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The scientific field of urban climatology has long investigated the two-way interactions
between cities and their overlying atmosphere through in-situ observations and climate
simulations at various scales. Novel research directions now emerge through recent
advancements in sensing and communication technologies, algorithms, and data
sources. Coupled with rapid growth in computing power, those advancements augment
traditional urban climate methods and provide unprecedented insights into urban
atmospheric states and dynamics. The emerging field introduced and discussed here as
Urban Climate Informatics (UCI) takes on a multidisciplinary approach to urban climate
analyses by synthesizing two established domains: urban climate and climate informatics.
UCI is a rapidly evolving field that takes advantage of four technological trends to answer
contemporary climate challenges in cities: advances in sensors, improved digital
infrastructure (e.g., cloud computing), novel data sources (e.g., crowdsourced or big
data), and leading-edge analytical algorithms and platforms (e.g., machine learning, deep
learning). This paper outlines the history and development of UCI, reviews recent
technological and methodological advances, and highlights various applications that
benefit from novel UCI methods and datasets.
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1 INTRODUCTION

From Thermometers to Big Data: The Rise of Urban Climate
Informatics
Rapid urbanization is one of the defining features of the 21st century with substantial global
environmental impact compounded by climate change (Georgescu et al., 2013; Krayenhoff
et al., 2018; Masson et al., 2020b; Zhao et al., 2021). In cities, the combined effects of
population growth and climatic changes threaten urban livability through urban overheating
(Nazarian et al., under review), hazardous air quality (Chapman S. et al., 2017; Broadbent
et al., 2020), increased energy consumption, and extreme weather (Willems et al., 2012) (Li
et al., 2020b) with widespread health, socioeconomic, and ecological impacts. In response to
these challenges, numerous subfields of urban climatology have evolved over the last century
to carefully document, examine, and model urban climate at various scales.
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Sensors and observational methods have traditionally been
developed to assess built environment impacts on local air
temperature (Stewart, 2019) and quantify intra- and inter-
urban variability in the urban canopy layer (Núñez-Peiró
et al., 2021; Potgieter et al., 2021). Early weather and climate
observations were motivated by pragmatic needs, e.g., to support
agriculture or shipping, while the invention of the thermometer
and the barometer in the early 17th century enabled systematic
recording of weather conditions. In the late 18th century, the
Societas Meteorologica Palatina established an observational
network of calibrated instruments and an observation protocol
(“Mannheimer Stunden”), which enabled scientific climatic
studies. The approach aimed to encourage collaborative data
collection by providing calibrated sensors at no cost (Neves
et al., 2017). Although participation was limited to academic
institutions and companies, the philosophy resonates with
modern crowdsourcing and citizen science projects. Synoptic
weather analysis required real-time data exchange, which
became possible 50 years later with the invention of the
telegraph. The first weather map with data from 22 stations
was displayed at the World Exhibition in London in 1851.

Temperature maps became widely available with advances in
thermal remote sensing, which provides high-resolution surface
temperature distributions (Voogt and Oke, 2003; Zhan et al.,
2013; Stewart et al., 2021). In the 20th century, advancements in
aviation permitted unprecedented atmospheric 3D observations,
and in 1960, the launch of the first weather satellite TIROS
(Television and InfraRed Observation Satellite) opened a new
age of meteorology.

Technological progress has also impacted the field of urban
climatology. While research in the early 20th century
concentrated on Europe and was mostly descriptive, rapidly
increasing computational power in the late 20th and early 21st
century significantly advanced quantitative and systematic
scientific approaches in the Anglo-American realm (Mills,
2014). Numerical and climate modeling at building to regional
scales produced urban climate parameters at high spatial and
temporal resolution/coverage and facilitated what-if analyses
(Hamdi et al., 2020). At the same time, model outputs and
their availability to the research community increased with
computing and storage capacity.

Most certainly, big and fine-resolution urban datasets have
rapidly evolved with transmission rates exceeding 0.1 Petabyte
per day (Reichstein et al., 2019). This trend was driven by
increased availability, accuracy, and resolution of sensors and
datasets as well as changes in data policy. In remote sensing, for
instance, NASA and ESA granted free access to data archives,
which enabled new techniques such as time series analysis and
multi-sensor data fusion (Wulder et al., 2012).

Despite tremendous technological progress in research, the
application of traditional micrometeorological theory to urban
areas is still limited by the complexity and heterogeneity of the
built environment (Mills, 2014). Conventional observation
methods often fall short in providing fine-resolution spatial
and temporal urban data, which highlights the need for denser
observation networks and novel data sources. Additionally, urban
climate studies have traditionally ignored “human factors” that

lead to personal exposures to environmental stressors (Kuras
et al., 2017; Okokon et al., 2017; Nazarian and Lee, 2021). Lastly,
the risks for people and infrastructure are arguably more
important than the geographic extent and magnitude of the
hazard for planning and emergency response purposes, thus
requiring direct access to highly localized information on
human mobility (Moore and Obradovich, 2020).

The Cornerstones of Urban Climate
Informatics
Urban Climate Informatics (UCI) is an evolving research field
that originates from two established domains: Urban Climate
(concerned with interactions between a city and the atmosphere)
and Climate Informatics (research combining climate science
with approaches from statistics, machine learning, and data
mining) (Monteleoni et al., 2016). While Climate Informatics
focuses on computational approaches in climate science, UCI
takes a broader, multidisciplinary approach. UCI aims to explore
and understand complex urban climate systems and human-
environment interactions through new technological,
methodological, and systems thinking approaches. It
embraces more integrated and human-centric methods to
address urban climate challenges that are enabled by novel
sensing, non-traditional datasets, crowdsourcing, big data,
digital infrastructure, advanced analytics, and artificial
intelligence.

Four emerging technologies and methods can be noted as the
cornerstones of UCI (Figure 1). First, recent advancements in
environmental sensing have resulted in lower sensor size and
power consumption at reduced sensor costs. More importantly,
improvements in wireless data transmission (using various
methods such as Wifi, 5G, and LoRaWAN) and location
awareness of devices have enabled Internet-of-Things (IoT)
sensing, contributing to real-time and ubiquitous data
collection. Second, in addition to environmental datasets that
are actively collected by sensors, new urban datasets from various
sources emerge. These novel datasets include detailed
information on three-dimensional and heterogeneous urban
configurations as well as incidental and public domain data
that can be extracted from social media or the web. The
availability of organic datasets, such as mobility patterns in
cities, further contributed to understanding the population
exposure and impact of urban climate challenges (Li and
Wang, 2021). At the same time, a stronger emphasis on
citizen engagement and technology-use in daily activities has
evolved over the last decade. Driven by commercial trends (e.g.,
home automation sensors, smartwatches, wearables) and
solutions that are non-expert friendly, citizen science data
collection has become mainstream and is implemented in
education, entertainment, and social activities (Caluwaerts
et al., 2021). This contributes to ubiquitous and crowdsourced
data collection beyond the academic community (Irwin, 2018),
further enabling more realistic and human-centric solutions to
urban climate challenges. Third, state-of-the-art analytical
algorithms and computer systems have entered urban climate
analytics, providing an opportunity for more sophisticated data
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analyses, computational methods, and modeling approaches.
Artificial Intelligence (AI, including Machine and Deep
Learning) has been instrumental in characterizing urban areas
into local climate zones or climatic maps (Bechtel and Daneke,
2012; Xu et al., 2019; Demuzere et al., 2021; Demuzere et al.,
2022), which are paramount for observational and modeling
efforts in urban climatology. Lastly, the accessibility of digital
infrastructures for storage, analytics, and communication of
results have transformed various approaches, enabling global-
scale analyses of urban climate parameters such as surface and air
temperatures (Peng et al., 2012; Chakraborty and Lee, 2019;
Venter et al., 2021).

Collectively, novel data sources, sensors, and computing
methods have led to a paradigm shift in urban climate
analyses, significantly changing “how” we do science and
expanding research questions directed at the urban
atmosphere and its residents. This shift includes moving
beyond the traditional focus on city-atmosphere interactions
and tackling challenges of the Anthropocene, including climate
change, urban overheating, poor air quality, and climate injustice.
Most notably, four trends can be observed: 1) urban climate
research has moved towards comprehensive analyses of the

dynamics of urban climate and human-environment
interactions at fine temporal and spatial scales; 2) the research
focus has shifted from an assessment of local atmospheric
conditions in a city vs its rural surroundings (traditional UHI
definition) towards intra-urban hazard distribution and human
thermal exposure assessments; 3) highly accurate, expensive,
high-maintenance weather stations and air quality sensors
operated by experts are complemented by educational or
operational, lower-cost tools and data that were acquired for
non-urban climate purposes; 4) urban climate research teams
have become interdisciplinary spanning a wide range of expertise,
from architects and engineers to urban planners, computer
scientists, and local government representatives, which allows
more complex, solutions-oriented analyses from health sciences
to social justice and equity; and 5) research results are better
communicated to non-experts through new platforms and
visualizations (e.g., websites, social media, dashboards) to
maximize broader societal impact.

UCI has the potential to overcome current gaps and challenges
in urban climatology, which include but are not limited to 1) a
lack of human processes (e.g., anthropogenic heat, people’s
movement) in urban modeling; 2) observations that are not

FIGURE 1 | The four cornerstones of Urban Climate Informatics (UCI): Advances in Sensors (Section 2), Novel Data Sources (Section 2), Advances in Digital
Infrastructure (Section 3), and Advances in Analytical Algorithms and Platforms (Section 3). Increased accessibility to four pillars enables a wide range of UCI
applications (center).

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8674343

Middel et al. Urban Climate Informatics

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


representative of atmospheric processes and human exposures
across space and time (e.g., for long-term climate studies or
model validation); and 3) limited data availability (e.g., urban
canopy parameters, urban morphology) and computing power
for urban climate modeling (Masson et al., 2020a; González et al.,
2021). This paper outlines the key trends in the development of
UCI, discussing novel technological and methodological
advances that enable future directions in urban climate
research. The following sections provide a general overview of
the UCI field as well as examples and discussions of novel sensing
and data sources (Section 2) as well as advancement in data
processing (Section 3).

2 NOVEL SENSORS AND DATA SOURCES

One of the key catalysts for the UCI field is the emergence of novel
and more expansive datasets resulting from several
interconnected developments, most importantly advances in
sensor solutions, communication technologies, and data
acquisition methods. Here, we detail how advancements in
sensors (Section 2.1), ensuing novel acquisition methods
(Section 2.2), and datasets (Section 2.3) have been used to
understand and address urban climate challenges.

2.1 Advancement in Sensors and
Communication Technologies
Advances in environmental sensing have greatly increased the
availability, resolution, and quality of observational data for
urban climate research. In the last decade, a major shift was
seen from research-grade sensors operated by experts to low-cost
devices, e.g., for citizen-scientists. New technologies not only
allowed sensing units to record a more comprehensive set of
parameters (such as standard meteorology, air quality, UV, and
noise), but also removed limiting factors in continuously
monitoring the built environment, such as power supply
(source and consumption) and sensor size. The sensor
technology revolution resulted in smaller sensors that could
easily be mounted to existing structures, required less energy
(or were sustained through solar panels), and eventually, were
cheaper. This process is similarly seen in satellite/remote sensing,
where the emergence of CubeSats has led to miniaturized
satellites for space research that have high potential to
enhance observations for urban climate applications (González
et al., 2021).

Such advances are further complemented with novel wireless
and ubiquitous communication technologies, such as WiFi, 3G/
4G/5G, and LoRaWan. While previous data-loggers required a
technician to connect to the sensor and (often manually) transfer
the data for further processing, wireless communication enables
automatic and seamless transitions of data from multiple devices
to servers. Removing the communication and scaling barrier has
led to the emergence of Internet-of-Things (IoT), where physical
sensors are connected to digital infrastructure and real-time
analytics (Sections 2.1 and 2.2); Web-of-Things (WoT), where
sensors and everyday objects are fully integrated into the web; and

Internet of Everything (IoE), with all-round connectivity,
intelligence, and cognition beyond computers, tablets and
smartphones.

Advances in sensors and communication methods greatly
contribute to observational studies in UCI. Low-cost sensors
with seamless data communication allow scientists,
practitioners, and citizens to utilize numerous sensors in a
variety of urban spaces with different user behaviors. Instead
of using sparsely-placed outdoor sensors to determine heat,
weather, or air quality, fine-grained and multi-parameter IoT
sensor networks have been successful in depicting the spatial and
temporal heterogeneity of environmental quality in educational,
commercial, and residential buildings and their outdoor
surroundings (Palacios Temprano et al., 2020; Luo et al., 2021;
Ulpiani et al., 2021). In addition to covering a larger spatial area
and determining hotspots of environmental stressors (Schneider
et al., 2017), IoT sensor networks contribute to predictive models
for weather (Chavan and Momin, 2017), energy consumptions
(Cheng et al., 2021) and air pollution exposures (Xiaojun et al.,
2015; Zhang and Woo, 2020); assist in determining the impact of
surface cover and urban design on microclimate (Pfautsch and
Tjoelker, 2020); and further raise citizen awareness on urban
environmental challenges. Lastly, advancement in sensor
solutions and communication methods lead to novel data
acquisition methods in cities.

2.2 Data Acquisition Methods
As existing sensing technologies improve over time, urban
climate science further benefits from emerging data acquisition
techniques. Novel observation methods take advantage of new
sensors and digital literacy of urban residents. Observations range
from mobile sensors mounted on various devices and humans to
crowdsourcing and volunteered geographic information (VGI),
where citizens and distributed private sensors provide a source of
geographic and environmental data (See et al., 2016). These
methods have long been neglected in atmospheric sciences,
mostly due to knowledge gaps and justified concerns in data
quality and standardization (Muller et al., 2015). However, these
novel data sources are predestined for urban analyses because
they are typically collected in the most populated places: cities.

Mobile Sensing and “Humans as Sensors”
Traditional urban climate research uses observational datasets
that determine inter- and intra-urban variabilities of climatic
parameters. As sensors have become smaller, wireless, and more
power-efficient, it is more feasible to gather such data through
mobile sensing, where the primary goal is increased coverage at
reduced costs. This has led to four measurement categories: 1)
portable weather stations, 2) vehicle-based sensors, 3)
smartphones, and 4) wearable and nearable devices.

Portable weather stations are moved through urban
environments using garden carts (Middel and Krayenhoff,
2019; Middel et al., 2021), golf carts (Häb et al., 2015), or
cargo bikes (Heusinkveld et al., 2014; Rajkovich and Larsen,
2016). Measurement campaigns often utilize research-grade
weather stations and monitor a comprehensive set of
parameters, providing valuable spatial data particularly in the
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face of extreme heat events. However, mobile sensors lack the
medium- or long- term temporal resolution of fixed sensors and,
more importantly, need post-processing methods to address
prolonged sensor response time in common weather stations
(Häb et al., 2015). Additionally, data outputs of mobile
measurements are often in time-series format, while the
sensors are non-stationary. The changing atmospheric
conditions impact observations that should be corrected
through time-detrending (Parlow and Foken, 2021). Lastly,
mobile sensors are subject to anthropogenic influences such as
heat from traffic and space heating/cooling equipment.
Accordingly, mobile data should be enriched with detailed
metadata to comprehensively interpret the observations.

Similar to portable weather stations, sensors mounted on
vehicles such as buses (Kang et al., 2016; Seidel et al., 2016),
trash trucks (deSouza et al., 2020), and cars (Ferwati et al., 2018)
have been used to traverse cities. Vehicle-based data are prone to
the same challenges as portable weather stations. Low-cost (and
therefore less accurate) sensors are frequently deployed due to
size and communication limits, yet they allow to assess behavioral
patterns and human-centric exposure to environmental stressors
such as air quality and heat (Fugiglando et al., 2018).

Mobile phones have become an attractive data source for
human-scale urban climate information, as there are currently
6.64 billion smartphone users in the world today. Various studies
have used phone battery temperature as a proxy for air
temperature to map thermal conditions in cities (Overeem
et al., 2013; Droste et al., 2017b). Data uncertainty increases
with solar radiation exposure (Cabrera et al., 2021), more extreme
weather, and precipitation, because the smartphone is most likely
enclosed. Although smartphone data for environmental
modeling are yet to be validated and scaled beyond academic
assessments, the importance of gathering continuous, real-time
feedback from urban dwellers should not be underestimated.
Assessing urban climate impact requires more in-depth focus on
humans exposed to environmental stressors in cities.
Accordingly, smartphone applications collecting data on the
human experience (e.g., thermal comfort vote and noise/
pollution discomfort) can obtain critical data points to
augment environmental parameters (Lassen et al., 2021).

Recent urban climate studies have used wearables and nearable
sensors for data collection. Here, we define wearables as smart
devices (e.g., smart watches, sensor patches, smart clothing) that
are worn by participants to obtain environmental parameters (e.g.,
air temperature and humidity) and physiological responses or
behavioral patterns and activities. Nearables refer to (low-cost)
sensors carried by individuals or placed in the immediate
environment of people. The National Science Experiment in
Singapore (low-cost wireless SENSg devices (Wilhelm et al., 2016)
is probably the largest deployments of wearables, with 50,000 sensors
carried by students for assessment of thermal comfort among other
objectives (Monnot et al., 2016; Happle et al., 2017). Wearable
sensors have been used to combine all three (environmental,
physiological, and behavioral) factors and have shown promising
results in predicting heat stress (Nazarian et al., 2021) and obtaining
non-obtrusive, real-time feedback (Jayathissa et al., 2019). As sensors
are frequently moved between indoor and outdoor settings, pocket

and palms, and are also influenced by the device CPU load,
interpretation of the data requires more in-depth investigations.

Crowdsourcing and Citizen Science
Crowdsourcing, i.e., collection of atmospheric data from non-
traditional distributed sources, has evolved as a cost-efficient
alternative for monitoring urban climates. While the use of
crowdsourced data in atmospheric sciences was in its infancy
half a decade ago (Muller et al., 2015), it has reached adolescence
quickly. Since 2015, a growing body of crowdsourcing literature
has focused on citizen weather station (CWS) data from
privately-owned, non-professional, low-cost stations connected
to the Internet. Early studies focused on network air temperature
(Bell et al., 2015; Chapman L. et al., 2017; Fenner et al., 2017;
Meier et al., 2017), but more recent analyses added other
atmospheric parameters including precipitation (De Vos et al.,
2017; Bardossy et al., 2021), air pressure (de Vos et al., 2020), and
wind speed (Droste et al., 2020). While the data quality of
individual stations remains low, many insights have been
gained on error sources, quality control, and filtering
algorithms (Meier et al., 2017; Hammerberg et al., 2018;
Napoly et al., 2018; de Vos et al., 2019; Mandement and
Caumont, 2020; Fenner et al., 2021). This development is
dynamic, and the uncertainty in crowdsourced CWS data
much depends on the parameter of interest and the network
density, but confidence increases that robust parameter estimates
can be derived for spatial averages or climatology. Other
crowdsourcing sensors of high interest are cars (Bröring et al.,
2015; Bonczak and Kontokosta, 2019) and smartphones, which
have been used to observe air pressure (Mass and Madaus, 2014;
de Vos et al., 2020) and air temperature (Overeem et al., 2013;
Droste et al., 2017a), amongst others (see previous section).

Amajor driver of advancements in crowdsourcing is the growing
number of applications. CWS have been used to analyze urban heat
islands (Meier et al., 2017; Varentsov et al., 2021; Venter et al., 2021),
hailstorms (Clark et al., 2018), and deep convection (Mandement
and Caumont, 2020); for high-resolution mapping of air
temperature (Venter et al., 2020; Vulova et al., 2020; Zumwald
et al., 2021); to derive boundary conditions for urban-climatemodels
(Jin et al., 2021); and for operational weather forecasts (Nipen et al.,
2020). Furthermore, CWS data have been combined with novel
datasets emerging in UCI (Section 2.3) such as high-resolution 3D
urban models, such that we better understand the role of urban
design and land cover on urbanmicroclimate (Potgieter et al., 2021).
Since crowdsourced data allow new types of analyses and improve
the accuracy of short-term forecasts, they have slowly gained
acceptance in the climatology community, but concerns about
data quality remain. For centuries, climatologists have developed
and advanced standards and protocols to make observations
comparable between places and decades; in the future, much of
this rigor must be applied to the quality control and filtering
algorithms of crowdsourced data.

Unmanned Aerial Vehicles
Observations from unmanned aerial vehicles (UAVs) are at the
smallest scale of remote sensing for monitoring land surface
dynamics. Unmanned aerial systems (UASs) produce high
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spatial resolution data, sufficiently detailed to make field-level
decisions, and fill the gap between satellite and in-situ, near-
ground observations (Emilien et al., 2021). The genesis of UAS
dates back to 1849 and was, for a long time, driven by military
needs (Rakha and Gorodetsky, 2018). In the early 1970s, Konrad
et al. (1970) pioneered the use of UAVs in meteorology to study
the dynamics of the convective process, which requires fine-scale
data on the temporal and spatial structure of the atmosphere. To
overcome limitations of available platforms at that time (e.g.,
balloons, towers, and full-sized aircraft), the authors developed
and tested a small, radio-controlled aircraft with meteorological
sensing instrumentation as a versatile measurement platform.
Over the next decades, technical developments facilitated more
frequent uses of UAVs in atmospheric research. For example,
Leuenberger et al. (2020) evaluated the assimilation of boundary
layer observations gathered by “Meteodrones” into the numerical
weather prediction system at Meteoswiss and found that the
drone observations improved fog prediction. Chilson et al. (2019)
proposed an automated 3D mesonet based on autonomous UAS
stations to observe atmospheric profiles similar to standard
“mesonets”, which consist of surface-based, in-situ stations.
Although this work is in its infancy, a 3D network could
significantly enhance our monitoring capacity of
environmental variables in the lower atmosphere, improve our
understanding of atmospheric boundary layer processes, and
improve high-impact numerical weather prediction. Despite
the low cost and resolution advantages, drones still have
limited use in climatology, because they require additional
sensors beyond RGB imagery, and flight durations are short
(Yavaşlı, 2020).

Yet, UAVs have proven to be useful in an urban climate
context, as shown by Rakha and Gorodetsky (2018). Their
comprehensive review of thermal drones for energy audits
highlights that the increased accessibility, efficiency, and safety
of drones expedites the improvement and retrofitting of aging
and energy-inefficient building stock and infrastructure. This
finding is corroborated by Bayomi et al. (2021), who collected
thermal drone data to calibrate a building energy model for
improved performance and to assess building material
degradation, thermal bridging, and insulation failures. In
recent years, UAVs have been increasingly deployed to
measure 3D urban form (Gevaert et al., 2017) and to monitor
in-situ air quality (Kuuluvainen et al., 2018), but limitations such
as flight duration, payload capacity, and sensor dimensions,
accuracy, and sensitivity remain (Villa et al., 2016).

2.3 Datasets
New emerging datasets are key for representing realistic,
heterogeneous urban environments while driving insight into
the exposure of urban residents to climate challenges. These
datasets are obtained through planned processes gathering
information on defined research questions (purposeful data)
such as LiDAR point clouds, or secondary outcomes of
technological processes and platforms used in urban areas
(organic data) such as social media data. The source,
intention, and method of data collection further dominate
whether the dataset is structured, or more importantly, can be

activated for use in climate analyses (i.e., used to develop insights
or devise action). While the unprecedented volume of data is
offering exciting opportunities for better understanding and
quantifying urban climate challenges, the velocity (rate at
which the data are generated), veracity (truthfulness, accuracy,
and quality of data), and ownership (access to, possession of, and
responsibility for data) creates significant challenges for data use
in climate research and application. For instance, while data
policies of authorities have become considerably more open
over the past decade, data generated by citizens are often
legally “owned” by private companies, thus their long-term
availability depends on business interests and success. The
challenges of data ownership are manifested in access to 3D
urban models, where the development of Data as a Service (DaaS)
prohibits their dissemination for modeling or observational
studies. Lastly, new datasets raise novel challenges with respect
to privacy, most seen in human-scale data collection. Here, we
detail three novel data types that have been successfully collected
and used for urban climate analyses and discuss limitations in
research and application.

Big Data
Detailed, accurate 3D information on a city’s composition,
configuration, and morphology is key for urban climate
analyses and applications. The wide variety of building types,
architectural features, construction materials, and the
distribution of vegetation govern the interactions between the
city and its surrounding atmosphere (Middel et al., 2014; Oke
et al., 2017; Ching et al., 2018). Traditionally, 3D city models and
urban form parameters have been established using
photogrammetry (processing optical stereo imagery) or high-
resolution satellite images (Masson et al., 2020a). More recent
approaches use large point clouds (next section) or procedural
modeling (Nishida et al., 2018) to automatically generate
cityscapes (Ching et al., 2019a). In the advent of big data,
researchers started to repurpose large datasets that were
originally collected for non-urban-climate purposes, such as
street level photography. Street View image repositories from
Google, Baidu, Mapillary, Tencent have increasingly become
available and been used to characterize the built environment
using machine learning (feature detection and image
segmentation) (Keralis et al., 2020). A street canyon
perspective is more human-centric than bird’s eye view
imagery, which is particularly important for human thermal
comfort, health, and behavioral studies (Middel et al., 2019).
Past research has used Street View images to quantify street
greenery (Li et al., 2017; Lu, 2019), building age (Li et al., 2018),
building floor count (Iannelli and Dell’Acqua, 2017), sidewalks
and crosswalks (Hara et al., 2013; Berriel et al., 2017), urban land
use (Zhang et al., 2017), and sky view factors (Middel et al., 2018;
Zeng et al., 2018; Nice et al., 2020). Street level images have also
been used to conduct virtual neighborhood audits to assess
walkability (Yin and Wang, 2016), bikeability (Arellana et al.,
2020), traffic safety (Mooney et al., 2016), physical activity (Griew
et al., 2013), and human health (Keralis et al., 2020). Lastly, Street
View images have been linked to urban climate parameters such
as surface temperature (Zhang et al., 2019) and air quality (Apte
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et al., 2017). While street level imagery offers remote access to
urban form, design, and function, many providers have recently
restricted free image downloads. Other known constraints
include limited spatial and temporal availability (i.e., the user
does not have control over image acquisition season, date, time,
and location), images are usually taken in the center of the road,
not on the sidewalk, and they do not provide insight into
backyards. Yet, with more and more users volunteering
geographic information, uploading crowdsourced photography,
and more companies entering the mapping market, Street View
products will remain a valuable big data source for urban climates
studies.

LiDAR Point Clouds
Urban areas affect the atmosphere via their built materials,
distinct surface cover and urban structure. The latter refers to
the 3D urban morphology, or urban form, that determines albedo
and aerodynamic roughness, and controls radiative exchange and
airflow (Oke et al., 2017). With advances in remote sensing,
LiDAR (Light Detection And Ranging) systems have become a
well-established alternative to stereo photogrammetry for
generating digital urban models. Point clouds from airborne,
mobile, or terrestrial LiDAR yield 3D urban form at
unprecedented spatial resolution (Yan et al., 2015; Bonczak
and Kontokosta, 2019). Wang et al. (2018) reviewed urban
reconstruction algorithms for point cloud data, evaluated their
performance in modeling architectural elements (e.g., buildings,
roads, bridges, power lines, trees), and highlighted the generation
of 3D city models with multiple levels of detail (LoDs). In this
context, CityGML by the Open Geospatial Consortium has
emerged as a widely accepted standard for describing the
representation, storage, and exchange of digital 3D city and
landscape models (Gröger and Plümer, 2012). Higher levels of
detail require more data storage, and as such, pathways are
currently explored on how to represent multiple levels of
detail (LoDs) while optimizing storage. This relates to the
urban-scale space exploration (Lafarge, 2015) and the concept
of “fit-for-purpose” urban data as advertised by the World Urban
Database and Access Portal Tools project (WUDAPT, Ching
et al., 2018, 2019; Bechtel et al., 2019) that aims to find an optimal
solution across scales as a tradeoff between data complexity and
model accuracy.

Point clouds have myriad urban climate applications. Urech
et al. (2020) used LiDAR to reconstruct digital 3D landscapes and
devised a framework to generate future landscape scenarios by
manipulating the point cloud. This information was subsequently
used to inform the Discrete Anisotropic Radiative Transfer
(DART) model that estimates the 3D radiative budget of
urban and natural landscapes, and to assess changes in
thermal comfort in a neighborhood in Singapore. Dissegna
et al. (2019) calculated the leaf area density (LAD) of urban
trees from terrestrial LiDAR scans to quantify the contribution of
vegetation to the radiative budget of a city, which can mitigate the
urban heat island (UHI) effect and ultimately contribute to the
development of climate resilient urban spaces. Other studies used
airborne LiDAR data to map urban vegetation and LAD in
Vienna, Austria (Höfle et al., 2012) and Gothenburg, Sweden

(Klingberg et al., 2017), thereby indicating the important
ecological characteristics of urban vegetation that influence
urban climate through shading and transpiration cooling and
air quality through air pollutant deposition. The Urban Multi-
scale Environmental Predictor (UMEP), an urban climate service
tool (Lindberg et al., 2018), combines models and approaches for
fine-scale climate simulations. The tool includes modules to
derive digital surface models (DSM) and canopy digital surface
models (CDSM) from airborne LiDAR and has recently been
used in various heat exposure and mitigation studies across the
globe (Aminipouri et al., 2019; Kong et al., 2022).

Reviewing the latest advances of LiDAR-based mobile
mapping systems, Wang et al. (2020) identified challenges
related to reliable positioning, the need for more sophisticated
deep-learning architectures to classify point clouds, and AI
challenges to comprehensively understand semantics of
complex urban streetscapes. Nevertheless, the authors envision
that point clouds will give rise to a new category of geo-big data
and will play an important role in future monitoring, detection,
and modeling tasks.

Social Media
DataIn the era of information and communications technology,
urban geolocated social media data (SMD) offer new
opportunities to indirectly measure the impact of hazards on
society, to advance understanding of complex urban dynamics,
and to support decision-making for sustainability
transformations (Ilieva and McPhearson, 2018; Creutzig et al.,
2019). SMD from Flickr, Twitter, Foursquare, Facebook,
Instagram, etc. have the potential to fill important data gaps
that prevent researchers and practitioners from understanding
human-environment interactions. During the first IPCC Cities
and Climate Science Conference in Edmonton, Canada (Bai et al.,
2018; Frantzeskaki et al., 2019), SMD indicators of social,
ecological, and infrastructural change were highlighted in a
series of synthesis statements on the role, potential, and
research gaps of nature-based solutions for climate adaptation
and mitigation. Grasso et al. (2017) argue that micro-blogging
platforms such as Twitter may be used as a distributed network of
mobile sensors that react to external events by exchanging
messages. They found significant associations between the
daily increase in tweets and extreme temperatures during a
2015 summer heat wave in Italy, indicating that the daily
volume of Twitter messages can indicate local heatwave
impacts, improve preparedness measures at the regional and
local level, and thus reduce heat vulnerability. Young et al.
(2021) came to a similar conclusion when studying Twitter
data to detect different scales of response and varying attitudes
towards heat waves in the United Kingdom (United Kingdom),
the United States of America (US), and Australia. They
performed a sentiment analysis, i.e., the field of natural
language processing that aims to extract the attitude conveyed
in a body of text. The United Kingdom and US had similar levels
of positivity during the heatwave, while Australians were more
negative, with a significant sentiment increase as temperature
decreased. By quantitatively reviewing 169 studies that use data
from social media and social networking sites to better
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understand human-environment interactions (Ghermandi and
Sinclair, 2019), suggest that SMD offers unprecedented
opportunities in terms of data volume, scale of analysis, and
real-time monitoring. At the same time, challenges remain,
including the integration of different types of information in
data matching, the development of quality assurance procedures
and ethical codes, an improved integration with existing methods,
and the assurance of long-term, free, and easy-to-access provision
of public social media data (Ghermandi and Sinclair, 2019).

3 ADVANCEMENTS IN DATA PROCESSING

The emergence of new digital infrastructure and analytics
algorithms and platforms is a major driver of UCI. Cloud
storage and computing allow bigger data volumes to be stored
outside of the sphere of physical storage and processed directly in
the cloud. Furthermore, novel analysis methods (e.g., AI or edge
computing) complement previous advancements and remove
some privacy and security concerns of previous approaches
that analyzed the impact of urban climate on residents.

3.1 Algorithms
Climate is increasingly becoming a data problem (Jones, 2017).
For example, the compressed climate model output for the sixth
Coupled Model Intercomparison Project (CMIP6) is estimated at
18 Peta Bytes, which is five times the size of the CMIP5 archive
(Balaji et al., 2018). The research field “Climate Informatics”
encourages collaborations between climate scientists and
machine learning researchers to help bridge the gap between
data and understanding and to accelerate discovery in climate
science (Monteleoni et al., 2016; Huntingford et al., 2019).
Machine Learning (ML) techniques have been used to find
complex patterns and networks in large data, insights that
might otherwise depend on expert judgment or physical-based
rules (Jones, 2017). ML also speeds up the development of
parameterizations in weather and climate models (or their
sub-components, e.g., land surface models), either by
completely replacing physically-based parameterizations by
data-driven neural networks or by harnessing ML to calibrate
or “tune” the many free parameters involved in their formulation
(Couvreux et al., 2021; Hourdin et al., 2021; Pal and Sharma,
2021). In urban climate studies, the use of ML or other artificial
intelligence (AI) techniques such as deep learning has been
primarily used to derive urban form and land cover from
image datasets. Ma et al. (2019) reviewed 200 remote sensing
studies and found that deep learning was predominantly used in
urban applications. Xu et al. (2019) employed convolutional
neural networks (CNNs) and ground-level images to classify
urban areas into climate zones, while Zhou et al. (2021) and
Yoo et al. (2019) used deep learning, CNN, and random forest to
map LCZs from remotely sensed images. Deep learning has also
been used to predict air pollution in urban areas using satellite
data (Lee et al., 2021) and Street View images (Suel et al., under
review). Venter et al. (2020) applied a random forest model to
Sentinel, Landsat, LiDAR, and crowd-sourced air temperature
measurements to model hyper-local urban air temperature

distribution concluding that the resulting maps can
complement and validate traditional urban canopy models.

3.2 Digital Infrastructure and Platforms
Platforms for Big Earth Observation Data
As discussed in the introduction, many urban climate studies rely
on remotely sensed Earth Observation (EO) data, which has
become increasingly more available, accurate, and fine-scaled. EO
products are frequently used to assess the surface urban heat
island (SUHI), perform land cover classifications, and provide
input for models of urban surface-atmosphere exchange (Voogt
and Oke, 2003). Many EO datasets are delivered on a daily basis,
providing a massive amount of remotely sensed data that places
us in an age of big EO data (Chi et al., 2016). Over the last decade,
cutting-edge platforms have been developed to support a new
generation of spatial data infrastructure based on cloud
computing, distributed systems, MapReduce systems, and web
services. These systems address challenges related to big EO data
management heterogeneity, storage, processing, analytics,
visualization, sharing, and applications (Li et al., 2020c)
Importantly, the development of data infrastructure enables
the application of data standards to data layers developed by
diverse stakeholders and addresses challenges regarding data
interoperability and integration. In their review, Gomes et al.
(2020) define “platforms for big EO data management and
analysis” as computational solutions that provide
functionalities for data management, storage, and access; that
allow processing on the server side without having to download
large datasets; and that provide a certain level of data and
processing abstractions for EO community users and
researchers. Seven platforms currently match this definition:
Google Earth Engine (GEE) (Gorelick et al., 2017), Sentinel
Hub (Sinergise, 2018), Open Data Cube (Open Data Cube,
2021), System for Earth Observation Data Access, Processing
and Analysis for LandMonitoring (SEPAL, FAO, 2021), OpenEO
(Pebesma et al., 2017), the JRC Earth Observation Data and
Processing Platform (JEODPP, Soille et al., 2018), and pipsCloud
(Wang L. et al., 2018; Gomes et al., 2020). GEE is probably the
most widely used platform in urban climate studies.

Amani et al. (2020) reviewed 450 GEE-related journal articles
and found 40 papers on urban topics, including urban planning,
development and extent; urban morphology; and urban
temperature and heat island studies. For example, Cheng et al.
(2018) and Zhang et al. (2020) used GEE to develop global maps
of manmade impervious areas. Li M. et al. (2020) mapped urban
3D building structure, i.e., building footprint, height, and volume,
for Europe, the United States, and China using random forest
models in GEE. Huang et al. (2018) and Duan et al. (2019) used
GEE to map urban green spaces and urban forests in China using
Landsat and Sentinel-2 imagery, respectively. In a series of papers,
Demuzere et al. (2019a, 2019b, 2020, 2021) converted the off-line
single-city Local Climate Zone (LCZ) mapping strategy (Stewart
and Oke, 2012; Bechtel et al., 2015) into a GEE-based procedure
that allows for the creation of continental-scale LCZ maps,
including a web-application (LCZ generator, https://lcz-
generator.rub.de/) that makes LCZ mapping fast and easy.
Bechtel et al. (2019b) assessed the SUHI from MODIS and
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Landsat against LCZ maps for 50 global cities, and Chakraborty
and Lee (2019) computed the SUHI from MODIS for over 9500
urban clusters and examined how vegetation controls
spatiotemporal SUHI variability. Benz et al. (2017) analyzed
global shallow groundwater temperatures by processing and
integrating land surface temperatures, evapotranspiration data,
and snow cover in GEE. The availability of LCZ mapping has also
enabled a consistent comparison with three-dimensional urban
data (Section 2.3) for different cities, providing detailed city-
descriptive input parameters for climate models (Lipson et al.,
under review).

Big Earth data and related platforms introduced disruptive
changes in EO data management and analysis (Sudmanns et al.,
2019). Yet, despite their advancements, challenges remain. For
example, Gomes et al. (2020) report that none of the investigated
platforms offer all ten required EO capabilities presented by
Camara et al. (2016) and Ariza-Porras et al. (2017). Besides
technical challenges, organizational and political challenges
exist that are partly unsolved or not discussed, such as security
issues (e.g., storing datasets or algorithms on non-proprietary
platforms) or increasing costs for developing and maintaining
such platforms. These issues lead to the question whether Big EO
data platforms will continue to provide reliable data and services
in the future (Sudmanns et al., 2019).

Cloud Computing
In recent years, cloud computing services have become
increasingly affordable. Third-party providers such as Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud host
and maintain scalable computing infrastructure, i.e., customers
are only charged for the infrastructure they use. Several recent
urban climate studies have used cloud computing for modeling
sky view factors (Dirksen et al., 2019), to run WRF (Goga et al.,
2018), simulate microclimate with ENVI-met (Crank et al., under
review), and predict neighborhood air pollution (Triscone et al.,
2016). Cloud services also gain popularity in crowdsourcing and
IoT applications. For example, Fauzandi et al. (2021) designed
and implemented a low-cost sensor system for UHI observations
using AWS, and Kulkarni et al. (under review) used an AWS
database to store biometeorological observations and people
counts from an IoT device in a public park. Similar to Big EO
data platforms, cloud computing has limitations related to server
availability (e.g., downtime during service outages), security, and
privacy. Cloud computing also offers limited control and
flexibility because the infrastructure is managed by the service
provider, not the urban climate researcher, and is often tied to a
specific vendor (the service provider). Despite these limitations, it
is expected that cloud computing will play a major role in UCI as
simulations become more complex and datasets increase in size.

4 CONCLUSION AND OUTLOOK

The field of urban climate has greatly advanced our
understanding of city-atmosphere interactions since the first
weather map was created in the mid-19th century. Driven by
sensing and modeling physical phenomena, urban climate

research in the past decade has integrated multidisciplinary
methods and practices complementing the core principles in
atmospheric science. UCI parallels this development,
embracing various scientific disciplines such as data science,
geospatial analyses, urban design, health, and policy. A clear
paradigm shift can be seen from focusing on city-atmosphere
interactions to tackling grand challenges of the Anthropocene,
including climate change, urban overheating, poor air quality,
and climate injustice. New advancements enabled by UCI offer
unprecedented opportunities to understand these grave problems
and support a variety of applications.

UCI facilitates the development of adaptation and
mitigation strategies for urban climate challenges by
pushing the boundaries of observational networks, model
resolution, and domain size to yield unprecedented details
on hazard distribution. High resolution 3D city data paired
with detailed thermal properties of the urban fabric enable
urban climatologists to answer questions about optimal tree
placement, the amount of available shade, and heat retention
in urban canyons. Digital twins–virtual city models integrating
various datasets, real-time sensing, and predictive models of
underlying atmospheric processes–are on the rise and will
eventually allow analyses of complex city-atmosphere
interactions at fine temporal and spatial scales. Although
still in their infancy, Digital Twins have already been used
to support collaborative and participatory urban planning and
aid in hyper-local air pollution mitigation (Dembski et al.,
2020). The City of Zurich uses Digital Twins to simulate urban
climate, noise, air pollution, and create future scenarios for
decision-making (Schrotter and Hürzeler, 2020).

Computational steering (interactively changing parameters
during simulation) has the potential to transform how we
parameterize and run urban climate models. The future of
urban climate may even be in the cloud! In parallel, as sensing
capabilities grow, cities will become smarter through sensors
embedded in the urban fabric. These future directions in UCI
research and application are instrumental in achieving the vision
of climate-sensitive urban design and planning.

In recent years, the focus of urban climate has shifted from
UHI studies towards intra-urban hazard distribution and human
thermal exposure assessments. Emerging research aims to
combine climate analyses with various urban data layers to
achieve more comprehensive vulnerability and inequity
analyses. For example, Harlan et al. (2006) investigated heat-
related health inequalities related to microclimate considering
socioeconomic status, ethnicity data, and urban form and
configuration descriptors. Results showed that residents in
hotter neighborhoods were more vulnerable because of fewer
resources to cope with heat. Servadio et al. (2019) analyzed health
outcomes and air pollution exposure in Atlanta using various
data layers and found that areas with majority African-American
populations exhibited significantly higher exposure to poor air
quality. Considering the social dimensions of atmospheric
impacts in neighborhoods allows to further identify “hotspots”
with vulnerable populations that are unproportionally affected by
hazards. This is further enabled by novel digital communication
platforms (such as public data dashboards) that use simplified
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data visualizations as well as easily comprehensible metrics and
indicators to communicate the relevance of urban climate data for
urban dwellers. The contributions of UCI to public engagement
not only bridge the communication gap and inform residents
about the extent of urban climate challenges, but also enable
people to make individual decisions that can minimize exposure
to environmental stressors in cities. Lastly, the emergence of
“humans as sensors” and citizen science in UCI is key to not only
inform urban dwellers, but also devise the most effective solutions
for improving human health and wellbeing in the face of
increased climate challenges.

Novel approaches always entail barriers that need to be
overcome, and UCI is no exception. With respect to novel
sensors and data sources, guidelines and best practices must
be established to guarantee standardized methods for
crowdsourcing, IoT sensing, data curation, processing, storage,
and metadata documentation. In addition, long-term availability
of data must be secured. While public entities have recently
adopted more open data policies, citizen-science generated
data are often legally owned by private companies and
dependent on short-term business interests. Another emerging
concern is data privacy, which needs careful consideration at the
design phase of any implementation.

While big, unprecedented data sets offer exciting
opportunities to better understand the Earth System, our data
collection ability currently outweighs our usage and analysis
capacity. Too often, available data are not activated, leaving
behind unused potential. Moving forward, the focus should
not only be on new data collection but also drawing
meaningful insight from data sets already available. Also, with
inflating raw data, processing chains require higher attention,
highlighting the important role of open-source quality control
packages.

Finally, as human-centric data collection through mobile
devices becomes more mainstream, the digital divide must be
addressed. While smart technology enables wide-scale, human-
centric data collection, more affluent areas will have more access
to those technologies, further contributing to urban climate
inequity.

Cities are living, breathing ecosystems that include physical,
socio-economical, and behavioral processes. UCI seeks to
understand and respond to such complex, dynamic human-
environment interactions through novel technological,
methodological, and systems thinking approaches, achieving
more integrated and human-centric assessments of urban
climate challenges in future research and application.
Moving forward, UCI will undoubtedly shape the urban
climate research agenda for upcoming decades and
positively impact fundamental, applied, and policy-relevant
research.
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