making the associated compounds valuable tracers of such
sources in the environment (Meza-Figueroa et al., 2021;
Navarro-Espinoza et al., 2021). A TWCC contains a
honeycomb structure cordierite (2MgO·2Al2O3·5SiO2)
monolith, with a coating made of cerium oxide (CeO2 or
nanoceria) and zirconium oxide (ZrO2 or zirconia). A layer of
platinoid nanoparticles, generally platinum or palladium, covers
the Ce-Zr´s refractory washcoat (Aruguete et al., 2020). A typical
TWCC operates at temperatures up to 800°C that can cause its
deterioration and the potential release of platinoids and ZrO2-
CeO2 compounds into the environment (Rinkovec, 2019; Meza-
Figueroa et al., 2021) leading to the TWCC deactivation. Catalytic
converters can then expel ultrafine particles (UFP) of compounds
(ZrO2-CeO2) that are less than 0.1 µm in diameter and may be
deposited in soils and water sources which in turn become a direct

FIGURE 1 | (A) Map of the study site, (B) the location of the Cananea mining area (Bacanuchi river), and (C) Bacoachi site and town.
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exposure path for living organisms. While this issue is assessed by
regulatory vehicle emission policies in major cities, such policies
are lacking in rural areas making UFP released from the TWCC
refractory washcoat impossible to prevent.

Mites are a good model for assessing the pollution of both
aquatic and terrestrial ecosystems due to their close relationship
with environment, high abundance, high diversity of species,
their cosmopolitan distribution, and the wide range of
environments they inhabit (Walter and Proctor, 2013;
Goldschmidt, 2016). Oribatid mites have often been used as
bioindicators of soil contamination and toxicity (Eeva and
Penttinen, 2009; Skubala and Zaleski, 2012; Manu et al., 2019).
This characteristic is attributed to their diet made of fungal
hyphae (primary food resource), which accumulates heavy
metals, and to their ability to regulate concentrations of metals
through low intestinal absorption and rapid excretion (Skubala
and Zaleski, 2012). In particular, mites of the genus Hannemania
Oudemans, 1911 (Acariformes: Prostigmata: Leeuwenhoekiidae)
enter Amphibians’ skin during their early life stage (i.e., larva)
and stay in the spongy layer of the epidermis for months,
sometimes over a year, thus becoming a potential vector for
UFP if these were accumulated beforehand (Hyland, 1961;
Duszynski and Jones, 1973; Westfall et al., 2008). Among
UFP, Amphibians are particularly susceptible to the effect of
cerium compounds, with the in vitro toxicity of ceria particles
being related to their chemical composition, aerodynamic size,
and morphology (Forest et al., 2017).

Despite the extensive literature on the impacts of various
pollutants on amphibians (Ferreira do Amaral et al., 2019;
Slaby et al., 2019; Azizishirazi et al., 2021), information about
the environmental occurrence of nanomaterials or UFP related to
traffic sources is scarce (Ferreira do Amaral et al., 2019; Gallego-
Hernández et al., 2020; Meza-Figueroa et al., 2021). In the context
of the global decline of amphibian populations, novel paths of

exposure to emerging pollutants must be explored, particularly in
pristine areas. The objectives of our pilot study were: 1) to
determine the occurrence of traffic-related Ce-Ti UFP in the
rural environments, and 2) to determine in mites constitute a
potential exposure route for such UFP in Amphibians.

2 MATERIALS AND METHODS

2.1 Study Area
Amphibians and mites were collected near the town of Bacoachi is in
the mining district of Cananea, Sonora, near the Mexico-United
States border (Figure 1). The area hosts one of the most polluted
open-pit copper mines worldwide (Barra et al., 2005) leading to high
levels of soil and water pollution in the river have been attributed to
these mining activities (Guzmán et al., 2019; Archundia et al., 2021;
Morales-Pérez et al., 2021); yet no other potential sources for
pollutants have been explored. While high levels of motor vehicle
traffic occur on the riverbank due to recreational activities, there are
no emission testing programs for automobiles in this region of
Mexico, and several cars circulate with degraded catalytic
converters most likely emitting UFP (pers. obs). As a reference for
areas unaffected by either mining or traffic, we also obtained the local
geochemical background (Calmus et al., 2018).

2.2 Sediment, Amphibian, and Mite
Sampling and Preparation
To distinguish pollution from traffic or mining sources, we also
sampled sediments near the mining area. Sediment samples were
collected from the riverbed in the areas of Bacoachi (hereafter our
study area) and the area near the Cananea mine (Bacanuchi).
Sediment samples were taken on one side of the river and in two
sites of the flooding zone (1 kg approximately was taken at each

TABLE 1 | Geochemistry of riverbank sediments collected from 1) active mining area of Bacanuchi and 2) study area where amphibian and mites were collected.

Sediments in mining site n = 21 Sediments in study area n = 15

Mean Min Max SD LGB Mean Min Max SD LGB

Zr 364.5 260.4 547 105 191.4 838 753 1099 133 193
Sr 421.7 345.5 761.9 143 397.7 347 311 385 28 762.1
Rb 96.3 48.8 110 19.4 115.2 120 117 123 1.5 108.3
Pb 34.9 5 54.8 17.9 33.8 28 5 45 17 23.9
As 18.1 13.5 25.5 2.5 25.6 9.2 6.5 11.8 1.4 27.9
Zn 120.1 82.8 157.8 19.9 96.4 104 78.8 129.7 15.3 79.2
Cu 87.6 60.5 113.4 18.1 42.5 74.2 54 91.4 11.4 23.1
Ni 27.5 17.4 40.3 6.8 22.6 11.2 5 37.6 11 27.8
Co 272.4 168 404.3 62.6 12.4 527 397 675.2 81 27.8
Mn 732.9 594.7 883.6 88.1 900 888 747 1076 115 1100
Cr 59.7 44.7 81.3 12.3 55.9 62.6 48 76 8.1 72.5
V 112 80.6 140 17.5 100.8 142 113.7 167 13.6 101.2
Ti 4082 3065 4751.4 541 6700 5140 4439 5780 469.8 7200
K 18709 16006 22811 2047 30,100 18365 17524 19524 691.8 32,500
Sb 57.6 48.1 67.6 4.8 5.7 51 47 56 2.3 3.4
Nb 10.9 7.7 14.2 1.8 8.2 25 21 28 2 9.1
Y 21.7 17.6 25 2 22.8 45 39 50 3.8 22.7
Fe 39306 30710 49004 6778 51,600 59242 42376 69772 9405 54,000
Ca 25603 20518 34471 4496 46,500 29812 23384 35028 4644 55,700

Abbreviations are: LGB- Local geochemical background after Calmus et al. (2018).
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point). All samples were collected with a stainless-steel shovel and
kept in high-density plastic bags. Samples were homogenized and
dried in an oven at 37°C for 24 h, then sieved through #18, 35, 60,
and 120 mesh to obtain particulate matter with diameters of
51 mm, 500 μm, 250 μm, and 20 μm, respectively, for analysis by
a portable X-ray fluorescence equipment.

Seven individuals of Lowland leopard frog, Lithobates
yavapaiensis (Platz and Frost, 1984) were collected from the
riverbank near Bacoachi town but we did not find any
amphibians at the Bacanuchi site. Lowland leopard frogs are
common in our study area and could thus represent a sentinel
species for this pilot study. Amphibians were manually collected
wearing vinyl gloves. Each specimen was weighed, measured, and
inspected for mites. Specimens hosting mites (n = 5) were
anesthetized with isoflurane and immersion baths of gel and
water before removing the mites following procedures described
in Doss et al. (2021). Mites were carefully extracted using a
microscope and a small needle by opening the intradermal
capsules and extracting the parasites. Mites were counted and
preserved in 100 and 70% ethanol. They were further cleared with
lactophenol and then mounted with PVA medium in a semi-
permanent microscope slide for taxonomic identification
(Hoffmann, 1990; Krantz and Walter, 2009). Following
removal of the mite(s), the area was disinfected with hyper
oxidation solution, and Lowland leopard frogs remained in
observation for 10 min until released at the same location they
were found. No individuals were lost or injured in this procedure.
All animal capture and handling protocols for the scientific
purpose at national territory were approved by the Secretariat
of the Environment and Natural Resources in Mexico
(SEMARNAT Permit No: FAUT-0027). The experimental
procedure for mite´s collection permit was approved under
permit: SGPA/DGVS/04418/21. All specimens were deposited
in the National Mite Collection (CNAC) at the Biology Institute
of the National Autonomous University of Mexico with access
number CNAC012393-CNAC012402.

2.3 Total Metal Content in Sediments
We used a portable X-ray fluorescence NitonTM FXL 950
instrument (ThermoFisher Scientific Inc., Boston,

Massachusetts, U.S.) with an X-ray tube: silver anode, 50kV/
200 μA/4W, and a geometrically optimized area drift detector
(GOLDD). We analyzed soil samples using the TestAllGeo mode
for a fixed period of 120 s. We used seven replicates of the
reference material standard NIST 2710a and a blank made of
pure SiO2 for quality control following method 6200
(United States Environmental Protection Agency). Our pilot
study was restricted to analyzing the elements: Zr, Sr, Rb, Pb,
As, Ce, Zn, Cu, Ni, Co, Mn, Cr, V, Ti, K, Sb, Nb, Y, Fe, and Ca.
Each sample was analyzed in triplicate, and we reported the
recovery range from 100 to 110% for all analyzed elements, but Ce
whose concentration was below the detection limit. The detection
of Ce was obtained from Raman and SEM analysis.

2.4 SEM and Raman Analysis in Mites
Mites were analyzed both superficially and internally after the
dissection. We obtained the particle size, semiquantitative
chemical analysis, and morphology of UFP using scanning
electron microscopy and energy dispersive spectroscopy (SEM-
EDS) Phenom ProX desktop (ThermoFisher Scientific Inc.,
Boston, Massachusetts, U.S.). We used the analytical
conditions of 5 kV for particle morphology and at 15kV for
chemical compositions by EDS.We used an Alpha300 RA Raman
confocal microspectrometer (WITec, Ulm, Germany) to identify
crystalline particles in mites. The instrument has a Nd:YAG
frequency-doubled laser excitation of 532 nm. We resuspended
the samples using ethanol and placed them on a calcium fluoride
substrate for 2h in a desiccator (CaF2, 13 mm Ø × 1.0 mm,
Crystan Ltd.,United Kingdom). We used a cubic zirconia solid
standard (ASTIMEX MINM25-53 Serial 1Al) for checking the
instrument performance of both Raman and SEM.

2.5 Multivariate Statistical Analysis
We used a Principal Component Analysis (PCA) to evaluate the
chemical differences among sediments collected within the
mining area and our study site where amphibians and mites
were sampled. PCA has been employed for source apportionment
of metals (Shi et al., 2022) and to assess chemical differences
between used and new TWCC (Navarro-Espinoza et al., 2021).
The suitability of the dataset was evaluated by the Kaiser-Meyer-

FIGURE 2 | Comparison of Ti and Zr contents in sediments from the study site of Bacochi (where amphibians were collected) and the mining area. Local
geochemical background is shown for reference as the red dotted line (after Calmus et al., 2018). The box plots show the average, maximum, minimum, and median
values (red cross) for each metal in the <20 µm fraction of sediments of our study.
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Olkin (KMO) and Bartlett´s test of sphericity. The obtained KMO
(0.732) value was >0.7 and we considered a Spearman correlation
coefficient >0.5 as significant to determine a common source of
metals (Liu et al., 2020). All statistical analyses were performed
using XLSTAT 2021.4.1 (Addinsoft, 2022).

3 RESULTS

3.1 Total Metal Content in Sediments
We observed a range of total metal content in sediments across
the mining and our study sites (Table 1). The elements that
exceeded the LGB around mining activities were in the following
order: Co > Sb > Cu > Zr > Nb > Zn > Ni > Sr > Pb while the
ranking was slightly different in the study site: Co > Sb > Zr > Cu
> Nb > Y > V > Zn > Fe. Due to its crustal values, and
conservative behavior, Zr has been recommended as a
reference element in environmental studies and it is
commonly assumed to have a natural origin (i.e., geogenic;
Calmus et al., 2018). However, the average content of Zr in
our study area (838 mg kg−1) was more than twice the mean
content in sediments from the mining area (364.5 mg kg−1), and
more than four times higher than the LGB (193 mg kg−1)
uggesting an anthropic origin unrelated to mining.

The following elements occurred in higher concentrations at
the study site than those found in the mining area: Zr-Cu-V-Sb-
Nb-Y-Fe. The concentration of Ti and Zr is remarkably different
in the study area compared to the mining site (Figure 2)
indicating a source different to mineralization.

Table 2 contains a correlation matrix for sediments collected
at both sites. The element Zr is correlated at an alpha = 0.05
significance level with Pb-Zn-Cu-Ni-Mn-V-Ti-K, and Fe at the
site where amphibians were collected. The geochemical
signatures of riverbank sediments were different among sites
(Figure 3) and the first two principal components explained
68.02% of the variability. The first principal component (PC1)
explained 47.76% of total variance, defined by the contributions
(%) of the following elements: Zr, Co, V, Ti, Nb, Y, Mn, and Fe,
thus separating the group of sediments impacted by traffic
sources in Bacoachi from the mining site. The second
principal component (PC2) explained the 20.27% of the total
variance and it is defined by the contributions of Pb, Zn, Cu,
which follow the mineralization of the area. The third component
(PC3) contributed 10.63% of the total variance and contained
geogenic elements such as Rb, Cr, K, and Ca. Cerium, titanium,
and zirconium content in riverbank sediments collected at the
mining area are similar to those reported worldwide (Table 3).

3.2 Characterization of UFP Adhered to
Mites
The mites had an average size of 270 by 530 µm (Figure 4A), and
the UFP adhered to mites consisted of polycrystalline
agglomerates with particle sizes varying from 850 nm to 5 µm
(Figure 4B). The analysis of UFP revealed the presence of Zr, Ce,
Sb, and Ti with traces of La, Mo, and Br. We also identified
particles smaller than 1 µm composed of Zr, Sb, Ce, La, Br, and TiT
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FIGURE 3 | Principal component analysis (PCA) loadings of chemical composition of studied sediments.

FIGURE 4 | Lithobates yavapaiensis parasitized by Hannemania mites (A) Backscattered electron micrographs of a Hannemania mite, and (B) ultrafine particles
containing Ce, Sb, and Zr, among other traffic-related elements.

Frontiers in Environmental Science | www.frontiersin.org June 2022 | Volume 10 | Article 8706456

Jacinto-Maldonado et al. Mites as a Potential Path

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


(Figures 5A,B) similar to those associated with TWCC emissions
(Meza-Figueroa et al., 2021).

The Raman spectra of the TWCCwashcoat reported by Meza-
Figueroa et al. (2021) and Navarro-Espinoza et al. (2021), and the
particles in the mites showed a peak for the TWCC washcoat at
465 cm−1 attributed to the symmetric stretching mode of the
vibratory unit Ce-O (Kosacki et al., 2002). The peaks at 149, 251,
and 314 cm−1 were ascribed to the vibrational model Eg, A1g, and
B1g of the O-Zr-O stretches. The particles on the mites showed
peaks at 149 cm−1, and 251 cm−1 of tetragonal ZrO2, and

339 cm−1 of monoclinic ZrO2 (Quintard et al., 2002). The
peak at 465 cm−1 in mite particles corresponds to CeO2 and
the peak at 602 cm−1 is attributed to the A1g vibrational mode of
tetragonal TiO2 rutile (Frank et al., 2012; Gallego-Hernández
et al., 2020).

Additionally, three well-defined peaks revealed the presence of
albite mineral (Figure 6). Albite can arise from natural sources, such
as dust from local soils. The peak at 83 cm−1 is assigned to tetrahedral
cage shear displacements in conjunction with Na environment
breathing-rotation motions. The peak at 720 cm−1 was a

FIGURE 5 | Scanning electron microscopy images and energy dispersive spectroscopy analysis of (A) UFP agglomerates on Hannemania mites, and (B)
semiquantitative analysis of UFP.
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signature of four fundamental modes: O-Al-O bend. Si-Al
tetrahedral deformation, Na-OA1 and Na-OB(o) stretch. The
peak at 1032 cm−1 was created by internal tetrahedral vibrations
dominated by Si-O stretch (McKeown, 2005).

3.3 Hannemania Mites
The prevalence of Hannemania infesting Lithobates yavapaiensis
was 71.42% (n = 7). Onmacroscopic examination, mites were found
within the skin of the ventral abdomen and femoral areas of the
amphibians. The taxonomic identification of the mite genus was
based on characters with taxonomic importance, such as the shape of

the scutum, the cheliceral, multiple genualae on all legs, and the
number of branched setae in palpal tarsus. These characteristics were
evaluated in 10 specimens (Brennan and Goff, 1977; Hoffmann,
1990; Alvarado-Rybak et al., 2018). The average value for
Hannemania mites among the infested individuals was 2.8 ± 1.11.

4 DISCUSSION

Our study highlights the importance of considering the study
of endoparasitic mites (e.g., Hannemnia mites) within the
biotic factors as an alternative route of exposure of
amphibian species to pollutants. Regarding this topic,
Ferreira do Amaral and collaborators (2019) mention
amphibians are able to absorb nanomaterials through their
skin. Hagens et al. (2007) also mention the nanoparticles in the
dermis can migrate to the central blood circulation and from
there to the entire body.

The elements Zr-Cu-V-Sb-Nb-Y-Fe have been previously
described by Navarro-Espinoza et al. (2021) as contaminant
elements in TWCC that promote the detachment of the
refractory washcoat made of Zr-Ce. This process is crucial
for the release of UFP to the environment. An important
finding of this pilot study is identifying the presence of Zr, Ce,
and Ti UFP in the mites collected from amphibians. These
elements are commonly considered as conservative, i.e., their
concentrations have not been substantially modified by
human activity and therefore, can be used as reference
elements in the estimating of pollution indices (Calmus
et al., 2018). However, our results show that Ti and Zr
concentrations in sediments can be affected by traffic
sources, even in pristine areas. The presence of traffic-
related elements in levels above the LGB is relevant
because of the toxicity of Ti to amphibians and the
association of Zr with Ce in TWWC. Polycrystalline
agglomerates identified in mites also contain particles with
Al, Si, Mg, and K most likely derived from geogenic sources.

The presence of Zr at concentrations above LGB in the
riverbank is relevant since there are no Zr-sources other than
traffic in the area. Previous studies have shown the strong
correlation of Ce and Zr in road dust collected at high traffic
areas (Meza-Figueroa et al., 2021) and the Raman signature of
ceria-zirconia particles (Navarro-Espinoza et al., 2021). Even
though we did not obtain the total Ce composition of
sediments, the UFP composed of Ce-Zr was identified by

FIGURE 6 | Raman spectra for the TWCC washcoat, and particles in
Hannemania mites.

TABLE 3 | Cerium, titanium, and zirconium content reported in riverbank sediments near mining zones worldwide. Concentrations in mg.kg−1, unless otherwise stated. Not
reported (nr).

Location Ce Zr Ti Reference

Cananea mining site, Mexico 71 191.4 0.67% Calmus et al. (2018)
Jiangxi province, China 84.2 226.3 0.37% Liu et al. (2022)
Santa Rosalia mining region, Mexico 139 nr nr Godwyn-Paulson et al. (2022)
Eastern Carpathians mining site, Romania 58.9 150.2 0.55% Sandu et al. (2021)
Erdenet mining área, Mongolia 3.9–12.7 nr nr Munemoto et al. (2020)
Benue Through basin, Nigeria 43.4 86 0.49% Akinyemi et al. (2021)
Kutubu area, Papua New Guinea 34.1 nr 0.12% Schneider et al. (2016)
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Raman spectroscopy and supported by the SEM-EDS
analysis.

The Raman results of UFP analysis show peaks at 149, 251, and
314 cm−1 that result from the division of F2g (465 cm−1) because of
the doping of cubic CeO2 with high concentrations of Zr (>20mol%
Zr; Kuhn et al., 2013). The introduction of Zr generates the transition
of cubic crystals of CeO2 to a tetragonal structure (Bolon and
Gentleman, 2011; Kuhn et al., 2013). The distortion of this crystal
lattice produces oxygen vacancies (Vö) that are essential for the
catalysis process (peak at 617 cm−1; Kosacki et al., 2002). ZrO2-CeO2

compounds found in a TWCC can be released and incorporated into
environmental matrices (Meza-Figueroa et al., 2021).

Bour et al. (2015) found that exposure, particle size, and the
concentration of CeO2 could produce high mortality, growth
inhibition, and genotoxicity in amphibians. CeO2 toxicity is
species-dependent, and the route of exposure is a relevant
variable influencing toxicity that should be further studied.
Previous studies showed that bare CeO2 nanoparticles (mainly
found in the water column) induced high genotoxicity on
amphibian larvae (Bour et al., 2017). Furthermore, Keller et al.
(2010) and Quik et al. (2010) found that CeO2 nanoparticles tend to
form aggregates with consequent sedimentation, potentially entering
the trophic chain through their integration to organisms such
amphibian. Most of the published research was performed under
controlled conditions at the laboratory and this is one of the few
studies reporting CeO2-ZrO2 UFP in natural systems.

Our results validate the data obtained by the elemental
determination from the SEM-EDS, showing high concentrations
of titanium (Ti) and oxygen (O) in the mite samples (Silva et al.,
2021). On the other hand, the small size of TiO2 nanoparticles allows
them to penetrate cells and accumulate therein (Nations, 2009)
leading to alterations of the cellular metabolism or even apoptosis
(Galdiero et al., 2017). Zhang et al. (2012), and Zhang (2011)
reported that the increase of TiO2 (10 nm) and UVA light co-
exposition decreased Xexopus laevis survival and the exposure to
particles of different size (5,10, and 32 nm) with or without
ultraviolet light and high concentrations of nano-TiO2,
significantly affected tadpole growth. UV-A radiation can pass
through the translucent skin of amphibians and interact with
nano TiO2 particles damaging amphibian tissues and impacting
growth (Nations et al., 2011; Zhang et al., 2012; Vijayaraj et al., 2018).
Furthermore, Hammond et al. (2013) reported a risk of hormone
disruption (thyroxine, and triiodothyronine) and cellular stress in
amphibians exposed to different sizes and concentrations of TiO2

nanoparticles. Therefore, endoparasite mites such as Hannemania
sp. may indirectly increase the risk in juvenile amphibians or species
with very light skin coloration (i.e., the family Centrolenidae).

To our knowledge, this is the first record of Hannemania mites
on Lithobates yavapaiensis although Hannemania mites have been
reported in other species of juvenile and adults amphibians living in
the Americas and New Caledonia (Silva-De la Fuente et al., 2016;
Bassini-Silva et al., 2021). The prevalence reported in this study
(71.42%) is within the range observed in other amphibians species
parasitized by Hannemania mites in Sonora state with prevalences
from 20 to 95% (Hoffmann, 1969; Loomis and Welbourn, 1969;
Goldberg et al., 2002).While the number of mites per individual was
low in this study, the infestation level is a key factor in the damage

they can cause to their host, especially when abundances are as high
as those observed in Bassini-Silva et al. (2021). Therefore, we suggest
conducting further experimental research on the concentrations of
metals that Hannemania mites may harbor and expose
Amphibians to.

5 CONCLUSION

The UFP identified in mites were derived from polluted sediments
impacted by traffic suggesting the likelihood for intradermal
Hannemania mites to be a pathway for UFP exposure in
Amphibians. The presence of Ce and Ti oxides on mites is thus
potentially toxic to amphibians and further research should continue
addressing the potential synergy of biotic and abiotic factors in
threatening species (Carrasco et al., 2021). Given the prolonged
period in which parasites remain within their host, the potentially
detrimental effects of chronic exposure on amphibians are high
(Welbourn and Loomis, 1975; Westfall et al., 2008). Therefore, we
recommend future work to investigate different exposure times and
assess the role of parasites load in increasing the toxicity in all life
stages of the host. Ultimately, regulations should also be developed to
reduce the threat of traffic derivedUFP to amphibians and ecological
consequences even in rural areas.
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