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The usefulness of the soil quality index (SQI) as a tool to evaluate management options has
mostly been studied within the boundaries of a crop or experimental field, calling for the
need to enhance its utility in regional-scale soil health assessment. Thus, four quantitative
approaches for computing the SQI were evaluated with samples collected from 0 to 15
and 15 to 30 cm depths at 156 points from the Trans-Gangetic Plains of North India.
Principal component analysis (PCA) and soil function (SF)-based approaches were used to
select the minimum dataset from 18 soil parameters and assign weights to key indicators.
In both approaches, two different data transformation methods were followed: 1) routine
method with maximum or minimum values of indicator parameters and 2) percentile
methodwith the 90th or 10th percentile value as the denominator or numerator for “more is
better” and “less is better” scoring functions, respectively. The PCA output with factor
loadings from the varimax rotation showed six principal components accounting for 75%
of the total variance, with PC1 explaining the highest variance (26.8%) followed by PC2
(16%). The SF-based approach was better than PCA in terms of a higher correlation of SQI
with rice and wheat yields. The percentile method showed a higher correlation in both PCA
and SFmethods. The SQI computed from 0 to 30 cm soil data did not show any superiority
over that from 0 to 15 cm soil. Thus, the soil function–based approach with the percentile
method of data transformation proved better to compute the SQI and establish a
relationship with production function.

Keywords: soil quality index, soil management assessment framework, soil productivity, soil ecosystem services
(ES), quantification of soil functions, soil capital, regenerative agriculture

1 INTRODUCTION

Globally, soil-based production systems are showing signs of fatigue with an ever-increasing need for
production intensification as most of the growth in agricultural production has to come from
enhanced productivity from existing or shrinking agricultural land resources (Shah and Wu, 2019).
The need to produce more food for a burgeoning population puts tremendous pressure on our
production systems and natural resource base. Thus, scientific management for maintaining soil
quality remains the key to ensuring global food security (Subba Rao and Lenka, 2020; Çelik et al.,
2021; Janků et al., 2022). The soil quality index (SQI) approach has been used as a quantitative tool to
establish linkage between soil health encompassing physical, chemical, and biological properties of
soil and amanagement goal (Andrews et al., 2002; Abdollahi et al., 2015; Nakajima et al., 2015; Haney
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et al., 2018; Vasu et al., 2021). However, the usefulness of SQI as a
tool to evaluate management options has mostly been studied
within the boundaries of a crop or experimental field (Sharma
et al., 2005; Masto et al., 2007; Stott et al., 2011; Vasu et al., 2021).
A few studies are available where the SQI approach has been used
on a regional scale (Vasu et al., 2016).

As there is no direct method to measure soil quality, its
assessment is attempted only through monitoring changes in
specific soil quality indicators over time or comparing them over
best management practices (Mukherjee and Lal, 2014; Nakajima
et al., 2015; Zeraatpisheh et al., 2020; Çelik et al., 2021; Janků et al.,
2022). Among the several soil quality evaluation procedures, the
soil quality assessment framework (Andrews et al., 2004)
involving normalization techniques and linear or non-linear
scoring procedures has been used to evaluate the effect of
management on soil health. In this framework, identifying soil
quality indicators and assigning weights to each indicator
parameter are critical in developing a robust SQI that can
correlate well with a specific soil function (Amorim et al.,
2020). Techniques such as expert opinion or statistical tools
such as principal component analysis (PCA) have often been
used to form a minimum database.

The SQI computed employing the PCA approach suffers from
a significant limitation that only the principal components
explaining at least 5% of the variation in the data and with
eigenvalue > 1.0 are taken into account. In this process, some
critical and vital parameters for a given management goal are
sometimes excluded (Vasu et al., 2016). Next, the PCA-derived
indicators change with time, and the weights of each indicator
may be different in different management zones. On the contrary,
a soil function–based approach involving expert opinion can be a
less tedious and more reliable approach for use on a regional scale
provided the computed SQI is validated with the parameter
defined for the specific management goal (Fernandes et al., 2011).

In either of these methods, data transformation is done using
linear or non-linear scoring techniques. Most of the indexing
methods have used three scoring functions, viz., “more is better,”
“less is better,” or “optimum is better,” as per the type of indicator
parameter and its importance to the soil function under study
(Karlen et al., 2013; Lenka et al., 2014; Nakajima et al., 2015; Vasu
et al., 2021). In this method, the maximum or minimum of the
parameter value is taken as the denominator or numerator,
respectively, to transform the parameter values to unitless
scores as per the scoring function chosen (more is better, less
is better, or optimum is better). A single value of maximum or
minimum to transform the data is suitable in small experimental
field studies. However, when the SQI is used on a regional scale,
the values of maxima or minima for data transformation can be
exceptionally high or low and thus may bring in error in the
computation of indicator scores. Instead, the 90th percentile
value for “more is better” and the 10th percentile value for
“less is better” type of indicator can more appropriately
represent the highest or lowest class of the indicator
parameter. However, all previous attempts to compute the SQI
are based on the maximum or minimum value for data
transformation. No study has been available showing the
parameter values of the highest or the lowest group being used

for data transformation. Furthermore, it is argued that the SQI
computed using soil profile data (0–30 cm or 0–60 cm depth)
may be better correlated with crop yield than that calculated from
the surface soil data (Mukherjee and Lal, 2014; Vasu et al., 2016).
However, some other studies report a different trend of results
(Karlen et al., 2013).

Keeping the above in view, the objectives of this study were 1)
to compare the PCA-based approach with the soil function–based
approach for the computation of SQI on a regional scale, 2) to
compare the two data transformation procedures, viz., the routine
method vs. the percentile method, and 3) to compare the SQI
computed from the surface soil (0–15 cm soil depth) data with
that computed from the 0–30 cm data. This study is based on the
following three hypotheses: the computed SQI would be more
relevant and better correlate with the production goal 1) if the
parameters of the MDS adequately represent the soil functions, 2)
if the data transformation procedure is not based on a single
extreme parameter value, rather than based on a class of values,
and 3) if soil data of a profile or greater depth is used than the
surface layer or 0–15 cm depth data.

2 MATERIALS AND METHODS

2.1 Study Region
The Udham Singh Nagar district, with a geographical area of
3,055 km2 in the state of Uttarakhand, India, is the study region.
The district is a part of the Trans-Gangetic Plains of India and is
intensively cultivated (cropping intensity of about 212%), with
rice (Oryza sativa) and wheat (Triticum aestivum) being the
major crops. It is one of India’s highest chemical
fertilizer–consuming regions per the Fertilizer Use Statistics
(Fertilizer Association of India, 2017), with an average
consumption of 545 kg ha−1 of N + P2O5 + K2O. The district
is considered the food bowl of the Uttarakhand state and lies
between 28°43′N and 31°27′N latitude and between 77°34′ E and
81°02′ E longitude. The climate of the study district is sub-tropical
sub-humid with 1,433 mm of annual average rainfall. The annual
maximum temperature goes up to 42°C during the summer
months, and the minimum temperature varies between 1°C
and 4°C. Inceptisols and Entisols are the major soil types, with
Udifluventic Ustochrepts, Typic Ustipsamments, Udic
Ustochrepts, Udic Haplusterts, and Typic Ustochrepts being
the major soil classes (Soil Survey Staff, 2014).

2.2 Soil Sampling and Analysis
Georeferenced soil samples were collected during the months of
May to June in the year 2019 from 0 to 15 cm and 15 to 30 cm
depths after the harvest of the winter season crop. From the study
district, samples were collected at 10 km grid points. For
identifying grid points, the Toposheet of Survey of India was
used. Each grid point represented either one village or a village
cluster within a 5 km distance. From each grid village or village
cluster, 2–4 farmers representing a small/medium and a large
farmer category were selected. Soil samples were collected by
making composite samples from 5 to 7 auger points from each
sampling farmer. In total, samples were collected from 156
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locations. The samples were air-dried and sieved for laboratory
analysis for 18 parameters, including physical, chemical, and
biological soil properties. The sample passing through a
0.5 mm sieve was used for estimating organic carbon. In
contrast, soil samples passing through 2 mm sieves were used
for the remaining soil quality parameters. The physical
parameters were bulk density and soil moisture retention at 33
and 1,500 kPa in Pressure Plate Apparatus, and chemical
parameters were pH, electrical conductivity (EC), available N
(N), available P (P), available K (K), cation exchange capacity
(CEC), available sulfur (S), KMnO4 oxidizable carbon, and the
soil organic carbon fractions (very labile, labile, and less labile
fractions distinguished on the basis of the chemical oxidation
method). The biological parameters were the dehydrogenase
assay (DHA), fluorescein diacetate (FDA), soil respiration, and
acid phosphatase activity. Standard analytical protocols Lenka
et al. (2019) were used for estimating the 18 soil quality
parameters (Supplementary Table S1).

Yield data of rice and wheat crops for the five previous years
were collected from individual farm holders through a
questionnaire. The average of five-year yield data was used for
regressing with SQI values.

2.3 Minimum Dataset Selection
2.3.1 Principal Component Analysis Method
The PCAmethod is a dimension reduction approach in which the
number of variables of the dataset is reduced by retaining most of
the original variability in the dataset. Principal components (PCs)
with high eigenvalues are considered best representatives
explaining the variability (Mukherjee and Lal, 2014;
Zeraatpisheh et al., 2020). The PCA in this study was carried
out for the 18 soil parameters. The PCs with eigenvalues ≥ 1 were
selected, as they described more data variability. The retained PCs
were subjected to varimax rotation to maximize the correlation
between each PC and soil properties by distributing the variance.
Under each PC, highly weighted variables were selected as critical
soil quality indicators for the computation of SQI. Multivariate
correlation coefficients were used to check for redundancy and
correlation between the variables. If the variables are well-
correlated (r ≥ 0.70), then the variable having the highest
factor loading (absolute value) was retained as an indicator
among the well-correlated variables. In case of a non-
significant correlation between the highly weighted variables,
reflecting their independent functioning, all the variables were
retained in the minimum dataset (Vasu et al., 2016). The variables
selected from this procedure formed the MDS and were termed
the “key indicators” and were considered for computation of SQI.

2.3.2 Soil Function–Based Approach
In this approach, primary soil functions were defined based on
expert opinion with regard to their established role in the soil
production function, similar to the “Soil Management
Assessment Framework” suggested by Andrews et al. (2004)
and Wienhold et al. (2009). Indicators under the four soil
functions, viz., 1) soil structure and water storage, 2) nutrient
supply function, 3) soil biological activity, and 4) soil basic
characteristics having the potential to limit soil use for

production, were selected based on expert opinion, previous
literature, and facts about the edaphic conditions of the study
area (Table 1). The appropriate scoring functions for each
parameter are shown in Table 1.

2.4 Data Transformation
2.4.1 Linear Scoring With a Single Value of Maximum
or Minimum
The selected indicators in the MDS in both PCA and SF
approaches were transformed into dimensionless values
ranging from 0 to 1 using the linear scoring method (Stott
et al., 2011; Amorim et al., 2020). Indicators were ranked in
ascending or descending order depending on whether a higher
value was considered “good” or “bad” in terms of soil
function. For “more is better” indicators, each indicator
value was divided by the highest value (maximum) such
that the highest value received a score of 1.0. For “less is
better” indicators, the lowest value (minima) was divided by
the indicator value such that the lowest value received a score
of 1.0. The “optimum is better” function was considered for
some indicators like pH. The “more is better” function was
considered up to a threshold range (pH of 6.5–7.5), after
which the “lower is better” function was used as described
above (Sharma et al., 2005; Zeraatpisheh et al., 2020).
The indicator score was calculated as per the following
formula:

Score � Parameter value

Maxima (highest value) of the dataset

(For ′more is better′ indicators) (1)

Score � Minima (lowest value of the database)
Parameter value

(For ′less is better′ indicators) (2)

2.4.2 Linear Scoring With Percentile Value as
Maximum or Minimum
In this method, the 90th percentile value of a particular indicator
parameter was considered the maximum value for the “more is
better” type of indicator, whereas the 10th percentile value of the
indicator parameter was taken as the minimum value for the “less
is better type” of parameter. The other procedures were similar to
those described in Section 2.4.1. If the computed score was
higher than 1.0, it was restricted to a maximum value of 1.0.
The indicator score was calculated using the following formula:

Score � Parameter value

90th percentile value of the dataset

(≤ 1.0) (For ′more is better′ indicators) (3)
Score � 10th percentile value of the dataset

Parameter value
(≤ 1.0)

(For ′less is better′ indicators) (4)
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2.5 Assigning Weights
The next step in SQI calculation was assigning weights to each
indicator parameter selected under the MDS. In the PCA
approach, the selected indicators in the MDS were given
weights using the PCA output. Each PC explained a certain
percentage of variability in the total dataset. The percentage of
variance explained by each indicator under a particular PC,
when divided by the cumulative percentage of variance
explained by all PCs with eigenvectors > 1, gave the weight
for the indicator(s) selected under a given PC.

In the SF-based approach, weights were assigned first to the
major soil functions (Table 1). In the second level, the weights of
each soil function were further sub-divided to the indicator
parameters as per the relative importance of the particular
indicator, assessed by expert opinion and as per the literature
survey (Fernandes et al., 2011; Vasu et al., 2016).

2.6 SQI Calculation
The indicators were assigned weights so that the sum of weights
of all factors is unity. The weighted MDS indicator scores for each
observation were summed up using the following function:

SQI � ∑i�n
i�1 Wi.Si (5)

where Wi = weight assigned to each selected indicator and Si =
score of each indicator.

The SQI, as discussed above, was computed using the soil data
of two different depths, viz., 0–15 cm and 0–30 cm data.

2.7 Statistical Analysis
The dimension reduction of the data was performed through
principal component analysis to select the minimum dataset. The
normality of the data was checked by the Shapiro–Wilk test at p <
0.05, and the data were found to be normally distributed.
Pearson’s correlation coefficient was used as the indicator to
evaluate the statistical correlation between the SQI and the crop
yield. The significance of the correlation was tested by Student’s
t-test at p < 0.05. The statistical analysis was carried out using the
statistical software SPSS Version 21.0.

3 RESULTS

3.1 Descriptive Statistics of Soil Properties
The soil samples were analyzed for 18 parameters covering
important physical, chemical, and biological properties. The
data on soil properties (Table 2) showed soils of the study
region were mostly neutral in reaction with the average pH of
7.26 (varying from 5.39 to 8.54). The soils were mostly non-
saline (average EC of 0.17 dS m−1), good in soil organic carbon
content (average SOC of 0.80%), and moderate in AWC
(average value of 28.84%) despite variations in the samples.
The average CEC was 15.25 cmol (p+) kg−1, BD was
1.45 Mg m−3, soil respiration was 4.94 mg CO2/100g/day,
and KMnO4 oxidizable C was 564 mg kg−1. The data
indicated higher lability of SOC as observed from the values
of very labile fraction and the KMnO4 oxidizable C. The
physical parameters were less variable with a lower
coefficient of variation (CV) value than chemical and
biological parameters. The most variable parameters (CV >
0.35) were available P, K, and S, CEC, EC, FDA, soil
respiration, and the carbon fractions (labile, less labile, and
very labile) (Wilding, 1985). Compared to the carbon
fractions, SOC and KMnO4 oxidizable carbon showed less
variability. In terms of available nutrients, the plant available N
was mostly in the low range (average of 226 kg ha−1), but
available P and K were in the range of high availability
(average values of P and K were 67 and 238 kg ha−1,
respectively). The moderately variable (CV, 0.15–0.35)
parameters were available N, AWC, SOC, dehydrogenase,
and acid phosphatase. However, pH and BD were the least
variable (CV < 0.15) parameters. The skewness of most of the
parameters was within the range of −0.5 to + 0.5, indicating a
reasonably symmetrical distribution. Data of available K and
less labile C fraction were positively skewed. The data
distribution of available K and less labile C fraction was
leptokurtic with kurtosis values greater than 3.0, indicating
more outliers. However, distributions of other monitored
parameters were platykurtic with kurtosis values lower than
3.0 and indicating fewer extreme values (Table 2).

TABLE 1 | Soil functions, their indicators, and assigned weights.

Function Weight Function indicators Weight Scoring function

Maintaining soil structure and water storage 0.35 Soil organic carbon 0.20 More is better
Available water capacity 0.10 More is better
Bulk density 0.05 Less is better

Nutrient supply function 0.25 KMnO4 oxidizable C 0.05 More is better
Available N 0.05 More is better
Available P 0.05 More is better
Available K 0.05 More is better
Available S 0.05 More is better

Soil biological activity 0.20 Soil respiration 0.10 More is better
Dehydrogenase 0.05 More is better
Fluorescein diacetate 0.05 More is better

Soil basic properties, potential to limit production 0.20 pH 0.10 Optimum is better
EC 0.10 Less is better
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3.2 Principal Component Analysis
The PCA output showed six PCs with eigenvalue >1, accounting
for 75% of the variance (Table 3). PC1 explained the highest
variance (26.76%) followed by PC2 (16%), PC3 (10%), PC4
(8.7%), PC5 (7.2%), and PC6 (5.95%). The factor loadings
resulting from the varimax rotation showed SOC, very labile
C, labile C, available N, and available K to be the factors under
PC1. However, multiple regression indicated SOC was highly

correlated with labile C and very labile C (Supplementary Table
S2). Hence under PC1, SOC, available N, and available K were
retained as the indicator parameters for MDS. Under PC2, higher
values of factor loadings were for EC and available P. The
multiple correlation values showed EC and available P to be
weakly correlated (Supplementary Table S3). Hence, both EC
and available P were retained under PC2 for MDS formation.
Similarly, BD was retained under PC3 (Supplementary Table

TABLE 2 | Descriptive statistics of soil properties of 0–15 cm depth used for soil quality assessment (n = 156).

Soil property Min. Max. Mean 90th
percentile

10th
percentile

Median SD Skewness Kurtosis CV (%)

pH 5.39 8.54 7.26 8.28 5.85 7.34 0.80 −0.59 −0.34 11.02
EC 0.07 0.37 0.17 0.28 0.09 0.16 0.07 0.92 0.49 42.63
Bulk density (Mg m−3) 1.13 1.72 1.45 1.62 1.25 1.45 0.14 −0.25 −0.40 9.48
Available water capacity (%, v/v) 8.89 42.57 28.84 38.87 18.59 29.82 8.10 −0.51 −0.10 28.08
Cation exchange capacity (C mol kg−1) 6.70 30.43 15.25 23.21 8.19 14.48 5.61 0.66 0.15 36.81
Soil organic carbon (%) 0.20 1.44 0.80 1.19 0.51 0.76 0.27 0.33 −0.15 33.61
Very labile carbon (mg kg−1) 1515 9796 4460 6690 2400 4112 1671 0.70 0.70 37.5
Labile carbon (mg kg−1) 261 4592 2218 3506 758 2283 1022 0.06 −0.34 46.1
Less labile carbon (mg kg−1) 182 6958 1300 2321 493 1062 1048 3.48 16.54 80.5
Soil respiration (mg CO2/100 g/day) 1.05 8.38 4.94 7.33 2.62 4.71 1.90 −0.03 −1.05 38.48
KMnO4 oxidizable C (mg kg−1) 285 793 564 736 363 559 129 −0.33 −0.41 22.9
Available N (kg ha−1) 134 370 226 263 174 227 42 0.92 2.93 18.9
Available P (kg ha−1) 21.40 132.90 66.87 107.42 35.69 60.45 28.02 0.63 −0.45 41.90
Available K (kg ha−1) 63 987 238 385 92 194.32 175.90 2.61 8.34 73.77
Available S (kg ha−1) 1.86 88.27 26.45 74.09 4.54 17.40 24.84 1.26 0.48 93.89
Dehydrogenase activity (µg TPF g−1 24 hr−1) 76 304 151 212 96 134 50 0.69 0.25 32.83
Fluorescein diacetate activity (µg fluorescein g soil−1 hr−1) 10 94 49 73 22 49 19 0.10 0.39 38.34
Acid phosphatase activity (µg PNP g soil−1 hr−1) 226 548 403 489 326 396 68 −0.09 0.50 16.95

SD, standard deviation; CV, coefficient of variation.

TABLE 3 | Output of principal component analysis with eigenvalue, variance, and factor loadings of component matrix variables (n = 156).

Principal components PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 4.817 2.888 1.912 1.568 1.299 1.072
% variance 26.763 16.043 10.623 8.711 7.215 5.954
% cumulative variance 26.763 42.806 53.429 62.140 69.355 75.309
Weightage assigned 35.537 21.303 14.106 11.567 9.581 7.906

Factor loadings (rotated component matrix)

pH 0.180 −0.239 0.011 0.758 0.295 −0.227
EC 0.518 −0.640 −0.345 0.207 0.136 −0.161
Dehydrogenase −0.329 0.483 0.220 0.524 0.181 0.109
Fluorescein diacetate 0.340 0.423 0.386 −0.289 0.278 0.451
Acid phosphatase −0.090 0.524 −0.209 0.083 0.032 0.056
Soil organic C 0.928 −0.142 0.157 0.190 −0.002 −0.161
Very labile C 0.862 −0.123 0.239 0.142 0.107 −0.149
Labile C 0.625 −0.400 0.127 −0.201 0.060 −0.307
Less labile C 0.480 0.263 −0.104 0.546 −0.268 0.142
KMnO4 oxidizable C 0.530 0.301 0.559 −0.202 −0.194 −0.154
Available N 0.779 0.137 −0.046 −0.069 −0.138 0.211
Available K 0.694 0.025 0.075 0.091 0.460 0.192
Available P 0.124 0.758 0.041 −0.060 0.133 −0.099
Available S 0.024 0.175 −0.082 0.135 0.805 −0.144
Bulk density −0.039 −0.051 0.797 0.008 0.416 0.122
Cation exchange capacity 0.426 0.084 0.508 0.244 −0.221 −0.375
Soil respiration −0.045 −0.012 0.083 −0.029 −0.122 0.818
Available water capacity 0.129 −0.095 0.712 0.032 −0.177 0.101

The values of factor loadings in Bold letter were highly weighted variables. The underlined ones are variables retained in the MDS.
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S4). For PC4, PC5, and PC6, only single parameters showed
factor loadings greater than 0.60. Hence, pH, available S, and soil
respiration were included for MDS under PC4, PC5, and PC6,
respectively.

3.3 Indicator Weights and Weighted Scores
In the PCA approach, weights were assigned to the nine selected
indicators as per the percentage of variance explained by selected
indicators in each PC (Table 3). For instance, the variance explained
by PC1 was divided among three indicators, viz., SOC, available N,
and available K. Thus, SOC, available N, and available K received a
weight of 11.8% each. The bulk density (BD) was the only physical
parameter under the MDS and received a score of 14%. In contrast,
soil respiration (SR) was the only biological parameter and received a
score of 8%. The average weighted scores were higher when the
percentile values were used as numerators or denominators than
when the routinely used maximum or minimum values were used
(Supplementary Figure S1). Among parameters, the weighted score
was higher for SOC and BD. Despite an equal weight assigned to
SOC, available N, and available K, the average weighted score of
available N and available K was lower than that of SOC in both the

scoring techniques (PCA and PCA–percentile). This trend was
observed due to uniformly distributed parameter values in SOC
compared to the maximum or 90th percentile values. On the
contrary, due to high fertilizer application in the study region, few
values were much higher than their corresponding population in the
case of nutrient elements such as available N, P, and K, thus reducing
their weighted scores.

In the SF method, 13 parameters were selected covering
physical, chemical, and biological properties (Table 1). SOC
was given a score of 20%, considering its role in multiple soil
functions. The physical parameters, viz., BD and AWC, were
jointly assigned a score of 15%. Like the PCAmethod, the average
weighted scores were higher when the percentile values were used
as numerators or denominators than when the routinely used
maximum or minimum values were used (Supplementary
Figure S2).

3.4 Soil Quality Index
The average SQI values computed using the four methods for the
two sets of soil data (0–15 cm and 0–30 cm) are shown in
Figure 1. In both the datasets, the SQI value in the PCA

FIGURE 1 | Soil quality index (SQI) of 0–15 cm and 0–30 cm soil under four indexing procedures (n = 156). Error bars indicate standard deviation.
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method was the lowest (Figure 1), whereas the highest SQI values
were observed in the SF–percentile method. When percentile
values were used as numerators or denominators for
transforming data to unitless scores, the computed SQI values
increased in the PCA and SF methods. The average SQI values of
the 0–15 cm soil were 0.587, 0.631, 0.689, and 0.722 under PCA,
PCA–percentile, SF, and SF–percentile methods (Figure 1;
Supplementary Table S5). In all the indexing methods, SQI
values of the 0–30 cm soil were similar to the corresponding SQI
of the 0–15 cm soil. The SQI of the 0–15 cm soil varied from 0.44
to 0.73 under PCA, 0.46 to 0.77 under SF, 0.52 to 0.82 under

PCA–percentile, and 0.51 to 0.88 under SF–percentile methods
(Supplementary Table S5). The range of SQI in the 0–30 cm soil
was slightly higher than that in 0–15 cm soil.

3.5 Regression of SQI With Crop Yield
The SQI computed using the four methods was correlated with
rice and wheat yield (Figure 2; Supplementary Figure S3). In all
cases, the correlation was significant between SQI and crop yield
at p < 0.05. In both the crops and in both the computing methods
(PCA and SF), the correlation (r2) values were higher in the
percentile technique. Furthermore, for any data transformation

FIGURE 2 | Correlation of soil quality index (SQI) derived from the soil data of 0–15 cm and 0–30 cm with rice yield under the four different indexing methods
(n = 52).
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technique, the r2 values were higher in the SF than in the PCA
method. The SQI correlated better with rice yield (Figure 2) than
with wheat yield (Supplementary Figure S3). For any crop and
indexing method, the correlation between SQI and yield was
better when the SQI was computed using soil data from 0 to
15 cm soil depth than that from 0 to 30 cm soil data. For instance,
the r2 value between SQI and rice yield in the PCA method was
0.47 when the SQI was computed using the 0–15 cm soil data
(Figure 2). However, a lower correlation (r2 = 0.39) was observed
when the soil data of 0–30 cm (average of 0–15 and 15–30 cm
depths) were used (Figure 2).

4 DISCUSSION

4.1 Method for Selection of Indicators: PCA
vs. SF (Expert Opinion) Approach
Our results showed that the soil function–based approach (based
on expert opinion and representing the major soil functions)
resulted in a better correlation of SQI with yields of both the test
crops (rice and wheat), thus indicating the first hypothesis set in
this study. We termed it the “soil function–based method” in
place of “expert opinion” to highlight the role of soil functions in
deciding the management goal. One of the reasons for higher
correlation under the SF-based approach was the inclusion of
representative variables in the MDS covering physical, chemical,
and biological parameters. The indicators chosen under the SF-
based approach covered the four major soil functions, viz., soil
structure and water storage, nutrient supply, soil biological
activity, and the basic soil properties limiting production
(Table 1). Also under these broad soil functions, key
parameters were considered as per expert opinion. On the
contrary, nine indicators were part of the MDS in the PCA
method where only single parameters were covered under
physical (BD) and biological (soil respiration) properties.
Similar to our study, Gelaw et al. (2015) included SOC, water
stable aggregation, total porosity, total N, microbial biomass
carbon, and CEC as the parameters covering four soil
functions, viz., 1) accommodating water entry, 2) facilitating
water movement and availability, 3) resisting degradation, and
4) supplying nutrients for plant growth and estimating SQI using
a soil management assessment framework for four land uses in
smallholder farm situations in Ethiopia. Such an approach based
on soil functions was also attempted by Fernandes et al. (2011) for
soil quality evaluation under different tillage practices in Brazil.
Amorim et al. (2020) took seven soil quality indicators and
evaluated the effect of long-term conservation cropping on soil
quality using a linear scoring technique. On a regional scale
similar to our study, Vasu et al. (2016) reported the SQI
computed by the expert opinion method to be better
correlated with crop yield than PCA one.

4.2 Data Transformation Procedure
As expected, the percentile method of data transformation
showed a higher correlation in both the test crops (Figure 2;
Supplementary Figure S3) and in both the SF and PCA methods
than the routinely followed method, thus conforming to the

second hypothesis. Most studies on the SQI have used linear
scoring techniques for data transformation to unitless scores
(Andrews et al., 2004; Masto et al., 2007; Mukherjee and Lal,
2014; Klimkowicz-Pawlas et al., 2019; Amorim et al., 2020). The
routinely followed procedure has been to divide the parameter
value by the highest parameter value of the dataset (maximum) in
the “more is better” type of indicator, such as SOC. In the “less is
better” type of indicator such as BD, the lowest value (minimum)
is used as the numerator and the parameter value as the
denominator. However, as previously explained, this procedure
is beset with a good chance of error when we go for SQI
assessment on a regional scale, as few outlier values of
maxima or minima in the entire dataset can alter the score of
the individual parameters. Thus, the approach of taking the 90th
percentile value as the maximum and the 10th percentile value as
the minimum for data transformation as designed in this study is
the first of its kind in the SQ assessment research. The higher
weighted scores (Supplementary Figures S1, S2) and higher SQI
values (Figure 1) in the percentile method resulted from
minimization of error and reduction of chance of extremity,
otherwise caused when a maximum or minimum value is used.
Therefore, the percentile method is more suitable to broad-base
the utility of SQI in regional-scale soil quality assessment and
defining management goals.

4.3 Role of Soil Sampling Depth in SQI
Computation
This study compared the SQI computed from 0 to 15 cm soil data
with that computed from mean data of 0–15 cm and 15–30 cm
(0–30 cm) soil data. The results showed the former better
correlated with crop yield than the latter (Figure 2;
Supplementary Figure S3), which was against our set
hypothesis. The range (minimum to maximum) of SQI values
was higher in the 0–30 cm soil dataset (Supplementary Table S5)
due to masking of extreme values in either depth during
averaging of parameter values. The average SQI values of both
the datasets (0–15 cm and 0–30 cm) were similar (Figure 1). This
indicates crop yield is more regulated by the parameters of the
surface soil layer. Our findings conform to those of Amorim et al.
(2020). The SQI values of the surface layer are expected to be
higher than those of the 15–30 cm soil layer, primarily due to
better SOC and associated physical and fertility parameters such
as lower BD, better aggregation, and higher nutrient availability
in the surface layer. The surface soil layer or the plow layer is the
dynamic layer primarily contributing to plant nutrition. In their
study, Amorim et al. (2020) reported soil quality at 0–15 and
15–30 cm soil depths corresponding to 74.7 and 64% of their
potential, respectively. A similar observation was also made by
Karlen et al. (2013) from a study in Central Iowa, United States,
showing near-surface soil functioning at 82–85% of potential and
at a lower capacity at lower depths. Thus, when the SQI is
computed from the data averaged over soil depth (in this case,
an average of 0–15 and 15–30 cm soil data), the correlation
between SQI and crop yield was lower. However, our findings
are in contrast to the reports of Vasu et al. (2016), where the SQI
from 0 to 100 cm soil data provided better correlation than the
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SQI computed from the 0 to 15 cm soil layer. Such different
trends might be possible due to a semiarid climate and rainfed
situation in their study region, where root growth might be
deeper, and thus, deeper layer soil conditions regulate the crop
growth. On the contrary, our study was undertaken in an alluvial
soil characterized by highly intensive cropping, heavy chemical
fertilizer application, and provision of good irrigation, which
might have restricted the root growth zone to upper layers of soil.

CONCLUSION

The utility of soil quality indexing as a tool for soil health
monitoring and to evaluate land management practices needs
to go beyond the farm plots and experimental fields to a
broader regional scale. This study provided a new approach
for data transformation when the SQI is used on a regional
scale. As suggested in this study, the percentile method for
data transformation proved better in terms of correlation with
yields of rice and wheat crops. Secondly, the dataset of
0–15 cm soil depth can provide optimum information for
routine soil quality monitoring, which thus can save
resources by avoiding sampling from deeper soil layers.
Thirdly, the superiority of the soil function–based approach
over PCA implied that an agro-ecological region–specific
minimum dataset could be formed for long-term soil health
monitoring on a regional or country scale to maintain
optimum soil productivity.
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