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The accumulation of potentially toxic elements (PTE) in a soil–rice system poses a
significant issue of concern in agricultural soils, particularly in the polluted or high PTE
geological background regions, such as karst areas. The source identification,
bioaccumulation factors of PTE, and its health risk were investigated by correlation
analysis, principal components analysis, and single/comprehensive assessments in a
soil-rice system in Mashan County, Guangxi Province. The results showed that the mean
contents of PTE in rice rhizosphere soil samples were higher than Guangxi surface soil, but
lower than Mashan background. Of the samples, 84.21% have Cd content exceeding the
soil environmental quality -- risk control standard for soil contamination of agricultural land
in China (GB 15618-2018) risk screening value. The Nemerow comprehensive pollution
index indicated that 21.05 and 26.32% of the soil samples were moderately and heavily
polluted. The contents of pH-related exchangeable Ca, exchangeable Mg, and redox-
related available Fe and available Mn in soil affected the bioaccumulation of PTE in rice. In
all the rice samples, 55.26% of Cd and 31.58% of Pb exceed themaximum allowable value
of contaminants in rice recommended by the national food safety standard for maximum
levels of contaminants in foods in China (GB 2762-2017). The average targeted hazard
quotient values (THQ) of PTE decreased in an order of As > Cd > Cr > Cu > Zn > Pb > Hg,
and the degree of health risk it posed to the population was Children > Female >Male. The
hazard index (HI) of all samples was greater than one due to all THQAs and the THQCd of
more than half samples were above 1, which implied that the residents were exposed to
non-carcinogenic risk by rice ingestion. Therefore, the PTE in the karst area with a high
geological background can be absorbed and migrated by crops, leading to a greater
health risk to humans, which should be paid attention to in future research and agricultural
management.
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INTRODUCTION

With population growth and economic development, the natural
process of slow release of heavy metals is accelerated, resulting in
heavy metal pollution of soil, water, and the atmosphere (Bing
et al., 2021; Savignan et al., 2021; Egbueri et al., 2022a). Heavy
metals can accumulate in soil and dissolve into groundwater
during leaching, resulting in groundwater and surface
contamination of water (Ayejoto et al., 2022; Egbueri et al.,
2022b). Heavy metal pollution in cropland soils is a global
environmental issue of concern owing to its toxicological
effects on soil-plant systems and humans (Bashir et al., 2018;
HouD. et al., 2020; Kukusamude et al., 2021). Cobalt (Co), copper
(Cu), nickel (Ni), iron (Fe), manganese (Mn), zinc (Zn),
molybdenum (Mo), and selenium (Se) are essential elements
of the human body; still, they would cause health problems
after years of insufficient intake or excessive intake of food
exceeding the safety limit (Giri et al., 2020), while arsenic
(As), cadmium (Cd), chromium (Cr), mercury (Hg), and lead
(Pb) are nonessential to the human body, and these can cause
health problems even at low contents (Giri et al., 2019; Jalili et al.,
2020). Human exposure to heavy metals is through inhalation,
oral ingestion, and skin absorption (Sanaei et al., 2021; Ayejoto
et al., 2022; Egbueri et al., 2022b). Rice is the most widely
consumed grain on the planet, with global rice production
exceeding 740 million tons in 2014, with Asian countries such
as China, Thailand, Japan, and Indonesia leading the way in
global rice production (Hu et al., 2016). Rice is one of the most
essential staple foods in China, particularly in southern areas. The
average consumption of rice is 219 g/person/day, which is nearly
50% higher than the global average (Hu et al., 2016). Dietary
intake of rice grown in soils with a high content of potentially
toxic elements (PTE) exceeding the maximum allowable
contaminant concentration could be a serious threat to human
health (Chen et al., 2018; Mu et al., 2020). Previous studies
revealed that the content of PTE in rice grains is mainly
determined by soil physicochemical properties, element
availability, and rice varieties (Li et al., 2019).

The content of PTE in rice grains is correlated with its
corresponding soil (Baruah et al., 2021). Approximately 19.4%
of farmland in China has been reported contaminated by PTE in
2014 (Qu et al., 2016), with higher contents of Cd and Pb
distributed in northwest, south, and southwest China than
elsewhere (Bing et al., 2021). Weathering of parent materials is
a natural source of heavy metals in soils. High geological
background characteristics of soil heavy metals have been
found in karst areas such as Southwest China (Wen et al.,
2020b; Tang et al., 2021; Yang et al., 2021b), the Indo-China
Peninsula (Mallongi et al., 2022), and Europe (Savignan et al.,
2021). The soil in the karst valley densely populated and
concentrated in rural towns is strongly affected by anthropic
activities. Soil heavy metals can be affected by wet and dry
deposition of fossil fuel combustion, fertilizer and pesticide
application, sewage irrigation, and improper disposal of waste
(Egbueri et al., 2020; Egbueri et al., 2021b; Savignan et al., 2021).
In addition, the combination of a high geological background of
heavy metals and human activities makes crops in karst areas

vulnerable to heavy metal pollution, which will affect future
environmental sustainability and human health (Zhang et al.,
2019; Zhang et al., 2021; Mallongi et al., 2022).

Due to the enrichment of heavy metal elements in the
carbonate weathering process and soil genesis, the resulting
soil has significantly high contents of PTE (Wen et al., 2020b;
Yang et al., 2021b). The first national pollutant survey reflected
that the average contents of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in
the surface soils of Guangxi where karst is widely distributed were
2.0, 4.5, 1.6, 1.1, 2.6, 1.3, 1.4, and 1.4 times higher than that of
China, respectively. Due to the limited arable land per capita, part
of farmlands with a high heavy metal geological background in
the karst area in Southwest China is still used to grow crops
(Zhang et al., 2019).

Limestone soil developed from weathering of carbonate rocks
may affect the accumulation of trace elements in the edible parts
of crop plants (Wen et al., 2020a; Li et al., 2021; Tang et al., 2021;
Zhang et al., 2021). Yang et al. (2021a) studied the excess rate and
influencing factors of Cd in the soil-rice system in karst areas and
proposed a new safety standard based on pH and soil Cd content.
Soil carbonate in the karst area increased soil pH, and the
adsorption of Cd by Fe/Mn oxide/hydroxide significantly
reduced the bioavailability of soil Cd, and the excess rate of
rice in the karst area was much lower than that in the non-karst
area (Li et al., 2021). The limestone soil in the karst area is

FIGURE 1 | Map of sampling sites and geological background.
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calcium-rich and alkaline. Unfortunately, to the best of our
knowledge, the effect of exchangeable Ca and Mg on the
immobilization of heavy metals in the soil-rice system has not
been reported yet. Therefore, the purposes of this study were to
(1) evaluate the contents of 7 PTE (As, Cd, Cr, Cu, Hg, Pb, and
Zn) in rice grains and rhizosphere soils of the karst area,
identifying the source of heavy metals and understanding the
influence of soil physicochemical properties related to pH and
redox on the accumulation of PTE in the soil-rice system; and (2)
assess the potential health (non-carcinogenic) risk of these PTE to
children and adult through rice consumption.

MATERIALS AND METHODS

Study Area
The studied area is located west of Mashan County, Guangxi
Province, China (Figure 1). This area is characterized by a mean
annual rainfall of 1722.5 mm, with an annual average
temperature of 21.8°C. The central part of the study area is
characterized by thick limestone layers with dolomitic
limestone intercalations. Soils are dominated by brown
rendzina. The land use types are mainly shrubs in
mountainous areas and abandoned farmland in depressions.
Non-carbonate rocks, comprising sandstones and mudstones,
are distributed to the west, south, and east of the study area.
The land uses in this area mainly include secondary forests and
reservoirs. The valley consists of Holocene clay and loamy sand
sediments, distributed among the mountains, and the land uses
include paddy fields, drylands, and villages. Agricultural activities
are the source of income for residents in the study area. Cultivated
land includes two-season rice, water and vegetable rotation, corn
and orchards, etc. Excessive use of chemical fertilizers and
pesticides to pursue higher yields may bring heavy metal
pollution to the cultivated soil.

Samples
Thirty-eight groups of rice and rhizosphere soil samples were
collected in early November 2017 (Figure 1). Field sampling
was conducted according to a standardized sampling method
(MLRPRC Ministry of Land and Resources of the People’s
Republic of China, 2016). At each sampling point, rice and
rhizosphere soil were collected from four sub-spots within
20 m of the surrounding area and combined into a
compositional sample, sealed, and transported with a plastic
bag. After removing the debris and roots, the fresh soil sample
was passed through a 2-mm nylon sieve to improve
uniformity. Air-dried soil samples and polished rice were
ground to a particle size of not more than 74 um for trace
element analysis.

Laboratory Analysis
Contents of Cd, Cr, Cu, Pb, and Znmeasuring were performed on
inductively coupled plasma (ICP)-mass spectrometry
(PerkinElmer Inc., United States, NexION 300) after digesting
the soil samples with <0.074-mm particle size by
HCl—HF—HClO4—HNO3 mixture, and rice sample digested

by HNO3–H2O2. After digesting by aqua regia, and reducting by
potassium borohydride, As and Hg were determined by atomic
fluorescence spectroscopy. Soil pH was determined at a 1:2.5 (w/
v) soil/water ratio by a precision pH meter (PHS-3C) in the lab.
The soil organic carbon (Corg) was determined through titration
using the potassium dichromate oxidation–ferrous ammonium
sulfate method. Exchangeable calcium (ECa) and magnesium
(EMg) were leached with 1 mol/L ammonium acetate (pH =
7.0), and measured by ICP-emission spectrometry
(PerkinElmer Inc., United States, OPTIMA 8300). The
availably iron (AFe), copper (ACu), zinc (AZn), and manganese
(AMn) were leached with leaching solution (0.1 mol/L
hydrochloric acids for acid soil, and DTPA for calcareous
soil). The leaching solution was determined by ICP-emission
spectrometry. The available silicon (ASi) was leached with
0.025 mol/L citric acid at 30°C for 5 h equilibrating, and the
filtrate was taken for colorimetric comparison with silicon
molybdenum blue. Standard materials of soil (GBW07417 for
effective state analysis of soil elements, GBW07427 for total
concentration analysis of soil elements) and rice (GSB-1 and
GSB-23, both for total concentration analysis of rice elements)
covered all studied elements and were tested among every ninth
sample, revealing that the average analytical errors were
about 5%.

PTE Contamination Assessment
Pollution Load Index and Potential Ecological Risk
Index
The contamination factor (CF) has been used to assess the
pollution level of trace elements in the soil since the 1980s
(Tomlinson et al., 1980; Kowalska et al., 2018). The CF values
of PTE in soil were calculated as follows:

CFi � Ci/CREFi (1)
where Ci and CRefi are the contents of element “i” (mg/kg) in the
soils and background value of the PTE in Mashan County, which
was obtained from this study and a geochemical survey of land
quality in 2016, respectively (Table 1).

Correspondingly, the pollution degree of a single element is
grouped into four levels: low (CF < 1), moderate (1 ≤ CF < 3),
equivalent (3 ≤ CF < 6), and extremely high (CF F 6) (Hakanson,
1980; Egbueri et al., 2021b; Egbueri and Agbasi, 2022).

To evaluate the overall degree of heavy metal contamination
across all sampling sites, the pollution load index (PLI) was
proposed to represent total pollution of all PTE in the soil,
which is calculated as follows:

PLI � �������������������
CF1 × CF2 × · · · × CFn

n
√

(2)
where n is the total number of the studied PTE consisting of As,
Cd, Cr, Cu, Hg, Pb, and Zn. The contamination degrees were
further classified as PLI <1, 1 ≤ PLI <2, 2 ≤ PLI <3, and PLI ≥3,
which indicated low, moderate, high, and very high
contamination, respectively (Egbueri et al., 2021b).

The potential ecological factor (PEF) has been widely applied
to assess the ecological risk of toxic PTE in soils (Hakanson, 1980;
Gu et al., 2021). The PEF values are calculated as follows:
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PEFi � Tri × CFi � Tri × Ci/CREFi (3)
where Tri is the biological toxicity coefficient for heavy metal i
(10, 30, 2, 5, 40, 5, and one for As, Cd, Cr, Cu, Hg, Pb, and Zn,
respectively) (Hakanson, 1980). The potential ecological risk
index (RI) can be calculated by the following function:

RI � ∑n

i�1PEFi (4)
The classification standards of ecological risks for PEF and RI

are shown in Supplementary Table S1.

Nemeiro Comprehensive Pollution Index
Single pollution index (Pi) is calculated to assess heavy metal
pollution in soils and rice as follows:

Pi � Ci

Si
(5)

where Ci represents contents of the element i in the soil or rice
sample, Si represents contents of component i in risk
screening values for soil contamination of agriculture land
GB 15618-2018 (MEEPRC Ministry of Ecology and
Environment of the People’s Republic of China, 2018), or
maximum levels of contaminants in foods GB 2762-2017
(NHFPCPRC and CFDA, National Health and Family
Planning Commission and China Food and Drug
Administration, 2017) in China, respectively. The risk
screening values for soil and maximum levels of
contaminants for rice were listed in Supplementary Table
S2. As GB 2762-2017 only stipulates the content limits of As,
Cd, Cr, Hg, and Pb in rice (Supplementary Table S2), these
elements were assessed by Pi in this study. Soil or crop are
polluted by metal i if Pi > 1 (Hu et al., 2017).

The Nemerow Comprehensive Pollution Index (NCPI) is
simple in form and has good applicability. It is commonly
used for heavy metal comprehensive pollution evaluation, and
expressed as:

NCPI �
��������������(P2

i max + P2
i ave)/2

√
(6)

where Pimax and Piave represent the maximum and average Pi
value of PTE, respectively. According to NCPI, five levels are used
to classify the pollution level of PTE: clean (≤0.7), prevention (0.7
~1.0), light pollution (1.0~2.0), moderate (2.0 ~3.0), and heavy
pollution (>3.0) (Hu et al., 2017; Kowalska et al., 2018).

Bioaccumulation factor
The transfer ratio of PTE from soil to the crop could be

quantified by bioaccumulation factor (BAF) (Kumar et al., 2019)
as follows:

BAFi � Ci rice

Ci soil
(7)

where Ci rice and Ci soil are the contents of element i in the rice and
the corresponding rhizosphere soils, respectively.

Human Exposure and Risk Assessment
Health risk for three groups of people—children, adult women,
and adult men—through rice consumption was evaluated by
estimated daily intake (EDI), targeted hazard quotient (THQ),
and hazard index (HI), as proposed by (USEPAU.S.
Environmental Protection Agency, 1989)

EDIi � (Ci × DI)/BW (8)
THQi � EDIi/RfDi (9)
HI � ∑n

i�1THQi (10)
where EDIi is the total daily exposure of element i [mg/(kg
bodyweightday)], Ci is the content of i in polished rice
(mg/kg), and DI is the recommended dose of rice intake for
residents during 2013–2018 [0.25 and 0.40 kg/day for children
and adults, according to the minimum and maximum
recommended amounts of cereals by Chinese Nutrition
Society (CNS Chinese Nutrition Society, 2021)]; BW is the
body weight of children (9 years old), adult men and women,

TABLE 1 | Descriptive analysis of the heavy metal contents in rhizosphere soil and rice samples.

Plantation
type

Item As Cd Cr Cu Hg Pb Zn

Soil (N = 38) Min 1.75 0.22 35.50 12.10 0.07 15.00 47.30
Max 20.72 7.72 177.00 45.80 0.34 57.80 324.00
Mean 7.45 1.52 83.13 24.30 0.17 32.67 137.47
SD 4.97 1.48 33.45 7.53 0.07 10.75 70.75
CV (%) 66.76 97.35 40.24 30.99 37.55 32.89 51.47
Skewness 1.186 2.466 1.066 0.947 0.882 0.779 0.983
Kurtosis 0.463 7.851 0.734 0.858 0.215 0.255 0.527
Soil background value 22.15 2.38 140.39 40.13 0.197 44.43 199.48
Surface soil in Guangxi (Hou, 2020) 8 0.144 50 18 0.083 24 43

Rice (N = 38) Min 0.06 0.01 0.03 1.15 0.00 0.01 10.20
Max 0.21 1.04 1.54 14.10 0.01 0.60 21.10
Mean 0.10 0.28 0.36 4.12 0.00 0.15 14.64
SD 0.03 0.26 0.29 3.12 0.00 0.17 2.28
CV(%) 30.26 92.88 80.18 75.87 31.57 109.21 15.56
Skewness 1.621 1.358 2.083 1.772 0.106 1.146 0.665
Kurtosis 3.356 1.521 6.781 2.821 -1.424 0.444 0.660

N is the number of samples (there are 22 Hg data in the rice sample); CV is the coefficient of variable; CV = SD/mean×100%; the units of elements are mg/kg.
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which are 30, 66.2, and 57.3 kg on average, respectively (Zuo et al.,
2019). THQi is the ratio of element i between EDI and reference
dose (RfDis). The RfD is considered safe for lifetime exposure to
PTE and was enumerated in Supplementary Table S3. It may
cause side effects to health when THQ >1. HI assumes that eating
certain types of food may result in simultaneous exposure to
multiple PTE. If HI < 1, harmful health effects are assumed to be
unlikely to happen, while there are non-carcinogenic risks that
could arise when HI > 1 (Zeng et al., 2015).

Data Analysis
Chemometric analysis including correlation analysis, unrotated
principal component analysis, and varimax-rotated factor
analysis were performed for source apportionment of soil PTE
and risk assessment of soil-rice system by SPSS Statistics 18 (IBM,
United States). Boxplots were performed by Origin 8.5 (Origin
Lab, United States).

RESULTS AND DISCUSSION

Contents and Contamination Levels of PTE
in the Soil
The statistical analysis results of PTE are exhibited in Table 1. On
average, the contents of As, Cd, Cr, Cu, Hg, Pb, and Zn in soils
were 7.45 ± 4.98, 1.53 ± 1.49, 83.13 ± 33.45, 24.3 ± 7.53, 0.18 ±
0.07, 32.67 ± 10.75, and 137.47 ± 70.75 mg/kg, respectively. Soil
pH ranged from acidic (4.83) to alkaline (8.18). The results
showed that the averaged contents of all PTE in soil samples
were significantly lower than the corresponding local background
values of Mashan County but higher than the background value
of surface soil in Guangxi except for As (Hou Q. Y. et al., 2020)
(Table 1). There were 6, 2, 2, 11, 6, and 7 in 38 samples of Cd, Cr,
Cu, Hg, Pb, and Zn that exceeded the local background values.

The coefficient of variations (CV) of the PTE in the soils was,
in a decreased order, Cd (97.35%), As (66.76%), Zn (51.47%), Cr
(40.24%), Hg (37.55%), Pb (32.89%), and Cu (30.99%),
respectively (Table 1), suggesting that Cd was obviously
enriched in some soil samples, while Zn, Cr, Hg, Pb, and Cu
were slightly enriched in some areas. In addition, results of the

Kolmogorov-Smirnov test for normality also showed that all the
studied soil element contents were skewed distributions.

PTE in almost all soil samples had a CF value below 3, except
for one sample with CFCd of 3.24 (Figure 2A; Table 2), indicating
that the contamination levels of PTE were low or slightly
moderate (Kowalska et al., 2018). The average PLI value was
0.60 ± 0.27, and 5 out of 38 samples had a PLI value greater than
1, with the maximum value of 1.35. The relatively low PLI value
indicated that the soil was mildly polluted due to the high
geological background (Kowalska et al., 2018).

The PEF of soil samples was 3.37 ± 2.25, 19.24 ± 18.73, 1.18 ±
0.48, 3.03 ± 0.94, 35.59 ± 13.37, 3.68 ± 1.21, and 0.69 ± 0.35 for As,
Cd, Cr, Cu, Hg, Pb, and Zn, respectively (Figure 2B). Only 3
samples of Cd and 11 samples of Hg had amoderate potential risk
in the study area (Figure 2B). The RI values ranged from 23.70 to
190.30, with an average value of 66.77 ± 35.00, demonstrating that
all soil samples were at a pollution-free level.

However, according to the risk screening values of As, Cd, Cr,
Cu, Hg, Pb, and Zn stipulated in GB 15618-2018, the contents of
Cd in 84.21% of soil samples were above the risk screening values,
followed by Zn, with 10.53% of samples exceeding the risk
screening values, while As, Cr, Cu, Hg, and Pb in paddy soils
were lower than the guideline (Figure 3). NCPI of 21.05 and
26.32% soil samples showed moderate and heavy pollution
(Table 3), which is common in karst areas (Wen et al.,
2020b). With the increase of weathering intensity, the content
of Fe/Al/Mn oxides, organic carbon, and clay minerals increases,
and leads to the enrichment of Cd in soil (Wen et al., 2020b; Yang
et al., 2021b).

Chemometric Analysis for Source
Identification and Risk Assessment of PTE
in Soil
Correlation Analysis
The correlation coefficients between soil pH, SOC, effective state,
and heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the studied
soils were calculated to study the influencing factors on the
enrichment of heavy metals in soils (Supplementary Table
S4). Contents of As, Cd, Cr, Cu, Hg, Pb, Zn, ASi, and AMn in

FIGURE 2 |Contamination levels (A) and potential ecological risk (B) of each PTE in the soils of the karst. The blue bands indicate the range of contamination factor
(CF) and pollution load index (PLI) (A), and potential ecological factor (PEF) and potential ecological risk index (RI) (B) of PTE in soils; and the green dotted line divides the
low and moderate levels.
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soils were significantly positively correlated with each other (p <
0.01). High ECa and EMg content can increase the adsorption of
heavymetal ions (Kokkinos et al., 2020), can also increase soil pH,
and indirectly immobilize heavy metals (Hussain et al., 2021).
The Corg was significantly positively correlated with Cd, Cu, Hg,
and Pb, consistent with the results of previous studies (Mu et al.,
2020; Zhang et al., 2021). Available Fe was significantly (p < 0.01)
negatively correlated with pH, ECa, EMg, ASi, and all studied PTE,
but significantly positively correlated with ACu and AZn,
indicating higher Fe availability in lower pH soils, similar to
those reported for paddy soil in Bangladesh (Rahman et al., 2018)
and India (Baruah et al., 2021). All the studied PTE were almost
significantly negatively correlated with AFe in soils, which
indicated that the activity of Fe is not conducive to the
accumulation of heavy metals (Yu et al., 2016). The
ferromanganese nodules have a strong ability to enrich heavy
metals. The change of redox conditions results in the layered
distribution of iron, manganese, and heavy metals in the nodules.
Different mineral species in the nodules have different release and

adsorption capacities of elements in the face of environmental
changes, which results in different correlations (Frierdich and
Catalano, 2012; Liu et al., 2021).

Principal Component Analysis
PCA can be used to identify potential sources of the PTE (Egbueri
and Agbasi, 2022; Mallongi et al., 2022). The correlation
coefficients of most variables in this area were relatively high,
and common factors can be extracted from them; the
corresponding probability P is close to 0, and the Kaiser-
Meyer-Olkin test value is 0.831, which is suitable for PCA to
establish an adequate understanding of the sources of heavy
metals and other parameters in the analyzed samples. Results
of the PCA are presented in Table 4. It can be seen from Table 4
that the information of the sources of PTE can be represented by
3 PCs, and the 3 PCs can explain 86.6% of the total variables,
indicating that the first three factors can reflect most of the
information of all the data. It was clear that As, Cd, Cr, Cu, Hg,
Pb, Zn, pH, ASi, and AFe have significant loadings in PC1. This
suggests that there may be a closer correlation between these
parameters. The average content of all PTE did not exceed the
local background value, and the excess rate was very low,
indicating a main natural source of these PTE (Kowalska
et al., 2018). They could be attributed to the weathering of
carbonate minerals (Egbueri et al., 2021a). Various degrees of
soil pollution of PTE were reported in the karst regions (Zhang
et al., 2013). During the weathering and pedogenesis of heavy
metal-rich carbonate rocks, alkaline Earth elements were leached,
and heavy metals in soil were enriched by residues such as Fe/Mn
oxides and clay minerals (Wen et al., 2020b). The carbonate rocks
weathered soil characterized by high pH, high calcium carbonate,
and soil organic matter content, which play an essential role in
immobilizing PTE in soil (Guo et al., 2006; Zhao et al., 2010;
Wang et al., 2015).

In PC2, significant loadings were observed on the ACu, Corg,
AZn, and Cu (Table 4). Rice roots and straws are the main sources
of organic matter in paddy soils. The enrichment coefficients of
Cd, Cu, and Zn in the soil-rice system are relatively high. Previous
studies believed that heavy metals mainly accumulated in the

TABLE 2 | Number of soil samples with PTE pollution assessed by contamination factor (CF) and pollution load index (PLI) in the study area.

Pollution
level

As Cd Cr Cu Hg Pb Zn PLI

Low degree Number 38 32 36 36 27 32 31 33
Percentage 100% 84.21% 94.74% 94.74% 71.05% 84.21% 81.58% 86.84%

Moderate degree Number 0 5 2 2 11 6 7 5
Percentage 0.00% 13.16% 5.26% 5.26% 28.95% 15.79% 18.42% 13.16%

Equivalent degree Number 0 1 0 0 0 0 0 0
Percentage 0.00% 2.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

FIGURE 3 | Boxplots of heavy metal single pollution index (Pi) and
Nemerow Comprehensive Pollution Index (NCPI) of soil in the study area.

TABLE 3 | Number of soil samples with PTE pollution assessed by Nemerow composite pollution index (NCPI) according to GB 15618-2018 in the study area.

Clean Precaution Light pollution Moderate Heavy pollution

Number 4 5 11 8 10
Percent 10.53% 13.16% 28.95% 21.05% 26.32%
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roots, and there was a good correlation between Corg and PTE.
For instance, human activities such as water irrigation and
application of fertilizers and pesticides may have a significant
impact on the enrichment of metals in farmland (Yang et al.,
2013). Thus, PC2 can be attributed to agricultural activity.

Furthermore, PC3 was noticed to have obvious loadings on
AMn and ECa (Table 4), having a negative and positive loading,
respectively. The variation showed differences in their origin or
impact. As discussed above, ECa affects the mobility of heavy
metals by buffering pH. While AMn was significantly positively
correlated with organic matter and clay content, extremely
significantly negatively correlated with pH and calcium
carbonate content, and extremely significantly positively
correlated with cation exchange capacity (Pu et al., 2010).

Varimax-Rotated Factor Analysis
The Varimax twiddle factors extracted in this study for soil heavy
metal association and source identification are shown in Table 4.
Similar to PCA, 86.6% of the information about the heavy metal
data was explained by three-factor categories. Factor 1 has high
loadings for As, Cd, Cr, Cu, Hg, Pb, Zn, pH, ASi, AFe, PLI, and RI
(Table 4). Combined with the fact that there are only individual
quarries in the locality and no other industries, therefore, Factor 1
was judged to be the “weathering residual source”. Meanwhile,
the correlation between As, Cd, Cr, Hg, Pb, Zn, SPI, and RI in
Factor 2 became stronger than in PC3. This observation seems to
confirm that they may have the same origin. The extremely
positive correlation of ECa and EMg with Factor 2 suggested
the source of carbonate rock, the nearby limestone quarries.
Furthermore, leaded gasoline, diesel combustion, fossil fuel
burning, braking, and vehicular emission were potentially
elevated PTE levels in the soil. Therefore, Factor 2 may be

attributed to the mixture of mineral powder and fuel exhaust
particles in the farmland soil in the form of dry and wet
deposition. Moreover, recent studies found that several
elements such as Zn, Cd, Pb, and As in alluvial deposits are
related to their easily transportable forms (soluble forms)
(Fonseca et al., 2021). Toxic elements in soils developed from
carbonate rocks can also be transported and deposited in
downstream alluvial plains (Hou Q. et al., 2020). Factor 3
explained about 14.674% of the total variance and was
considered loaded for Corg, ACu, Cu, and AZn (Table 4),
which is the same as PC2 related to agricultural resources.
They can come from wastewater irrigation, fertilizer
application, pesticides, organic manures, compost, and sewage
sludges.

Contents and Risk Assessment of PTE in
Rice
The mean contents of As, Cd, Cr, Cu, Hg, Pb, and Zn in rough
rice were 0.10 ± 0.03, 0.28 ± 0.26, 0.36 ± 0.29, 4.12 ± 3.12, 0.0045 ±
0.0014, 0.15 ± 0.17, and 14.64 ± 2.28 mg/kg, respectively (Table 1;
Figure 4A). The Pi of the As, Cd, Cr, Hg, and Pb of rice samples
varied from 0.29 to 1.05, 0.03 to 5.20, 0.03 to 1.54, 0.01 to 0.35,
and 0.03 to 3.00, respectively. The average Pi decreased in the
order of Cd (1.38) >Pb (0.77) > As (0.52) > Cr (0.36) > Hg (0.13)
(Figure 4B). In the present study, 55.26% of Cd (21 samples) and
31.58% of Pb (12 samples) were higher than the maximum
allowable value of 0.2 mg/kg for cereal grains recommended
by NHFPCPRC and CFDA, National Health and Family
Planning Commission and China Food and Drug
Administration (2017), respectively, and 15.79% (6 samples) of
the samples had both Cd and Pb exceeding the maximum

TABLE 4 | Data dimensionality reduction extractions.

Parameter Unrotated principal components Varimax-rotated factor loadings Communality

PC1 PC2 PC3 Factor 1 Factor 2 Factor 3

As 0.928 −0.151 -0.115 0.771 0.550 −0.027 0.898
Cd 0.915 0.206 0.130 0.698 0.502 0.397 0.897
Cr 0.861 −0.125 −0.079 0.703 0.519 0.003 0.763
Cu 0.817 0.550 −0.069 0.807 0.138 0.552 0.975
Hg 0.921 0.033 0.076 0.696 0.564 0.228 0.855
Pb 0.916 0.121 −0.185 0.859 0.354 0.155 0.887
Zn 0.975 0.117 0.061 0.766 0.541 0.297 0.967
Corg 0.314 0.694 0.396 0.173 0.054 0.839 0.737
pH 0.904 −0.227 0.105 0.611 0.711 0.028 0.880
ECa 0.570 −0.466 0.607 0.010 0.953 0.051 0.911
EMg 0.697 −0.535 0.371 0.229 0.918 −0.113 0.909
ASi 0.838 0.217 −0.407 0.944 0.121 0.098 0.915
AMn 0.639 0.059 −0.693 0.914 −0.085 −0.222 0.891
AFe −0.824 0.407 −0.037 −0.547 −0.719 0.171 0.846
AZn −0.635 0.557 0.148 −0.47 −0.576 0.427 0.736
ACu −0.156 0.850 0.227 −0.071 −0.406 0.792 0.798
NCPI 0.780 0.468 0.190 0.613 0.319 0.621 0.863
PLI 0.990 0.107 -0.005 0.813 0.515 0.255 0.992
RI 0.980 0.115 0.070 0.764 0.551 0.302 0.979
Eigenvalue 12.238 2.942 1.520 8.365 5.547 2.788
Variance % 64.412 15.482 7.998 44.026 29.193 14.674
Cumulative % 64.412 79.894 87.893 44.026 73.219 87.893
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allowable value. The exceedance rate of inorganic As and Cr was
2.6%. This is consistent with the low exceedance rates of As, Cr,
and Hg in rice grain in the karst areas of Guangxi (Yang et al.,
2021a). The excess rate of Pb in this study was relatively high but
does not exceed the maximum allowable value in Yang et al.
(2021a). The Cd in 26.67% (75 in total) of the rice samples
exceeded the maximum allowable value in karst regions of
Liujiang County, Guangxi, with the mean contents of
0.16 mg/kg (Tang et al., 2021). Even higher excessive rates

were found in the karst area of Jinchengjiang, Guangxi, 95%
(40 in total) of rice grains harvested from limestone soil had a Cd
content that surpasses the maximum permissible concentration
(Li et al., 2018). The CVs of PTE in rice decreased in an order of
Pb (109.21%), Cd (92.88%), Cr (80.18%), Cu (75.87%), Hg
(31.57%), As (30.26%), and Zn (15.56%) in this study. The
high spatial heterogeneity of Cd may lead to different results
of the exceeded rate in different areas.

Human Health Risk Assessments
The results of using EDI, THQ, and HI to assess the potential
non-carcinogenic effect of long-term exposure to PTE of edible
rice are shown in Table 5 and Figure 5. The average EDIs of As,
Cd, Cr, Cu, Hg, Pb, and Zn for inhabitants by consuming rice
were 0.00062, 0.00166, 0.00216, 0.02487, 0.00002, 0.00191, and
0.08849 mg/(kg BWday) for men, and 0.00072, 0.00192, 0.00250,
0.02874, 0.00002, 0.00107, and 0.10223 mg/(kg BWday) for
women, and 0.00086, 0.00230, 0.00298, 0.03430, 0.00004,
0.00128, and 0.12204 mg/(kg BWday) for children. The
average THQ values of PTE decreased in an order of As (2.08)
>Cd (1.66) >Cr (0.72) >Cu (0.62) >Zn (0.29) >Pb (0.27) >Hg
(0.09) for men, As (2.4) >Cd (1.92) >Cr (0.83) >Cu (0.72) >Zn
(0.34) >Pb (0.31) >Hg (0.1) for women, and As (2.86)>Cd (2.3)
>Cr (0.99) >Cu (0.86) >Zn (0.41) >Pb (0.37) >Hg (0.12) for
children. The EDIs and THQs values of the PTE decreased in the
order of children > women > men owing to the increasing body
weight. The dietary risk of Cd and As in children is the highest,
and decreases with the increasing body weight. The same results
were reported by Chen et al. (2018), Baruah et al. (2021), and
Mallongi et al. (2022). Children are also at higher health risks

FIGURE 4 | Boxplots of heavy metal contents (A) and single pollution index (Pi) (B) of rice in the study area (mg/kg).

TABLE 5 | The number of samples with non-carcinogenic risk [targeted hazard quotient (THQ)≥1] caused by rice intake of different groups in the study area.

Groups As Cd Cr Cu Hg Pb Zn

Child Number 38 23 16 11 0 3 0
Percentage 100% 60.53% 42.11% 28.95% 0% 7.89% 0%

Women Number 38 22 12 8 0 2 0
Percentage 100% 57.89% 31.58% 21.05% 0% 5.26% 0%

Men Number 38 21 10 6 0 1 0
Percentage 100% 55.26% 26.32% 15.79% 0% 2.63% 0%

FIGURE 5 | Box plots of targeted hazard quotient (THQ) for individual
heavy metals and hazard index (HI) of men, women, and children (horizontal
dotted line indicates the threshold value of the hazard quotient).
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than adults by drinking substandard water. The HI, THQAs, and
the average THQCd in all the samples were greater than 1
(Figure 5), indicating that residents suffer from non-
carcinogenic risk by rice consumption. As and Cd were the
biggest contributors to high HI. This is consistent with
previous studies reporting that As and Cd intake of rice is the
main contributor to health risks (Chen et al., 2018; Baruah et al.,
2021; Tang et al., 2021). Given the high dietary Cd intake,
effective agronomic measures should be considered to solve
Cd pollution in the soil and reduce the transfer of Cd from
the soil to edible crops (Hussain et al., 2021).

Influencing Factors of PTE Enrichment in
Soil-Rice System
The BAF values of As, Cd, Cr, Cu, Hg, Pb, and Zn in rice were
0.02, 0.318, 0.005, 0.173, 0.030, 0.005, and 0.135, respectively, on
average (Figure 6). The results are consistent with the fact that
cadmium seems to prefer to be absorbed by the rice, although it is
not an essential element. The average enrichment index for Cd,
Zn, and Cu was 0.269, 0.160, and 0.083 in a soil–rice system in
Wenling, Zhejiang Province, respectively, and varied significantly
with heavy metals in paddy fields (Zhao et al., 2010). Cd can form
a complex with plant peptide transporters; thus, it can be
transported to the rice grains (Rizwan et al., 2012). Cd2+ could
replace Ca2+ more easily than other PTE owing to their similar
ion radius and same valence, and Cd would be transported
actively into the grain through the Ca channel, while other
PTEs could only be transported passively (Kim et al., 2002;
Chang et al., 2014).

To determine the relationship between the PTE in rice and
the corresponding rhizosphere soils, correlation analysis was
performed. There was a certain correlation of PTE between
rice and soil (Supplementary Table S5). The concentrations of
Cd (p < 0.01), Hg (p < 0.01), Pb (p < 0.01), and Zn (p < 0.01) in
soil correlated positively with As in rice, and the
concentrations of As (p < 0.01), Cr (p < 0.05), Hg (p <
0.05), Pb (p < 0.05), and Zn (p < 0.05) in soil correlated

positively with Hg in rice, indicating that these elements in soil
promoted the accumulation of As and Hg in rice grains.
However, the correlation of other heavy metals in rice and
soil was not significant, even ACu was not significantly
correlated with Cu in rice, indicating that the accumulation
of heavy metals in the soil-rice system was also affected by
other factors. Heavy metals are absorbed by soil organic matter
and reduce the accumulation of heavy metals in crops. For
example, the Hg content of rice, lgBAFHg, and lgBAFZn are
negatively correlated with Corg (Supplementary Table S5).
But the high Corg content will also increase the accumulation
of As in rice (Norton et al., 2013). This study also found a
significant positive correlation between As in rice and Corg in
soil (Supplementary Table S5). Content of As, Cd, and Zn in
rice and their lgBAF were significantly negatively correlated
with pH, ECa, and EMg in soil, respectively, at different
confidence levels (except that Cd was not significantly
correlated with ECa) (Supplementary Table S5). Soil pH
affects the dissolution of heavy metals, especially in acidic
rice fields; low pH may result in increased solubility and high
availability of heavy metals in rice. High exchangeable calcium
and magnesium content can increase soil pH and indirectly
immobilize heavy metals (Hussain et al., 2021), and also
promote the adsorption capacity of heavy metals (Kokkinos
et al., 2020), leading to negatively correlated results. However,
the correlation between Hg in rice and elements in the soil is
opposite to them. Hg in rice was significantly positively
correlated with pH, ECa, and EMg in soil, but significantly
negatively correlated with AFe, AZn, and ACu (Supplementary
Table S5). Meanwhile, Cd and Zn in rice were significantly
positively correlated with AFe, AZn, and ACu; lgBAF of As, Cd,
and Zn were significantly positively correlated with AFe and
AZn (Supplementary Table S5). This is consistent with
previous reports that decreased rhizosphere Fe and Cd
concentrations resulted in lower Cd concentrations in rice
(Zhang et al., 2018). Iron is an essential and important element
in plants, and the chemical properties and pathways into rice
of Fe and Cd are similar, resulting in their high correlation in
crops (Sharma et al., 2004; Chen et al., 2017; Liu et al., 2017).
Changes in the redox environment affect the dissolution and
bioavailability of heavy metals with different irrigation
methods. Concentrations of iron oxides change due to
redox changes in paddy fields, so it is reasonable that Fe
oxide was significantly and positively correlated with BAF
of As, Cd, and Zn since heavy metals may release from
stable Fe oxide bound fraction which would increase the
availability of heavy metals to rice. The correlation of AMn,
AFe, and lgBAF of heavy metals can also be traced back to their
correlation with heavy metal content in soil (Supplementary
Tables S5 and S4), which may be related to changes in pH and
redox conditions affecting the formation and evolution of
iron-manganese nodules. Significantly negative correlations
between ASi and lgBAFAs, lgBAFCd, lgBAFHg, and lgBAFZn
indicate that Si can effectively alleviate the bioaccumulation of
PTE (Supplementary Table S5), as suggested by a previous
study (Li et al., 2018). In natural environments, soil properties
such as pH, CEC, redox potential, minerals (phosphates, metal

FIGURE 6 | The bioaccumulation factor (BAF) values of PTE in rice
samples.
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hydroxides, metal oxides, and clays), and SOM jointly affect
the BCF of PTE (Ata-Ul-Karim et al., 2020). Future studies are
recommended to investigate the interactions between soil
properties to gain a comprehensive understanding of the
bioavailability of PTE in soil-crop systems. For farmers, the
use of unqualified mineral fertilizers or excessive use of
pesticides should be avoided. Although the excess rate of As
in soil and rice was very low, its non-carcinogenic risk to
humans is high, so organic fertilizers should be used with
caution to reduce the risk of As enrichment in rice. Meanwhile,
attention should be paid to soil acidity and alkalinity, as well as
the impact of irrigation methods on the accumulation of heavy
metals in rice.

CONCLUSION

The average concentration of all studied PTE in rhizosphere soil
of rice samples was below the local background value of Mashan
County, but higher than the background value of surface soil in
Guangxi except for As. Results of contaminant risk assessment
using background values as reference values indicated a low-risk
status. However, Cd in 84.21% of the samples exceeded the risk
screening value of GB 15618-2018, and 21.05 and 26.32% of the
samples were moderately and heavily polluted in the NCPI
assessment. Weathering of parent rocks and alluvial deposits
are the major source of heavy metals in soils, while fossil fuel
combustion and agricultural activities also contribute to the
accumulation of soil PTE. Cd in 55.26% and Pb in 31.58% of
rice samples exceed the maximum allowable value of rice of
China. The high excessive rate of Cd and Pb could be attributed to
their high bioaccumulation factor and high content in the soil.
Residents may be exposed to As and Cd through rice
consumption, resulting in significant non-carcinogenic health
risks, especially children. Health risks caused by excessive
consumption of wild heavy metal-enriched rice should be
avoided. Residents are expected to apply appropriate
agricultural products and irrigation methods to mitigate the

risk of PTE enrichment in rice, and future research should
place a high value on rice cultivars and bioavailability of PTE
in agricultural soils in the karst areas.
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