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PFAS are a very diverse group of anthropogenic chemicals used in various consumer and
industrial products. The properties that characterize are their low degradability as well as
their resistance to water, oil and heat. This results in their high persistence in the
environment and bioaccumulation in different organisms, causing many adverse effects
on the environment as well as in human health. Some of their effects remain unknown to
this day. As there are thousands of registered PFAS, it is difficult to apply traditional
technologies for an efficient removal and detection for all. This has made it difficult for
wastewater treatment plants to remove or degrade PFAS before discharging the effluents
into the environment. Also, monitoring these contaminants depends mostly on
chromatography-based methods, which require expensive equipment and
consumables, making it difficult to detect PFAS in the environment. The detection of
PFAS in the environment, and the development of technologies to be implemented in
tertiary treatment of wastewater treatment plants are topics of high concern. This study
focuses on analyzing and discussing the mechanisms of occurrence, migration,
transformation, and fate of PFAS in the environment, as well the main adverse effects
in the environment and human health. The following work reviews the recent advances in
the development of PFAS detection technologies (biosensors, electrochemical sensors,
microfluidic devices), and removal/degradation methods (electrochemical degradation,
enzymatic transformation, advanced oxidation, photocatalytic degradation).
Understanding the risks to public health and identifying the routes of production,
transportation, exposure to PFAS is extremely important to implement regulations for
the detection and removal of PFAS in wastewater and the environment.
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1 INTRODUCTION

Polyfluoroalkyl and perfluoroalkyl substances (PFAS) are large
family of organofluorinated compounds that contain carbon
chains with stable carbon-fluorine (C-F) bonds, and they have
been gaining attention in recent years due to their toxicity. The
PFAS family is estimated to exceed 4,000 synthetic fluorinated
compounds (Bolan et al., 2021) with Perfluorooctanesulfonate
(PFOS) and perfluorooctanoic acid (PFOA) being the most
frequently encountered PFAS (Ateia et al., 2019; Singh et al.,
2019; Cui et al., 2020; Stoiber et al., 2020). PFAS can be classified
by their polar group, a group that gives PFAS high solubility in
water and is non-volatile. PFAS contain at least one
perfluoroalkyl moiety in the chemical structure, including
groups of perfluorinated phosphonic acids (PFPA),
perfluorinated carboxylic acids (PFCA) and perfluorinated
carboxylic acids (PFCA), while polyfluorinated groups include
sulfonic acids, fluorotelomers (FTS), polyfluorinated alkyl
phosphates (PAP), fluorotelomer alcohols (FTOH),

perfluorooctane sulfonamine (PFOSA) and their derivatives,
Figure 1. Anionic PFAS with sulfonate or carboxylate polar
groups are the group with the greatest focus from public and
regulatory entities, however, PFAS with cationic and zwitterionic
polar groups are also beginning to generate environmental
concern.

They have a high thermal and chemical stability due to their
carbon fluorine bonds and may possess hydrophobic or
lipophobic moieties making them impermeable to water and
oil and resistant to friction. Thanks to these advantageous
properties, they have an extended life and durability (Lenka
et al., 2021). PFAS have been widely used in industrial and
commercial applications since the 1940s with some of their
uses including fire-fighting foams as surfactants, waterproofing
treatment for textiles, personal care products, cleaning products,
food packaging, photos films, andmany automotive, medical, and
aerospace products.

Their strong C-F bonds, their possession of a fluoroalkyl tail,
high chemical, and thermal stability, as well as their resistance to

FIGURE 1 | Polyfluoroalkyl and perfluoroalkyl substances (PFAS), divided into polymeric and nonpolymeric compounds. Polymers include polytetrafluoroethylene
(PTFE) and Viton. Non polymers include 8:2 Fluorotelomer alcohol (FTOH), Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), 6:2 Flourotelomer
sulfonate (FTSA), Chlorinated polyfluorinated ether sulfonate (F53-B), and 6:2 Flourotelomer sulfonamide alkyletaine (FTAB). Created with BioRender.com.
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chemical and biological degradation also makes them hard to
break down and extremely persistent in the environment (Ateia
et al., 2019; Gagliano et al., 2020; Zhang et al., 2022). PFAS high
persistence, widespread use and bioaccumulation potential has
resulted in an environmental problem of high global concern,
derived from the rapid distribution of these compounds in surface
and groundwater, and many drinking water supplies in
concentrations reported as highly toxic for different
ecosystems and human health (Singh et al., 2019). The
United States Environmental Protection Agency (EPA)
recommends that PFOS and PFOA do not exceed 70 parts per
trillion (70 ng L−1), while the European Union introduced
drinking water regulations at parts per billion levels (Gobelius
et al., 2018). The monitoring of PFAS in the environment is
essential to protect human health and safety. In recent years
biotechnology has made exponential progress in the development
of new technologies for PFAS sensors, allowing the effective in
field monitoring at lower costs in comparison to standard
technologies such as HPLC (Menger et al., 2021).
Conventional wastewater treatment processes in wastewater
treatment plants (WWTPs) are ineffective at degrading
emerging pollutants such as PFAS, mainly due to their low
concentrations and high hydrophilicity. The mostly commonly
used processes are anaerobic or aerobic biological treatments only
break carbon chains (C-C), producing short-chain PFAS. This
often results in higher concentrations of PFAS in treated water
than untreated water (Gagliano et al., 2020). PFAS are also
resistant to other common WWTP processes such as
ultraviolet radiation, disinfection with free chlorine, oxidation
by ozone and hydroxyl free radicals. They show some degradation
with advanced oxidation but often degrade into shorter chain
PFAS (Nzeribe et al., 2019). Adsorption, high pressure
nanofiltration and reverse osmosis membrane processes have
shown substantial effectiveness in removing PFAS (Kucharzyk
et al., 2017). However, there are other problems inherent to the
removal of PFAS by the most advanced techniques, which are the
influence of the water matrix and its frequent regeneration, and
the removal of concentrates with a high content of PFAS
(Gagliano et al., 2020).

The review highlights the environmental problem posed by
PFAS, focusing on their sources, occurrence and transport in
water, their negative effects on human health as well as in the
environment, the most recent technologies for the detection and
degradation of PFAS, as well as their regulations of use, release,
and monitoring in the environment.

2 POLYFLUOROALKYL SUBSTANCES
SOURCES, OCCURRENCE, AND
TRANSPORT IN WATER
PFAS are a class of synthetic organic chemicals containing
fluorinated carbon chains with different functional groups
initially long chain and more recently, short chain PFAS have
been developed (Kwiatkowski et al., 2020). Some of the functional
groups include alcohols (-OH), amines (-NH2), halogens (-F, -Cl,
-Br, -I), esters (-CO2R), ethers (-O-), thiols (-SH), carboxylic

acids (-CO2H), sulfonic acids (-SO3H), sulfinic acids (-SO2H),
sulfones (-SO2R), phosphate acids (-PO(OH)2), phosphinic acids
(-PO(OH)), polymers, salts and derivatives. In the past decade,
the number of PFAS has increased considerably due to its
extensive applications. From 2015 to 2018 the number
increased from 3,000 to 4,700 registered PFAS (KemI, 2015;
OECD, 2018). Most PFAS substances have only one identified
application or have been patented for only one use. Many
potential uses of different PFAS have not been explored yet.
Contrary to single-use substances, some PFAS have many
applications associated with them (Glüge et al., 2020).
Figure 2 shows 12 PFAS that are assigned 10 or more uses.

The PFAS lifecycle consists of four steps: PFAS production,
product manufacture, product use and waste management. In
each step PFAS are released to the environment (Wahlström
et al., 2021). Recent works have highlighted the mechanisms of
environmental occurrence and transport by which they reach
different water bodies causing pollution and health
associated risks. PFAS reach most freshwater bodies, such
as rivers, lakes and groundwater (Guelfo et al., 2018;
Chambers et al., 2021).

The production of PFAS starts with the mining of Fluorspar. In
2017, 63% of this material was extracted from China and 26% from
Mexico (Raichl and Schatz, 2019) causing associated problems
elsewhere (Jha and Tripathi, 2021; Solanki et al., 2022). The
mineral processing needed to generate PFAS is a Global
Warming Potential and Ozone Depletion Potential as it emits
unquantified amounts of halogenated substances into the
environment. PFAS production generates monomers of volatile
and ionic compounds which also generate unquantified emissions
that contaminate environment surrounding the production facilities
and affect local communities (Kwiatkowski et al., 2020; Wahlström
et al., 2021). Some of the activities of production include
tetrafluoroethylene synthesis, polymerization, initiators, solvents
and carriers, dispersants, and chain transfer agents. Moreover,
some PFAS form part of products such as coatings, textiles,
biomedical utensils, implants and orthopedic devices, foams and
additives. Once the products have been used, they generate waste and
mainly make their way to landfills or get treated thermally, by
wastewater treatment plants, and less often, by recycling (Wahlström
et al., 2021).

Due to their characteristics, PFAS have been suitable for
multiple applications such as fire-fighting foams, defoaming
additives, adhesives, cosmetics, cleaners, coating, among
others, due to their properties such as surface activity and
repellence to water, oil, and stains (Guo et al., 2020). The
concern about PFAS is associated with their persistence, bio
accumulative potential, and possible adverse effects on human
health which are difficult to determine due to the complexity of
environmental exposure. Animal models do not always reflect
human toxicokinetics accurately, in addition to the fact that
exposure to PFAS often occurs from mixtures which might act
synergistically. Public attention has increased in the last years,
positioning perfluorooctane sulfonate (PFOS) and its precursors
in the list of persistent organic pollutants (POPs) from the
Stockholm convention in 2009 (Boone et al., 2019; Guo et al.,
2020).
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Studies have associated the presence of PFAS in water to
specific sources and daily activities, such as fire training facilities
(Ahrens et al., 2014), the textile industry, domestic sewage and
household garbage (Guo et al., 2020), as shown in Table 1. The
presence of these compounds in water even after regulation does

not show significant changes. Furthermore, their persistence has
been detected up to 60 km away from an associated source
(Boiteux et al., 2017). There is an association between seasons
and PFAS water concentrations, with an elevated PFAS
concentration observed during summer, mainly attributed to

FIGURE 2 | Structures of the PFAS with more than 10 assigned uses: 1 CAS No. 3825–26–1, 2 CAS No. 2795–39–3, 3 CAS No. 2991–51–7, 4 CAS No.
38006–74–5, 5CAS No. 29117–08–6, 6CAS No. 163702–07–6, 7 CAS No. 364–33–6, 8 CAS No. 138495–42–8, 9CAS No. 375–03–1, 10CAS No. 24937–79–9, 11
CAS No. 9002–84–0 and 12 CAS No. 25–038–71–5. Adapted from (Glüge et al., 2020).

TABLE 1 | Examples of concentrations of PFAS found in the environment due to human activities.

Sample Sample Source Concentration References

Fish (µg absolute) Gonad, liver, muscle, blood, gill 334 ± 80 Ahrens et al. (2014)
Water (ng L−1) Ditch ~4,000 Ahrens et al. (2014)

Lake 146–344
Water (ng L−1) Sea 5.03–41700 Chen et al. (2017)
Water (ng L−1) River 6.83–28700 Chen et al. (2017)
Serum (ng ml−1) US population 6 years and older 0.7–4.0 Kato et al. (2018)
Urine (ng ml−1) 0.2–0.8
Water (ng ml−1) Source water <1–1,102 Boone et al. (2019)
Water (ng ml−1) Drinking water <1–600 Boone et al. (2019)
Urine (µg L−1) US population 6 years and older 0.07–3.4 Calafat et al. (2019)
Surface water (ng L−1) Lake 140.5–1828.5 Guo et al. (2020)
Sediment (ng g1) Lake 0.48–30 Guo et al. (2020)
Serum (ng ml−1) Waste recycling workers 31.3 Peng et al. (2022)
Urine (ng ml−1) 66.6
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droughts. Nevertheless, during a specific study by Chen et al.
(2017) no clear association was made between seasons and PFAS
concentrations in different points of a river. At some sampling
points PFAS concentrations increase with water flow, in others
the opposite effect was observed. A possible explanation for this
can be the different contamination sources, while for some the
source could constantly discharge some untreated wastewater
with a high concentration of PFAS, in other cases the water flow
could affect the dilution factor, and in other cases the
contamination source could be PFAS accumulated in soil
where water flow increases compounds dragged to the river
(Chen et al., 2017).

Due to PFAS transport phenomena, Figure 3, the presence of
these substances in soil poses a long-term threat to water sources.
The migration of PFAS from soil to groundwater could take from
3 to 20 years depending on the transport phenomena (Brusseau
and Guo, 2021). These results are interesting as they suggest that
even if regulation decreases the amount of PFAS discharged, the
actual accumulation of these substances in soil would still impact
water quality over the next 20 years. The major problem with
PFAS and their transport to water is that conventional drinking
water treatments did not efficiently remove it. In fact, different
studies have shown the persistence of different PFAS in water,
reporting no significant difference in the concentration before
and after the treatment, even finding that some advanced
treatment as ozonation could increase PFAS concentrations
(Boiteux et al., 2017; Boone et al., 2019).

PFAS persist in a variety of different matrices, increasing the
possibility of interaction with humans. PFAS contact mainly
derives from activities during their production or contact with
their subproducts. Diverse studies demonstrate that regardless of

if people have been directly exposed or not, most people end up
with PFAS in their system (Kato et al., 2018; Calafat et al., 2019; Li
et al., 2021; Peng et al., 2022). The United States developed the
National Health and Nutrition Examination Survey (NHANES)
in the early 2000’s which included information of the presence of
PFAS paired samples in serum and urine in people above 6 years
of age. The study found a presence of long chain PFAS in urine
and short chain PFAS in serum. These findings were not
associated to specific activities or a clear exposure to PFAS
(Kato et al., 2018; Calafat et al., 2019). On the other hand, the
association between demographic factors and PFAS exposure was
assessed in waste recycling workers. The study found
concentrations up to 66 ngL−1 in urine samples and 33 ngL−1

in serum (Peng et al., 2022). Finally, Li et al. (2021) associated the
presence of PFAS not only to carrying out activities that favor
contact with these substances, but also to environments where
they had detected PFAS in air and drinking water samples. The
study was carried out on children 4–6 years old and detected the
presence of PFAS in hair and urine samples. These studies show
that the correct management of PFAS and the development of
technologies that allow for their removal are needed.

3 ENVIRONMENT AND HEALTH EFFECTS

Due to their chemical nature, characterized by strong C-F bonds
along their backbone, PFAS are highly resistant to thermal, and
biochemical degradation which leads to their accumulation in the
environment and in human tissues (Buck et al., 2011). The
physicochemical properties of PFAS are strictly related to the
size of the chain and functional groups, resulting in two theories

FIGURE 3 | PFAS source, persistence, and transport in the environment to humans, and possible mitigation. Created with BioRender.com.
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about their bioaccumulation and/or biomagnification
mechanisms: PFAS bind to proteins such as serum albumin,
fatty acid binding proteins and organic anion carriers; PFAS are
divided into membrane phospholipids due to their greater affinity
to charged species, which could result in greater bioaccumulation
and distribution, as well as greater difficulty in elimination (Chen
et al., 2021). The main way of exposure to PFAS is through
polluted drinking water or food, which could be contaminated by
cookware, food packing or from remnant sources of PFAS in the
environment (Domingo and Nadal, 2019). Although there is still
controversy about the degree of toxicity in the human body,
several PFAS have been associated to diabetes, obesity, high
cholesterol, certain types of cancer, and some effects during
pregnancy such as neurodevelopment, and
immunomodulation (Corsini et al., 2014; Sunderland et al.,
2019). Figure 4 remarks the principal effects on human health.

Since their implementation was suspended in the early 2000s,
the toxicity of PFAS has been rigorously tested. The U.S.
Department of Health and Human Services, through the
National Toxicology Program, has issued a series of technical
reports about the toxicological effects caused by chronic exposure
to perfluorinated sulfonated and carboxylated substances in
rodents (National Toxicology Program (NTP), 2020). The
results showed that the exposure to perfluorooctanoic acid
(PFOA) has been associated with toxicity in liver, kidney, and
thyroid gland, and with certain cancerogenic activity. After
gavage administration the time of PFAS clearance increases
with chain length (Huang et al., 2019a) from a half-life time
of a few hours for perfluorobutane sulfonate (PFBS) to nearly
20 days for perfluorooctane sulfonate (PFOS), which increases
their toxicity. Similar analyses were performed, with similar

results, for 8:2 fluorotelomer alcohol (8:2-FTOH),
perfluorohexane-1 sulfonic acid (PFHxS), perfluorohexanoic
acid (PFHxA), perfluorooctanoic acid (PFOA), and
perfluorodecanoic acid (PFDA)) (Huang et al., 2019a, 2019b;
Dzierlenga et al., 2020). Toxicity studies of perfluorobutane
sulfonic acid, perfluorohexane sulfonate potassium salt,
perfluorooctane sulfonic acid, perfluorohexanoic acid,
perfluorononanoic acid, and perfluorodecanoic acid have also
been performed (National Toxicology Program (NTP), 2021a;
National Toxicology Program (NTP), 2021b).

Several PFAS act as endocrine disrupting chemicals,
increasing the risk of neurodevelopmental disorders, and
obesity (Braun, 2017). PFOA and PFOS promote the activity
of peroxisome proliferator-activated receptor-α (PPARα), and -γ
(PPARγ) in humans, mice, and rats (vanden Heuvel et al., 2006).
This impairment in PPARα activity affects adipocytic
differentiation, increasing body fat, and the immunotoxicity of
PFOA, presumably through modifications in antibody
production (Bastos Sales et al., 2013; Corsini et al., 2014;
Sunderland et al., 2019). PPARα impairment directly alters the
cytokine production and human immune cell activation,
throughout the inhibition of NF-κB activity. PFOA and PFOS
toxicity reduces p65 phosphorylation which is crucial for the
genetic transcription induced by NF-κB (Corsini et al., 2011,
2012).

It is still too soon to understand the effects of PFAS exposition
completely. PFAS can also promote hepatocyte necrosis,
hepatomegaly, splenic atrophy (Frawley et al., 2018), and
interfere with mitochondrial respiration (Wallace et al., 2013).
Some PFAs move evenly across the placental passage which
exposes the fetus to PFAS (Gützkow et al., 2012). Maternal

FIGURE 4 | Main effects of per- and polyfluoroalkyl substances (PFAS) on human health. Through contaminated sources such as drinking water or food, PFAS
mainly cause endocrine disruption that could promote metabolic diseases, organ damage, fetal distress, neurodevelopment alterations and immunotoxicity. Created
with BioRender.com.
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exposition to PFOS, PFOA and PFNA have been associated to
lower birth weight (Verner et al., 2015), an impaired immune
response in early childhood (Pennings et al., 2016), the risk of
miscarriage and preeclampsia (Gao et al., 2021).

The findings of PFAS exposure during pregnancy have been
inconsistent. Gao et al. (2021) carried out a statistical study of
recent reports where the direct link between the effects of PFAS in
pregnancy at concentrations greater than 1 ng/ml, showing that
exposure to PFOS was directly associated with the risk of
premature birth, exposure to PFNA and PFOA showed a
relationship in the inverted U-shaped with risk of preterm
birth, and exposure to PFDA and PFOS were directly
associated with risks of miscarriage and preeclampsia,
respectively. In vitro and in vivo studies have shown that
exposure to PFAS has negative effects essential biological
processes of the ovary, such as folliculogenesis and
steroidogenesis which are the development of oocytes and
follicles, as well as the consequent decrease in ovarian reserve,
which are also linked to irregular and longer menstrual cycles, late
menarche, and early menopause. These effects are associated with
some alterations such as the activation of the peroxisome
proliferator-activated receptor (PPAR), oxidative stress,
interruption of thyroid hormone and interruption of gap
junction intercellular communication. These studies were
limited to ranges of human exposure to PFAS, PFOA from 3
to 220 ng/kg and PFOS from 1 to 130 ng/kg of body weight (Ding
et al., 2020).

Grandjean et al. (2012) studied the effect of PFAS on the
production of antibodies in children after the tetanus and
diphtheria vaccines. The doubling of serum concentrations of
PFAS such as PFOA, PFOS and PFHxS in children aged 5, led to a
50% loss of serum antibody concentrations by the time the
children turned 7 years old.

PFAS exposition is not only a problem for human health. Poly-
and per-fluorinated substances have are of great concern to the
environment too. Several PFAS have been detected in many
organisms across the globe and their toxic response varies in a
species dependent manner (Fitzgerald et al., 2019; Hitchcock
et al., 2019; Niu et al., 2019; Gaballah et al., 2020; Abercrombie
et al., 2021; Ask et al., 2021; Death et al., 2021; Liu et al., 2022).
Ankley et al. (2021) made an exhaustive revision of the myriad of
PFAS-induced alterations on relevant members of animalia
kingdom such as invertebrates, fish, amphibians, birds,
reptiles, and mammalian wildlife. Invertebrate organisms only
have an innate immune system that is based on protection by
hemocytes or coelomocytes, which have an important role in
non-specific cellular immunity, which, contrary to vertebrate
organisms, have an adaptive immune system that offers them
greater protection. Several PFAS have been shown to have
negative effects on the cell viability of the innate immune
system of earthworms, bivalves, and crustaceans (Ankley et al.,
2021).

An extensive study on the effect of PFAS on zebrafish included
the in vivo analysis of 139 PFAS at 10 concentrations in water
between 0.015 and 100 µM from 6 to 120 h after fertilization,
analyzing the larval photomotor response (LPR), the embryonic
photomotor response (EPR) and 13 morphological endpoints as

study response variables. The study showed that 49 PFAS
exhibited bioactivity in one or more assays, with 25 induced
altered LPR, 11 altered EPR, and 31 altered morphologies.
Perfluorooctanesulfonamide (FOSA) was the only substance
with activity in the 3 assays and perfluorodecanoic acid
(PFDA) was the one that showed the highest bioactivity
(Truong et al., 2022).

Similarly, the study carried out by Rericha et al. (2021) showed
that 21 PFAS out of 58 studied induced aberrant larval behavior
in zebrafish, without significant mortality. Already in larval
development studies with concentrations of 0–100 μM of
different PFCA with chain sizes between 4 and 12 carbons,
they demonstrated an abnormal LPR, without significant
alterations of the EPR or significant mortality.

The bioassay on the effect of PFOA and PFOS on Daphnia
carinata carried out by Logeshwaran et al. (2021) demonstrated
an LD50 at 48 h of 78.2 (54.9–105) mg L−1and 8.8 (6.4–11.6)
mg L−1, respectively. Chronic exposure for 21 days showed effects
on reproduction, with an increase in days to generate the first
offspring and a reduction in the number of offspring and an
increase in offspring mortality at concentrations from
0.001 mg L−1. The genotoxicity study using the comet assay at
concentrations of 1–10 g L−1 showed significant damage to the
genetic composition of D. carinata.

This environmental crisis urges the development of public
policies, methodologies and technologies focused on the proper
management and disposal of these highly durable substances that
are having a great impact on ecosystems and human health.
Despite the existence of several data regarding the neurotoxicity
and its effects of PFAS, there is still a lack of research and
development of new tests to evaluate all the possible effects
of PFAS.

4 CURRENT AND EMERGING TRENDS FOR
POLYFLUOROALKYL AND
PERFLUOROALKYL DETECTION IN
WASTEWATER SYSTEMS

4.1 Current Trends of Polyfluoroalkyl and
Perfluoroalkyl Detection
The inherent risks of PFA pollution to human health and
environmental integrity has raised concerns over potential
exposure pathways of biological agents. Drinking water
remains a major route of human PFA consumption.
Wastewater treatment plants are well-known sources of such
substances (Banzhaf et al., 2017). Conventional WWTPs
remediation processes have limited effectiveness for PFA
removal and may even increase their concentration through
breakdown of related precursors and byproducts; thus,
WWTPs act as a crucial intermediary of PFA environmental
cycling (Winchell et al., 2022).

Regulation worldwide has targeted the lowering of PFA
concentrations in water resources as well as their impact. The
United States Environmental Agency and US Geological Survey
have released a report in conjunction that highlights the
identification of PFA concentrations before and after drinking
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water treatment (Andrews et al., 2021). Furthermore, EPA
Unregulated Contaminant Monitoring Rule 3 (UCMR3)
targeted six PFA substances and recommended a Lifetime
Health Advisory level of 70 parts per trillion for PFOS and
PFAS present in drinking water (Kurwadkar et al., 2022). A
similar measure by the European Commission limits total PFA
concentration at 0.5 μg/L “pending the development of a suitable
method for measuring total PFAS” (Dasu et al., 2022). These
directives highlight the need for sensitive and specific PFA
detection methods in water treatment effluents.

Current strategies for PFA detection with widespread
implementation rely on liquid chromatography techniques
coupled with a mass spectrometry detector (HPLC-MS). The
United States Environmental Protection Agency describes three
methods for the specific detection of PFAS, namely, methods 533,
537, and 537.1 (Winchell et al., 2021). The overview for these
strategies requires the concentration of the sample followed by LC
separation and has varying limits of detection ranging from 0.71
to 16 ppt and for a total combined detection of 29 compounds,
limiting its application for drinking water (Menger et al., 2021).

Nevertheless, the chromatographic approach for PFA analysis
poses several disadvantages. In a wastewater context, quality
monitoring is a complex endeavor due to the high variability of
the analyzed matrix and the low concentrations in which PFAs may
be present (Choi et al., 2018). HPLC-MS analyses are also time
consuming (35min approximately per sample), have a high inherent
cost, and require specialized equipment that impedes the in-situ
assessment of samples (Fang, 2017). Sample preparation for analysis
occasionally carries interference, samples may be contaminated in
their handling through exposure to contaminated solvents and
reagents, adsorption of PFA particles in glassware, and bacterial
activity in non-refrigerated samples (Winchell et al., 2021). For these
reasons, the development of fast, non-destructive PFA assessment
techniques with minimal sample preparation for WWTP decision
making has been an emergent topic of research in recent years
(Figure 5).

4.2 Electrochemical Biosensors
An electrochemical biosensor can be defined as an analytical
device, which is based on the selective interaction between the
target analyte and the biological recognition element (e.g.,
enzyme, DNA, antibodies, virus, cells, or microorganisms)
coupled to an electrode in which reaction of oxidation/
reduction takes place (Rodríguez-Delgado et al., 2015; Uniyal
and Sharma 2018). Electrochemical biosensors are classified
depending on their range of detection, which includes
potentiometric biosensors that measure changes in the ion-
selective membrane potential (mV) (Karimi-Maleh et al.,
2021), conductometric biosensors that measure changes in
conductance (G, Ω−1) (Jaffrezic-Renault and Dzyadevych
et al., 2008), impedimetric biosensors that measure changes
in the impedance (Z) over a range of frequencies (Hz)
(Rodriguez et al., 2020) and voltammetric/amperometric
biosensors which are characterized by measure the change in
current (A) that occur during the oxidation/reduction reactions
induced by an applied voltage (mV) (Rodríguez-Delgado et al.,
2015).

Among these different approaches that can be adapted to
develop an electrochemical biosensor, each have important
advantages according to their different properties (Menger
et al., 2021). For example, electrochemical biosensors allow for
automated analysis due to their ability to combine high analytical
selectivity and sensitivity with low cost, portability, and short
analysis time (Karimian et al., 2018). Moreover, electrochemical
transducers have other added advantages, conductometric
transducers are light insensitive, do not need reference
electrodes and can be miniaturized (Soldatkina et al., 2018),
potentiometric transducers’ main advantage is their possibility
to make portable kits by their fast and wide dynamic range of
response (Karimi-Maleh et al., 2021), and amperometric/
voltammetric transducers commonly have lower detection
limits due to their high sensitivity to the analyte which usually
is greater than those for potentiometric transducers, thus making

FIGURE 5 | Trends in PFA detection for wastewater treatment systems. Created with BioRender.com.
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amperometric/voltammetric biosensors most commonly applied
in general (Grieshaber et al., 2008).

Different electrochemical biosensors have been applied for a
variety of PFAs detection. For example, a selective
perfluorooctane sulfonate (PFOS) amperometric biosensor was
designed by the modification of a glassy carbon electrode with
multiwalled carbon nanohorns as carriers of glutamic
dehydrogenase (GLDH) and bilirubin oxidase (BOD) (Zhang
et al., 2014). The PFOS biosensor presented a wide range of linear
detection between 5 and 500 nmol/L with a lowest detection limit
of LOD = 1.6 nmol/L and high selectivity over different chemicals
that co-exist with PFOS in micro-polluted water, which suggested
that this biosensor might be implemented in real water
monitoring. Moreover, an impedimetric biosensor for the
detection of perfluorooctanoic acid (PFOA) was designed by
the modification of a graphite screen printed electrodes
(G-SPE) (Moro et al., 2020). This electrochemical biosensor
was developed by the modification of a G-SPE with a
covalently immobilized human serum albumin (hSA) as
bioreceptor into pyrrole-2-carboxylic acid (Py-2-COOH) and
PFOA was detected in range between 100 nmol/L and 5 μmol/
L. In addition, some other bioreceptors have been applied for the
detection and monitoring of PFAs, such as DNA immobilized
into Au/(Peroxide polypyrrole) electrode, which was applied for
the detection of PFOA (Lu et al., 2011). Moreover, molecular
imprinted polymers (MIPs) are mimetic biosensors due to
their similarity to natural antibodies and antigens, which
allows them to implement this kind of material as a
synthetic receptor for a targeted molecule (Belbruno, 2019).
Owing to important characteristic such as thermal and pH
stability, reusability, and low-cost synthesis (Menger et al.,
2021), MIPs based electrochemical biosensors have been
applied for the detection of PFAs, including PFOS sensors
(Karimian et al., 2018; Moro et al., 2019) and PFOA (Gong
et al., 2015; Fang et al., 2016).

4.3 Colorimetric Polyfluoroalkyl and
Perfluoroalkyl Sensing
The fast analysis times and low costs of colorimetric assays,
coupled to an acceptable sensitivity towards targeted
contaminants, has placed this category as a trending topic of
research for emerging contaminant analysis (Wongniramaikul
et al., 2018; Wu et al., 2020). When applied to wastewater
monitoring, colorimetric assays can offer real-time, in-situ
monitoring of effluents in miniaturized kits and fast
interpretation by the user (Awual, 2017).

PFA substance sensing by colorimetry has been attempted and
reported through several mechanisms of chromophore
generation. A novel method for this type of sensing involves
the destabilization of gold or silver nanoparticles, generating
surface plasmons that can be monitored optically; such an
approach can be incorporated into paper-based assays
(Vikesland, 2018). In a study by Takayose et al. (2012),
perfluorooctanoic acid was focused as an analytic substance
using a detection system based on the application of gold
nanoparticles (AuNPs); the study is based on the aggregation

of fluorine-fluorine groups and the resulting interactions between
modifying groups caused a color shift from red and purple. The
study concluded that PFOA could be detected by the naked eye
after 10 min of reaction at concentrations as low as 250 µm. This
report highlights the emerging approach of applying gold or silver
nanoparticles as a platform for PFA substance detection, owing to
features such as large surface area and high adsorption
capabilities that enable the development of nano-based
sensors. Gold nanoparticles have also been reported as a
sensing method for perfluorinated compounds (PFC) in water
sources by Niu et al. (2014) by causing an aggregation of AuNPs
by adsorption and a consequent precipitation that changes the
color response of the assay up to a PFC concentration of
10 μg L−1.

Colorimetric assessment can also be achieved through the
complexation of PFA ions with cationic dyes to create
hydrophobic phases that can be extracted and compared to
a standardized chart to determine substance concentration
using an analysis akin to a pH strip (Fang et al., 2018). To
diminish the subjectivity of the user, assessed samples can be
analyzed to a paired smartphone app that provides an objective
evaluation through the introduction of a calibration step
(Menger et al., 2021). To enhance resolution from such
comparatively high concentrations, samples may be
previously pre-concentrated using solid-liquid extraction
(Zheng et al., 2019); the usage of a magnetic agent such as
iron oxide nanoparticles can also for complexation can also
increase detection capabilities by concentrating the sample
(Liu et al., 2019; Menger et al., 2021).

Assays and kits that rely on colorimetric techniques can be
seen as complementary tools to analytical detection methods,
as they trade off convenience and ease of use for diminished
detection capabilities, higher detection limits and assay
subjectivity. Product allocation is also dependent on the
development of market-viable kits and regulation of
sensing platforms and parameters by pertinent agencies
(Menger et al., 2021). Nano-based sensors are also still
restricted to a narrow group of PFA pollutants and water
applications, and the high adsorption capabilities of
nanoparticles and potential cell membrane penetration
raises concerns over the proper environmental interaction
of AuNPs used in potential environmental biosensors (Liu
et al., 2014).

4.4 Spectroscopic Methods for
Polyfluoroalkyl and Perfluoroalkyl
Detection
Spectroscopy has become a tool with enough potential to provide
the means for enhanced sensitive detection of plastic
microparticles and related environmental contaminants (Chen
et al., 2020). This approach also provides the potential of smaller
probes, allowing an in-situ, real-time and non-destructive
monitoring with positive implications for the decision making
at the economical and risk-assessment of operation (Peng et al.,
2019). The selection of the appropriate spectrum band for the
detection of interest compounds is crucial as molecules may
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absorb different spectrum bands with varied intensity (Mesquita
et al., 2017). Care must be taken when pondering the need for
spectral resolution, available equipment’s power, spectrum
quality and technique specificity.

Infrared spectroscopy comprises three energetic wave regions:
far-infrared, mid-infrared, and near-infrared (Zulkifli et al.,
2018). Assays determine the qualitative and quantitative
nature of a sample through its changes in the vibrational
state of the molecular bonds that compose the material
(Gowen et al., 2015). Due to its quick and straightforward
features, infrared spectroscopy has potential for the real-time
monitoring and characterization of pollutants in wastewater
(Park et al., 2021). The gradual development of IR
spectrometers has enabled this technology to perform in-
situ tests with minimal preparation.

The application of infrared spectroscopy for the detection of
PFASs and related contaminants in drinking water have been
explored recently. A mixed qualitative and quantitative approach
is provided as an example by Park et al. (2021), using regression
models to correlate obtained spectrums with PFAS as well as
assessing the effect of salinity, pH and other water quality
parameters in a multivariate model. The obtention of PFA
spectra is often not possible by conventional readings, and a
mathematical treatment of spectra is needed to overcome the
complications in the reduced detection rate of non-treated
wastewater samples (Carreres-Prieto et al., 2020). Thus, sample
preparation may also be a concern for the researcher proposing
the testing methodology, as absorbance and dispersive properties
of the testing sample may be inadvertently changed (S. Tagg et al.,
2017; Hong et al., 2021). Minimal sample preparation is preferred
to ensure reproducibility in test procedures and obtained results.

Challenges and issues remain for the full integration of IR
spectroscopy in the workflow of the on-site WWTP monitoring.
Developments in systems and methods have been largely
impaired as there is still not enough validation for established
tests for quantification (Li et al., 2018). As PFA detection using
infrared spectroscopy is still an infant field, a database for
corresponding IR fingerprints is still not well established and
is limited to theoretical spectra calculated for a battery of PFA
compounds (Wallace et al., 2021). Available molecular
information is still limited and the effect of the complex
interaction that particles sustain in a complex matrix such as
those found in a wastewater sample are still not well studied
(Hernández et al., 2019). Water interference is usually regarded as
the main challenge for the spectroscopic analysis in the infrared
spectrum and is preferably to be removed in a pretreatment step
(Xu et al., 2019).

Raman spectroscopy (RS) relies on inelastic scattering from
reflecting light in visible wavelengths into target molecules (Silver
et al., 2019). Substances each have their unique inelastic scattering
pattern that distinguishes it from one another. This fingerprint
allows the easy and fast identification of compounds in complex
solutions (Sobhani et al., 2019). As IR, Raman spectra have
proven useful for water quality monitoring, as it is a fast,
reliable, and cheap tool for the characterization of molecules
suspended in an aqueous solvent (Kniggendorf et al., 2019).
Compared to IR, the main advantage of Raman spectroscopy

for its use on biological samples is the minimal interference
caused by water molecules, the most common solvent present in
test solutions (Araujo et al., 2018). This minimizes the required
sample preparation and poses RS as an enticing tool for on-site
WWTP monitoring.

Affinity of the test substrate may be improved using
complementary particles that enhance light interaction with
the target PFAS molecule in the water sample. Surface-
Enhanced Raman Spectroscopy (SERS) is used as the main
way to enhance the weak inelastic Raman scattering by two
means: electromagnetic and chemical enhancement. The
optical properties of metallic nanoparticles that integrate
elements such as gold and silver generate electromagnetic
fields with a size comparable to the wavelength of the light
being used generating a phenomenon known as localized
surface plasmon resonance (LSPR) (Jia et al., 2021). The
generated electromagnetic field amplifies the Raman signal
of the molecule that is in proximity to the nanoparticle. This
phenomenon can be controlled by changing the parameters of
the nanoparticle such as size, composition, structure, and
adjacent environment (Vikesland, 2018). Further research
allowed the introduction of more complex shapes such as
rods, cubes, and stars as well as 2D arrangements (Wei
et al., 2015). The main result of the introduction of new
morphologies is the overall enhancement of the Raman
effect, by creating hotspots in the physical gaps between
particles (Ong et al., 2020).

The specific application of RS and SERS to detect PFAs in
aqueous solutions is limited. Fang et al. (2016) reported the
detection of fluoro-surfactants such as
perfluorooctanesulfonic acid using silver nanoparticles to
enhance Raman activity. The overall low sensitivity of RS
has remained an issue for the collection and processing of
meaningful data (Bell et al., 2021). Further improvements on
spectrum collection must ponder the ability to purify the target
pollutant molecule on the studied matrix and to optimize the
resolution of the obtained spectrum through enhanced
mathematical manipulation of obtained data. Another
recommended solution is the coupling of chemometric
methods such as Principal Components analysis or Least-
Square regression to characterize process variables and set
an acceptable limit of detection, as discussed in the RS-based
monitoring of polyfluoroalkyl ethers in aqueous matrixes by
Marchetti et al. (2020).

While the feasibility of pollutant detection through
spectroscopic methods has been already established, most if
not all studies have stagnated at the proof-of-concept stage
due to limitations of the methodology, reduced testing
equipment availability or lack of procedural optimization
(Chen et al., 2020; Zhang et al., 2020). Spectroscopy
diagnostic methods have matured to a good enough level
where taking the next step towards commercial
applications must be considered. As breakthroughs are
achieved on the fabrication techniques of sensors that
enables higher sensitivities, lower sizes and cheaper prices,
the use of this approach for the WWTP implementation of
PFA monitoring may become practical.
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5 FATE AND REMOVAL OF
POLYFLUOROALKYL AND
PERFLUOROALKYL SUBSTANCES IN
CONVENTIONAL WASTEWATER
TREATMENT PROCESSES IN
WASTEWATER TREATMENT PLANTS

As the detection methods show, the concentration of PFAS in the
environment has increased with the human activities. One
common migration pathway of the contaminants to the
environment is through the sewage, as most of the WWTPs
are not capable of removing efficiently PFAS. Traditional
WWTPs have primary and secondary treatments focused on
the removal of solids and disinfection to eliminate biological
pathogens, and in some cases a tertiary treatment for the removal
of other contaminants (Rout et al., 2021). However, persistent
contaminants like PFAS are not efficiently removed during these
treatments (Lenka et al., 2021).

In this way several approaches have been evaluated to reduce
the leakage of these contaminants to the environment.
Nevertheless, some of the technologies employed with other
contaminants, like chlorination, flocculation or precipitation,
may produce toxic by-products or are less efficient with PFAS
(Mazhar et al., 2020; McCord et al., 2020; Rout et al., 2021). Due
to this, most of the studies have been focused on the application of
adsorption, advanced filtration, advanced oxidation and
biodegradation processes (Phong Vo et al., 2020).

5.1 Physical
5.1.1 Adsorption
Adsorption is a technology widely employed in the removal of
contaminants, especially for water remediation. It consists in the
transfer and further adhesion of atoms or molecules of the
contaminants, or adsorbate, from the solution the surface of a
solid material, named adsorbent. This technology has been
extensively used mainly because it is relatively simple and
cheap. Also, adsorption is a versatile technology, as there is a
wide range of adsorbents that can be employed such as carbon-
based materials, zeolites, polymeric materials, metal-organic
frameworks (MOFs), nanoparticles, ceramic materials,
composites, and natural adsorbents (Phong Vo et al., 2020;
Militao et al., 2021; Vu and Wu, 2022).

Due to this advantages, different adsorbents have been
employed to evaluate their potential in the removal of PFAS
from wastewater. The use of carbon-based materials is a common
approach in adsorption, especially activated carbon and biochars,
due to its low cost and accessibility and high adsorption capacity.
Activated biochars from spent coffee grounds (SCG) were
evaluated for the removal of perfluorooctanesulfonate (PFOS)
from a simulated wastewater effluent (Steigerwald and Ray,
2021), and the results showed up to 99.6% of removal. The
adsorption capacity of the SCG biochars was 43.4 mg/g,
compared to 55.7 mg/g of a commercial activated carbon, and
79.5 mg/g of a fly ash char. Another activated biochar produced
from sewage sludge (SBAC) was evaluated using a mixture of nine
of the most common PFAS and compared to a commercial

activated carbon (Mohamed et al., 2022). The results showed
that the SBAC removed more than 91% of the PFAS, which was
higher than granular activated carbon.

Another study evaluated the removal from water of several
PFAS, mainly present in groundwaters affected by aqueous film-
forming foams (AFFF), by commercial biochar, granular
activated carbon (GAC) and biochar synthesized from pine
needle (Xiao et al., 2017). The authors included 30 different
PFAS and compared their removal by the proposed adsorbents,
evaluating their sorption in batch experiments. Also, this data was
employed to adjust an intraparticle diffusion-limited sorption
kinetic model to predict the quantity of the pollutants that could
be retained by the adsorbents. The results showed that even
though GAC could adsorb PFASs, the adsorption of PFOS-like
PFASs was less effective than PFOS and PFOA.

A research evaluated the adsorption of PFAS by biochars
produced by the conversion of biosolids from wastewater
treatment plants at three different temperatures (500, 550, and
600°C), and compared their performance with a sawdust biomass
biochar (Kundu et al., 2021). The 600°C biochar (BSBC-600) had
higher surface area, thus it was selected for the adsorption tests,
where the results showed that for long-chain PFASs the
adsorption was above 80%, while for short-chain PFASs was
in the range of 19–27%. Compared to the sawdust biochar, BSBC-
600 had a lower removal efficiency for most of the PFAS, however
due to its low production cost, biosolids biochars remain as a
promising alternative.

Despite the great potential showed by carbon materials, there
are still some drawbacks that are needed to overcome, especially
to improve the selectivity of PFAS in solutions with coexisting
species. The studies have shown that in most cases their removal
efficiency is decreased as the presence of dissolved organic matter
or other organic compounds increases (Gagliano et al., 2020; Vu
and Wu, 2022). In this way, a major challenge to enhance the
application of adsorption in the wastewater treatment is to
develop new low-cost materials with higher selectivity towards
specific PFAS.

5.1.2 Membrane Filtration
Membrane filtration is a process where the molecules of the
contaminants are retained in membranes by a pressure-driven
and separated from water, mainly due to size exclusion, but also
by electrostatic repulsion and diffusion processes (Speed, 2016;
Franke et al., 2019). Membranes can be classified according to
their pore size, but the most common for the removal of PFAS
from water are nanofiltration (NF) and reverse osmosis (RO)
(Phong Vo et al., 2020). These membrane technologies have high
removal efficiencies of PFAS that can be above 99% (Soriano
et al., 2017; Franke et al., 2019; Phong Vo et al., 2020).

A study evaluated the removal efficiency of both nanofiltration
and reverse osmosis for the removal of 42 different PFAS from
water affected with aqueous film-forming foam (AFFF) (Liu et al.,
2021). The results showed that the rejection efficiency for the
PFAS was above 97% for both NF and RO. The authors also
found that changing the matrix negatively impacted the removal
efficiency. Another research employed reverse osmosis
membranes to remove perfluorooctane sulfonate (PFOS) from

Frontiers in Environmental Science | www.frontiersin.org April 2022 | Volume 10 | Article 86489411

Araújo et al. Detection and Treatment of PFAS

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


wastewater (Tang et al., 2006). The authors reported that the
membrane rejected 99% of the PFOS within a concentration
range of 0.5–1,500 ppm. Also, the presence of isopropyl alcohol
affected the removal efficiency, and the authors recommended
the application of pretreatments to wastewater to remove it before
the RO.

Membrane technologies have a great potential in the removal
of PFAS from wastewater. Their efficiencies are higher than most
of the other technologies, however there are still some problems
that need to be assessed to promote the implementation of this
technology. One of them is related to membrane fouling, as other
organic contaminants and inorganic ions may reduce
considerably their efficiency. Another major issue is the cost of
operation, as it requires high pressures, and the membranes are
expensive to produce.

5.2 Removal of Polyfluoroalkyl and
Perfluoroalkyl substances by Advanced
Oxidation Processes
Different technologies have been explored for PFAS removal
from water resources and soil samples; however, the high
energy C–F presented in PFAS’ structure make them resistant
to many of such treatment methods (hydrolysis, biodegradation,
photolysis, among others) (Wanninayake, 2021). In recent times,
advanced oxidation processes (AOPs) have emerged as simple,
clean, and efficient alternatives for water treatments. They are
defined as chemical oxidation processes capable of degrading
pollutants because of the in-situ generation of oxidizing agents,
such as hydroxyl radicals (·OH) or sulfate radical (SO4·) (Yang L.
et al., 2020). Depending on the mechanism followed for the
generation of those radicals, AOPs are classified into different
categories. In this regard, heterogeneous photocatalysis,
persulfate-based, sonochemical, and electrooxidation have been
frequently applied for the degradation of PFAS.

The mechanism in which heterogeneous photocatalysis
degrade PFAS initiates with hv absorption to generate
electrons (eˉ) and holes (h⁺), which in the surface of the
photocatalysts are able of degrading PFAS pollutants (Xu
et al., 2017). A wide diversity of photocatalysts with efficient
PFAS removal efficiencies can be found in the literature, such as
bismuth-based (Bacha et al., 2019), gallium-based (Zhao et al.,
2015; Zhu et al., 2021), titanium dioxide-based (Li et al., 2016),
and zinc oxide-based (Wu et al., 2017, 2018) photocatalysts. TiO2

as a photocatalyst has been widely used to remove a vast diversity
of pollutants (Bouyarmane et al., 2021; Paumo et al., 2021). In
fact, TiO2 doped with transition metals has been employed to
remove perfluorooctanoic acid (PFOA) by photocatalytic
decomposition. Li et al. (2016) reported that Pt-, Pd-, and Ag-
doped TiO2 presented 12.5, 7.5-, and 2.2-times higher
degradation than pure TiO2, respectively. The remarkably
better performances were attributed to the capacity of the
noble metallic nanoparticles to capture the electrons
accumulated in the conduction band (Li et al., 2016). In
comparison to pure TiO2, gallium-based photocatalysts have
also demonstrated superior photocatalytic degradation which
has been attributed to its higher oxidation-reduction potential

(Zhao et al., 2015; Xu et al., 2017). In this regard, Zhao et al.
(2015) reported an almost complete degradation of PFOA within
90 min of UV light irradiation.

On the other hand, sonochemical treatment has also shown
the potential to efficiently degrade PFAS from water samples.
This process belongs to AOPs since the organic pollutants are
oxidized by hydroxyl radicals produced during the treatment
(Cao et al., 2020). A low frequency (20 kHz) sonochemical
method achieved a complete degradation of perfluorooctane
sulfonate (PFOS) and PFOA (at trace levels) within 80 min of
process time (Panda et al., 2019). Sonochemical treatments
possess advantageous features such as energy-saving, high
cleanliness, and non-secondary pollution. Interestingly, Lei
et al. (2020) combined the use of ultrasound with persulfate-
based AOPs to synergistically degrade different PFAS. Among
the tested PFAS compounds, PFOA presented the highest
degradation percentage (~100%) in water samples.
Sonochemical treatment was notably enhanced by
persulfate since it can be activated by ultrasound
generating sulfate radicals improving the degradation (Lei
et al., 2020).

Electrochemical oxidation has gained increased research
attention due to its simplicity, high energy efficiency, easy
operation, eco-friendliness, and effectiveness for the
degradation of different organic pollutants (Barisci and Suri,
2020, 2021). Like other AOPs methods, pollutants subjected to
this process are degraded due to the reaction with hydroxyl
radicals. However, such hydroxyl radicals are formed at the
surface of an anode from water oxidation (Barisci and Suri,
2021). Therefore, the anode material is a highly relevant
parameter to reach a complete degradation of PFAS. Different
anode materials have been tested according to their electron
transfer abilities, hydroxyl radical generation capacities, and
oxygen evolution potential. Boron-doped diamond (BDD)
electrodes have been widely explored to degrade different
PFAS. As representative work, Sukeesan et al. (2021)
reported a PFOA degradation efficiency of 94% using Si/
BDD anode and titanium cathode under the optimal
conditions (applied current density of 40 mA cm−2 and
potential voltage at 25 V). The effect of different
parameters during electrochemical oxidation have been
explored, such as electrolyte, initial pH, initial pollutant
concentration, applied current density, among others.
Interestingly, it has been reported a remarkable effect on
the degradation rate by the chain length of PFAS compound;
increasing chain length leads to higher degradation
ratios because of higher hydrophobicity (Barisci and Suri,
2020, 2021).

Other anode materials like Ti/RuO2 (Barisci and Suri, 2021),
3D graphene-lead dioxide (Duan et al., 2020), and graphene
oxide-titanium dioxide anode coated on fluorine-doped tin
oxide glass (Yang J. S. et al., 2020) have been evaluated to avoid
the disadvantages presented by BDD electrodes such as its high
cost and toxicity potential if leaching occurs (Barisci and Suri,
2021). Table 2 presents the most recent advances in the
degradation of different types of PFAS through AOPs
methods.

Frontiers in Environmental Science | www.frontiersin.org April 2022 | Volume 10 | Article 86489412

Araújo et al. Detection and Treatment of PFAS

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


5.3 Recent Advances in Biodegradation of
Polyfluoroalkyl and Perfluoroalkyl
substances
Research on PFAS biodegradation was discouraging for many
years, once it was considered ineffective, and only
physicochemical treatments for PFAS degradation were
sought due to high stability and resistance to
biodegradation, however, recent research with various
microbial species, certain pure strains and some mixed
cultures have been reported to degrade certain PFAS species
such as PFOS, PFOA and some PFAA precursors. These
successful results in biodegrading PFAS have led to
increased scientific interest in this degradation strategy.
However, there are still very important challenges in the
biodegradation of PFAS such as the complexity of the PFAS
species, the environmental conditions, and the composition of
the microorganisms (Zhang et al., 2022).

Biodegradation of PFAS requires a hydrogen atom in the alkyl
chain for primary attack and molecular cleavage. Another factor
that also limits biodegradation is the oxidative replacement of
fluorine atoms, since these could form a dense hydrophobic
layer that surrounds the C-C bonds, inhibiting oxidative
degradation. For this reason, it is believed that the results
obtained in the initial studies of aerobic and anaerobic
biodegradation of PFOS and PFOA can be attributed to
sorption processes (Kucharzyk et al., 2017).

Within all the microbial species studied, Pseudomonas sp. has
shown greater potential in the biodegradation of PFAS. The HJ4
strain of Pseudomonas aeruginosa was the first report of effective
biodegradation and quantification of intermediates resulting
from the degradation of PFOS to PFBS and perfluorohexane
sulfonate (PFHxS), with 67% efficiency (Kwon et al., 2014).

Pseudomonas plecoglossicida 2.4-D strain was reported with
high PFOS biodegradation rates, an efficiency of 75% in soil in
90 days, and 100% of efficiency in laboratory using Raymond’s
mineral medium as carbon source in 6 days (Chetverikov et al.,
2017).

Recent reports demonstrate the high effectiveness of the
biodegradation of the aerobic strain Gordonia sp. aerobic NB4-
1Y, which showed efficiencies of 85 and 88% in 1 week, in the
degradation of alkylbetaine 6:2 fluorotelomer sulfonamide and 6:
2 sulfonate fluorotelomer, respectively (Shaw et al., 2019).

5.4 Lab-Scale Emerging Treatments for
Polyfluoroalkyl and Perfluoroalkyl
substances
Several reports suggest a variety of advanced processes for
remediation, Ion exchange resins, carbon-based absorption,
electrochemical degradation, and nanofiltration has shown a
removal efficiency from 90 to 100% than conventional
processes. However, more attention has been posed to short-
chain PFAs, PFOA, and PFOS, some of these processes can be less

TABLE 2 | Degradation efficiencies of PFAS by different AOPs methods.

PFAS AOPs Method Photocatalyst/Anode Removal Efficiency
(%)

Time (min) References

PFOA Photocatalysis BiOCl, BiPO4, BiOPO4/BiOCl ~99.99 45 Bacha et al. (2019)
PFOS Photocatalysis Ga/TNTs@AC 75 240 Zhu et al. (2021)
PFOA Photocatalysis β-Ga2O3 nanorods 98.8 90 Zhao et al. (2015)
PFOA Photocatalysis Ag-TiO2 57.7 420 Li et al. (2016)
PFOA Photocatalysis Pd-TiO2 94.2 420
PFOA Photocatalysis Pt-TiO2 100 420
PFOA Photocatalysis/Ozonation ZnO nanorods 70.5 240 Wu et al. (2017)
PFOA Photocatalysis/Persulfate/Ozonation ZnO-rGO 99.2 240 Wu et al. (2018)
PFOA Persulfate-based — 64 240 Tran et al. (2021)
PFOA Sonochemical/Persulfate-based — ~100 360 Lei et al. (2020)
6:2 FTS Sonochemical/Persulfate-based — 86.9 360
PFOS Sonochemical/Persulfate-based — 46.5 360
PFOS Sonochemical — 56.7–62.4 120 Gole et al. (2018)
PFOS Sonochemical — 100 80 Panda et al. (2019)
PFOA Sonochemical — 100 80
PFOA Electrooxidation Si/BDD electrode 39–95 60 Barisci and Suri, (2020)
PFOA Electrooxidation BDD electrode 79–81 480 Pierpaoli et al. (2021)
PFOS Electrooxidation BDD electrode 75–80 480
PFOA Electrooxidation Si/BDD electrode 94 300 Sukeesan et al. (2021)
PFHxS Electrooxidation Si/BDD electrode 88.1 300
PFOS Electrooxidation Si/BDD electrode 89.1 300
PFOA Electrooxidation GOP25/FTO electrode ~100 240 Yang J. S. et al. (2020)
PFCAs Electrooxidation Ti/RuO2 electrode 64–91 60 Barisci and Suri, (2021)
PFSAs Electrooxidation Ti/RuO2 electrode 16–67 60
PFOS Electrooxidation 3DG-PbO2 electrode 75.13–96.17 120 Duan et al. (2020)

Abbreviations: PFOA (perfluorooctanoic acid); PFOS (perfluorooctane sulfonate); G:2 FTS (1H, 1H, 2H, 2H-perfluorooctanesulfonic acid); PFHxS (perfluorohexane sulfonate); PFCAs
(perfluorocarboxylic acids); PFSAs (perfluorosulfonic acids); AOPs (advanced oxidation processes); Ga/TNTs@AC (gallium-doped carbon-modified titanate nanotubes); ZnO-rGO (zinc
oxide-reduced graphene oxide); BDD (boron doped diamond); GOP25/FTO (graphene oxide-titanium dioxide anode coated on fluorine-doped tin oxide glass); 3DG-PbO2 (3D graphene-
lead dioxide).
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efficient for this kind of compound (Lenka et al., 2021;
Mukhopadhyay et al., 2021), due to their use as an alternative
to long-chain ones, and to their high mobility in the water bodies,
therefore short-chain PFAs removal is more challenging. For
implementations to conventional treatment systems,
nanofiltration and carbon-based absorption could be a more
viable option (Gagliano et al., 2020; Dixit et al., 2021).

In a recent study, authors propose that regenerable organic
scavenger resins can operate for longer durations when compared
to PFAs-specific resins in single-use mode. However, regenerable
resins demand higher resin contact times when compared to
single-use resins (Coyle et al., 2021). Remediation based on
absorption is the most common process for PFAs removal. It
is important to consider a key factor for process
implementation, ion exchange resin selectivity, which are
classified by fluorinated groups, cationic groups, and cavitary
groups. To improve the remediation process, their synergy
effects have been probed (Wang et al., 2021). Alternative
methods such as enhanced photolysis, and sonochemical
destruction can conduct reduction of PFAs at some level.
Also, new technologies like nanofiltration, electrochemical
anodic oxidation, and electro-Fenton degradation have been
proposed to maximize economic and environmental benefits of
PFAs remedial measures avoiding the high energy consumption
and extreme operating conditions from other methods that
made the implementation process unviable for scaling up (Lu
et al., 2020).

6 RECENT ADVANCES IN LEGISLATION
AND FUTURE PERSPECTIVES AND
CHALLENGES
Nevertheless, the high harmful impacts of PFAS on human
health, the international treaties to reduce the production of
PFAS were signed in the early 2000 s. The implemented
regulations have specific restrictions based on national, state
and territory-level, even though there are differences within
countries. The US EPA released limits for the use of PFOS
and PFOA in 2016. After that, a rapid increase in the number
of states following the policies to prevent the PFAS pollution and
their effects (Brennan, et al., 2021).

Some PFAS have been regulated in Europe. PFOA and PFOS
and another long chain (PFHxS) were listed in the Stockholm
Convention on Persistent Organic Pollutants (POPs) and
restricted under the EU. Alternatives were developed to
substitute long-chain PFAS, however they still trigger adverse
effects in human health and the environment. Due to these
concerns the short-chains PFAS are starting to be regulated
under EU (European Commission, 2020).

The PFOA regulations in Asian countries are moving to
strengthen the decision of the use of chemical substances. In
April 2021, PFOA was added to the list of Chemical Substances
Control Act, but related substances are excluded from that. Also,
PFOA use was restricted in China in 2020. Other countries such
as Taiwan and Singapore the use of PFOA is partially regulated
(Enviliance ASIA, 2021).

Challenges derived from PFAS are complex, making it difficult
to develop policies. The lack of funding supporting PFAS
legislation, the variable monitoring of their impact on the
environmental and human health worldwide, the limited
release of scientific evidence, and restricted cultural
understanding of the prioritization of environmental issues.
Furthermore, substitutes need to keep their advantageous
properties while avoiding their negative properties in order to
propel their widespread adoption.

7 CONCLUSION

PFAS are very stable chemical substances of low biodegradability
that do not hydrolyze or photolyze under ambient conditions,
resulting in persistent and bioaccumulative substances in the
environment that are extremely difficult to remedy. The wide
distribution in aquatic environments derived from its
physicochemical properties and high solubility in water, which
have generated concern about possible negative effects on human
and animal health. The increasing concentration of PFAS in the
environment, especially in water, has become an important
problem gaining the scientific communities’ attention
particularly with a focus on the detection and removal of these
contaminants.

The study of the distribution and ecological risks of PFAS in
the environment is a multidisciplinary challenge that requires
collaboration between experts from many areas from the field of
chemistry, biotechnology, environmental toxicology, health,
among many others to solve lack of information and problems
associated with the distribution of PFAS. The PFAS family is
made up of chemical compounds with highly variable
physicochemical properties, which depending on the
destination or exposure to these compounds, their effects
may vary.

The real time analysis of influents and effluents of WWTPs is
needed to ensure the quality of the water treatment to avoid the
discharge of PFAS back to the environment. This will be a
challenge, particularly when coupled with traditional detection
methods. In this way, spectroscopic methods for detection are a
promising alternative that requires more attention to go beyond
the proof-of-concept stage.

Regarding the removal technologies, membrane technologies
have shown high efficiency of removal compared to other
methods, however their operational costs hinder their
applications in most WWTPs, making technologies like RO
more suitable for its application in drinking water treatment.
Due to this, adsorption and advanced oxidation processes
represent an attractive alternative for wastewater treatment,
especially for their implementation in developing countries.
Adsorption has already showed high potential in the removal
of several emerging contaminants, mainly due to the wide variety
of adsorbents, its relative low cost, ease of operation and
competitive removal rates. However, for its application for
PFASs removal it is necessary further research to understand
better the adsorption mechanisms and to improve the selectivity,
the major challenges of this technology. On the other hand,
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diverse AOPs have been already tested at pilot scale with good
PFASs removal rate, being photocatalytic degradation and
Fenton-based the ones with better results. Despite the great
performance of AOPs, it is necessary to improve their
energetic efficiency and selectivity for being applied in real
urban and industrial effluents.

As knowledge of the different types and physicochemical
behavior of PFAS grows, more efficient and economic
strategies as well as technologies for detection and degradation
are created. These advances aim to fulfill current global
regulations as well as inspire new ones to control the excessive
use of products with PFAS as well as generate public knowledge
about PFAS environmental and human health impact.

Current reports on the study of PFAS continue to generate
new information on damage to health and the environment,
however, more information on compounds as well as their
combinations are needed, as it difficult to obtain all
information on each PFAS. In recent years, different effective
bio-based technologies have been developed that remove PFAS.
As they because they still lack information regarding efficacy in
complex samples, different WWTP flows, and generation studies.
degradation compounds and their effects approval and
implementation. Some effective actions to manage the risks
surrounding PFAS and their continuous accumulation in the
environment would be to regulate the production and use of these
compounds, emphasizing the importance of eliminating non-
essential uses of PFAS, as well as developing of biodegradable
compounds with similar properties, as well as the continuous
study of strategies and technologies for the detection and safe
elimination of PFAS in the environment.
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