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General circulation models could simulate precipitation under climate change and have
been recognized as a major tool to project future water resources, but huge inherent
uncertainties mean that their credibility is widely questioned. The current analysis
mainly focuses on some aspects of uncertainty and few on the whole chain process to
yield a more reliable projection. This study proposes a framework to identify the
uncertainty and credibility of GCMs, consisting of downscaling, uncertainty analysis
(model spread and Taylor diagram), ensemble analysis (grid-based weighted
Bayesian model averaging), credibility analysis (signal-to-noise ratio), and
probability projection. Based on five selected climate models from the Coupled
Model Intercomparison Project Phase 5 (CMIP5), the uncertainties and credibility
of simulated precipitation in the Yellow River of China were analyzed. By comparing
the models’ output with the observation in the historical period of 1986–2005, we can
see that large uncertainty exists among models’ annual precipitation. For different-
class precipitation, the uncertainties of the five models are small in relatively weak
rain, but large in heavy rainfall, which indicates more risk in future projections and the
necessity to explore their credibility. Moreover, in such a large-span basin, GCMs
show vast spatial differences in space and even opposite trends in some regions,
demonstrating the limits of Bayesian model averaging (BMA) on multi-model
ensemble due to one weight group overall whole basin. Thus, a grid-based
weighted Bayesian model averaging (GBMA) method is proposed to cope with
the spatial inconsistencies of models. Given the multi-model ensemble results, the
future precipitation changes of the periods of 2021–2050 and 2061–2090 are
projected, and the probability and credibility of future precipitation changes in
terms of spatial distribution are identified. Model credibility identification could
allow for more reliable projections of precipitation change trends, especially for
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different spatial regions, which will be very valuable for decision-making related to
water resource management and security.

Keywords: grid-based BMA, uncertainty, credibility, framework, CMIP5

1 INTRODUCTION

Precipitation is one of the typical variables in the hydrological
cycle, a process that has inevitably been affected by global climate
change due to increasing atmospheric and other greenhouse gas
concentrations and anthropogenic activities (Kong et al., 2021;
Liu et al., 2018). General circulation models (GCMs) have been
considered as primary tools for climate change scenarios and a
very important basis for precipitation prediction (Zhao et al.,
2020; Chen et al., 2014; Hasson and Pascale., 2016). Incomplete
theoretical understanding and certain simplifying assumptions
mean GCMs are not perfect (Georgescu et al., 2021; Reichler and
Kim, 2008), particularly the greater errors in the local resolution.
The World Climate Research Program (WCRP) developed the
CoupledModel Intercomparison Project (CMIP), which provides
an opportunity for model comparison and multi-model ensemble
strategy development (Knutti and Sedláček, 2013; Li et al., 2011).
The Coupled Model Intercomparison Project Phase 5 (CMIP5),
coordinated by the WCRP with the support of the IPCC AR5, is
still the current activity before the AR6. There are 59 GCMs in the
CMIP5 (https://www.wcrp-climate.org/wgcm-cmip/wgcm-
cmip5) in total, covering a large number of more complex
models run at higher resolution, more complete
“representative concentration pathways” (RCPs) of external
forcing, more scenarios, and more saved diagnostics (Taylor
et al., 2012). The models tended to be selected according to
the availability, resolution, or initial analysis of their applicability
(Huang et al., 2013; Knutti and Sedláček, 2013; Sabeerali et al.,
2015; Sun and Ding, 2015; Li et al., 2018). It has been a focus of
intense international attention to assess and correct GCMs in
different regions all over the world (Maurer and Pierce, 2014;
Wang C. et al., 2014; Toreti and Naveau., 2015). Given the
variations in the GCM structure and hypothesis simplification,
each model has its own level of performance and shows vast
differences, especially at the local scale. Thus, based on the
reliability and credibility exploration, models’ evaluation and
selection play a very important role in future water projection.

Water resources in the Yellow River, one of China’s mother
rivers, has caused extensive concern for the water resources issue
(Miao et al., 2010; Zhou et al., 2018) due to the historical flow
interruption in the last century. The huge stress on supplies in the
middle and lower reaches is a major issue for economic and social
development planning strategies in these regions. Meanwhile,
climate change and the underlying surface change (e.g., land-use
change and city or hydraulic engineering) caused by human
activities are affecting the future water resources (Xia et al.,
2014). Precipitation is the major source of the Yellow River water
resources, and any future change will directly impact water resource
utilization (Wang et al., 2018). Application of GCM scenarios has
addressed the simulated and projected precipitation under climate
change (Kang et al., 2015; Chen et al., 2016; Wei et al., 2016). The

current research mainly imports several GCMs to try predicting
precipitation or other related indexes such as the runoff change in
spatio-temporal changes for future climate scenarios (Wang G. Q.
et al., 2014; Yang et al., 2017). There has been some analysis of the
performance of GCM simulation (Lin et al., 2018), but few studies
comprehensively assess the uncertainty and credibility of GCMs.
Decision-makers or other stakeholders might be very confused
facing the quite different or even opposite results from the multi-
model ensemble. Therefore, due to the well-known huge uncertainty
of the GCMs (Friedlingstein et al., 2014; Lee et al., 2021), it is a key
problem how much confidence could be provided if the future
projection is imported into decision-making or planning.

There is an inherent hypothesis in climate model evaluation that
good model performance evaluated from the historical and present
climate guarantees higher reliability or credibility in future climate
projections. This hypothesis has been widely accepted in the absence
of a better alternative, for example, a comprehensive understanding
of the climate cycle and more accurate downscaling techniques.
Many studies have attempted to assess the performance of climate
models in terms of goodness-fit to present-day climate and to predict
the future climate on continental and regional scales (Mahlstein I
et al., 2012; Grainger et al., 2013; Hertig et al., 2014; Mehran et al.,
2014; Hui et al., 2018). Through extensive work and improvement in
the representation of the atmospheric oceanic process, various
models have been developed and shown to increasingly perform
well in simulating climate changes (Van den Hurk et al., 2013;
Ahmadalipour et al., 2017). But climate simulations and forecasts are
inevitably uncertain (Allen et al., 2000; Eghdamirad et al., 2017). To
reduce the simulation uncertainty and improve the credibility of
climate models, multi-model ensemble techniques have been
adopted (Thibeault et al., 2012; Ongoma et al., 2018). Multi-
model ensembles are believed to perform better than single
simulations, particularly in terms of reliability amid the huge
uncertainty of climate models. This is because the multi-model
approach involves different physical parameterization methods and
structures that surmount the limitations of the single simulation
(Wang et al., 2017). Thus, the technique of the multi-model
ensemble (MME), defined as the average of simulation results
from the multiple models, has been widely used on account of
the better large-scale agreement with observations (Cubasch et al.,
2001; Kumar et al., 2012). The extensive use of the MME has been
considered a successful way to provide higher quality and more
consistent future climate change projections, by means of
constraining projections using observations (Lu and Fu et al.,
2009; Strategy, 2014). However, since the future projections may
vary widely among the different models, utilizing an average of all
the models for the MME is not necessarily the best way to obtain
more reliable projections without looking into the reliability of the
individual models (Sun and Ding., 2009; Knutti, 2010; Lee and
Wang, 2014). Therefore, the weight of individual simulation
becomes crucial when deducing the multi-model ensemble result,
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rather than the simple average. Moreover, a multi-model ensemble
does not necessarily involve all models. It has been recognized that
poorly performing models degrade the overall skill of weather and
climate forecasts in an ensemble mean approach (Krishnamurti
et al., 2000); for further assessment of future changes, selecting some
best models is needed (Huang et al., 2013; Seo andOk, 2013; Lee and
Wang, 2014; Vasconcellos et al., 2020).

The reliability ensemble averaging (REA) methodology,
proposed by Giorgi and Mearns (2002) , provides a weighted
average of climate change ensemble results based on the
“reliability” of each model. “Reliability” defines the ability of a
particular model to simulate the observed climate and its degree
of convergence in predicted climate change compared with other
ensemble members (Sun et al., 2015). Another similar averaging
method is Bayesian model averaging (BMA) proposed by A. E.
Raftery and coworkers as a formal framework. BMA conditions
simulations of the entire ensemble of models and optimally
combines their predictive capabilities. The weights are the
estimated posterior model probabilities, representing each
model’s relative forecast skill in the training period with
observations (Vrugt and Robinson, 2007). Moreover, this
BMA methodology can assess the models’ joint predictive
uncertainty, which is an advantage in the face of huge
uncertainty in climate model projections compared with other
weightedmethods such as REA. Since the model averaging simply
requires a numerical representation of each model, there are no
restrictions on the diversity of conceptual and numerical models.
Many studies have demonstrated that BMA produces more
accurate and reliable predictions than other available multi-
model techniques (Raftery and Zheng, 2003; Ajami et al.,
2007; Duan et al., 2007; Demirel and Moradkhani, 2016; Ma
et al., 2018). However, due to normally providing only one weight
group, BMA is not a perfect solution to variations in models,
much less the defects of a large basin without allowing for spatial
differences. Thus, a framework for the full assessment process of
GCM simulation and projection is a necessary one that consists of
uncertainty analysis, individual model evaluation, and then
weight setting up.

There is a growing need among policymakers and even
stakeholders to identify a future projection mode reliable
enough to inform decision-making for adaptation and
mitigation purposes, but the reliability assessment of
projections is a challenge (Collins et al., 2012; Zhao et al.,
2017). When a future projection is provided to policymakers
and stakeholders, there are usually questions about how much
confidence or even probability can be associated with it. Here, we
addressed “credibility”, which is defined as the self-evaluation of
molders or researchers when they submit the results to the
government based on the MME projection or individual
model skill. Credibility is more easily accepted than reliability
by policymakers and stakeholders because it explicitly expresses
the confidence or probability.

Thus, the goal of this study is to propose a framework to
identify the uncertainty and credibility of GCMs for projected
future precipitation. As a main component of the framework, a
new grid-based BMA approach is also presented. Applying the
CMIP5 to the Yellow River basin, this study assesses the

performance and inherent uncertainties of the CMIP5 GCMs
in simulating precipitation variation and projecting the
precipitation change in future periods with credibility. Section
2 describes the data and methodology. Section 3 presents the
performance of the grid-based weighted Bayesian model
averaging (GBMA) method and uncertainties in CMIP5
models with historical observations over the Yellow River and
the future projections with credibility quantification. Conclusions
and discussions are provided in section 4.

2 DATA AND METHOD FRAMEWORK

2.1 Data
Given the potential disadvantage of poor simulation in multi-
ensemble approaches, instead of all CMIP5 models, the MIROC-
ESM-CHEM, CSIRO-Mk3-6-0, NorESM1-M, CNRM-CM5, and
EC-EARTH are involved in this study. They are selected based on
their simulation ability initial evaluation of the Yellow River from
the ChinaMeteorological Administration (Zhou and Han., 2018),
while the good performances of CSIRO-Mk3-6-0 and CNRM-
CM5 in the Yellow River basin were also demonstrated in another
study (Yang et al., 2021). The GCM models have been
downscaled into 0.25° × 0.25° as daily series by a quantile
mapping approach. The period of 1986–2005 is the historical
simulation test, and 2006–2099 is the future projection period.
The CMIP5 uses the new RCPs to express the emission scenarios
as RCP 2.6, RCP 4.5, and RCP 8.5. The RCP 8.5 scenario is known
as “business as usual”, in which the emission of anthropogenic
gases is not strongly regulated. China’s government is always
trying to control and reduce the emission, even putting forward
the target of “emission peak” by 2030 and “carbon neutrality” by
2060 in the near future. Thus, the RCP 4.5 might be more
agreeable with actual states. The medium emission scenario
RCP 4.5 is involved in this study in view of the fair
uncertainty of models.

Observed daily precipitation is obtained from the National
Meteorological Information Center of China (http://data.cma.
cn). The data set resolution is 0.5° × 0.5°, which is not consistent
with the aforementioned GCMs, so we carried out coordinate
matching for these two data sets, resulting in 415 grids from
coincidence points for model evaluation. Figure 1 shows the
Yellow River basin in China. The Yellow River is Chinas mother
river and the cradle of Chinese civilization, with a total length of
5,464 km and a basin area of 752,443 square kilometers. For a so
large-span basin, the spatial inconsistencies could be a
dominant handicap to producing a reliable ensemble
from GCMs.

2.2 Method Framework
Considering the way of the GCM output applied in the catchment
scale, the credibility quantification process of the output of GCMs
mainly consists of downscaling, uncertainty analysis (model
spread and Taylor diagram), ensemble analysis (a new grid-
based BMA), credibility analysis (signal-to-noise ratio), and
probability projection as shown in Figure 2. The detailed
method is illustrated as follows.

Frontiers in Environmental Science | www.frontiersin.org May 2022 | Volume 10 | Article 8635753

Guan et al. Framework for Uncertainty and Credibility

http://data.cma.cn/
http://data.cma.cn/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


The model spread has been widely addressed to estimate the
uncertainties of GCMmodels (Zhou and Yu., 2006; Forster et al.,
2013; Vial et al., 2013), which can be expressed as follows:

MS �
��������������
1
n
∑n

i�1(Xi − �X)2√
, (1)

where Xi is the variable simulated (e.g., precipitation) in the ith
model, and �X is the average of simulation results from n models.
Since there are possible interdependencies across models, the model

spread will not necessarily express the uncertainty. To evaluate the
performances of projections further, a Taylor diagram (Taylor, 2001)
was imported as well to show the spatial distribution agreement
between the observations and model simulation.

Bayesian model averaging (BMA) is used to deduce the
ensemble multi-model results and the probability of future
projections. BMA is an average of the posterior distributions
under each of the models considered, weighted by their posterior
model probability. This is recognized as a better way to treat the
conceptual model uncertainty because it is not only conditioned
on a single “best” model but on an entire ensemble of plausible
models. It is impossible to select a best model for a global
situation, especially at a regional scale. The BMA ensemble
can be expressed as follows:

p(P|D) � ∑K
k�1

p(fk|D) · p(P|fk, D), (2)

E[P|D] � ∑K
k�1

wkfk � ∑K
k�1

p(fk|D) · E⎡⎣p(P|fk, σ
2
k)⎤⎦, (3)

where P denotes the projected precipitation, D is the observed
precipitation, and f � [f1, f1, / , fk] and are kGCMmodels.
p(P|D) is the probability of BMA, p(fk|D) is the kth model’s
posterior probability, given D which is the weight of wk. The
model that performs well will have a higher weight. p(P|fk, D) is
the posterior probability of P, given the forecast k and D. E[P|D]
is the average of all involved models, wk is the weight of each
model, fk is the kth projection of each model, and σ2k denotes the
variance of the kth model. The weight, as the maximum
likelihood estimator of model probability, was deduced by an
EM algorithm (Raftery et al., 2005; Dong et al., 2011) in terms of
iteration solution, calculation, and correction.

BMA is traditionally used one time in a study area, but there
can be a significant deviation if the study area is a large and long
spatial distance. Allowing for the spatial differences, in this study,
we proposed a grid-based BMA, which means each grid would
have its own weights of models rather than a single weight system
for the whole study area. This is very important, particularly for a
long-span region such as the Yellow River basin.

FIGURE 1 | Yellow River basin in China.

FIGURE 2 | Framework to identify the uncertainty and credibility of
GCMs.
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Signal-to-noise ratio (SNR) is used to assess the credibility of
the grid-based BMA ensemble projection, which reflects the
models’ credibility by the relative size comparison of signal
and noise (Tan et al., 2016). The signal denotes the grid-based
BMA ensemble values, while the noise means the variations of
models. Thus, the signal-to-noise ratio index RSN can be
calculated as follows:

RSN � P

δP
, (4)

�p � ∑k
k�1

wkpk, (5)

δP �

�����������������∑K
k�1

wk(pk −∑K
k�1

wkpk)2
√√

, (6)

where �P is the average of the grid-based BMA ensemble value, δP
is the deviation of models, pk is the kth model projection, wk is the
weight of each model, and K is the number of models. When
RSN < 1, it means that the signal of the ensemble value is weaker
than the noise of the models. When RSN > 1, it implies that the
signal is stronger than the noise, and the larger one is more
credible.

Based on the weights from the grid-based BMA, the
probability of future projection is derived (Jiang et al., 2018).
Given a threshold of precipitation, the sum of the weights of
precipitation lower than the threshold could be considered as the
probability; then, the precipitation change probability can be
expressed as

LΔ�P>ΔPi � ∑
ΔPk >ΔPi

wk, (7)

where ΔPi denotes the precipitation variation, Δ�P is the future
precipitation change compared with the historical average, ΔPk is
the future precipitation change of the kth model projection,
Δ�P>ΔPi means that the future precipitation change meets the

threshold, and ΔPk >ΔPi means that the future precipitation
change of the kth model projection meets the threshold.

3 RESULTS

3.1 Model Performance for Historical
Precipitation
Figure 3 shows the annual cycle of the five CMIP5-models’
average, observation, and range between maximum and
minimum of the five models for daily precipitation averaged
over the YRB. The average shows an annual cycle consistent with
the observation but overestimates summer precipitation,
especially in August. Meanwhile, Figure 4 shows the model
spread spatial distribution over the Yellow River basin. The
models demonstrate significant differences in each grid,
especially in the northeast and southeast parts. The models
illustrate remarkable uncertainty in temporal and spatial scales.

Figure 5 further shows the spatial variations of the five CMIP5
models in 1986–2005. In general, the variations of projections and
observation are mostly around −50 to +50 mm. The variations of
models of CNRM-CM5, EC-EARTH, MIROC-ESM-CHEM, and
NorESM1-M are relatively smaller in the west and north and
larger in the east and south. The deviation in most parts of
CSIRO-Mk3.6-0 is around 0–50 mm, while the minus value is
less. Similarly, the CMIP5 models tend to overestimate the
precipitation of the Yellow River basin (Lin and Wen., 2014;
Zhu et al., 2019), which would be weaker in the upper reaches of
the Yellow River source region (Jin et al., 2020). It is worth noting
that the deviations of the models demonstrated a great difference
in space, even in some regions where the deviation indicated an
opposite trend (e.g., Inner Mongolia and the region within the
gray circle in Figure 5). If the deviation of −50–50 mm is assumed
as acceptance (the pink, yellow, green, and blue areas in Figure 5),
to some extent, the large deviation parts (the purple and red parts
with red rectangle in Figure 5) are consistent in the models, and
the spatial complementary is still as expected, especially for the
potential less deviation in amplitude (e.g., 50 mm is better than 70
or 80 mm) on account of different abilities of models. Given the
large uncertainty of the models, it is quite hard or impossible to
select the best model. Thus, the MME should be a way to reduce

FIGURE 3 | Annual cycle of average monthly precipitation from
observation, model average, and range between maximum and minimum of
the five CMIP5 models (blue shading) in 1986–2005.

FIGURE 4 |Model spread distribution of the five CMIP5 models over the
Yellow River basin.
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the simulation uncertainty and improve GCM predictions.
Nevertheless, all models show higher overestimation in the
central Shaanxi province (the red rectangle in Figure 5),
which indicates that even the MME would not obviously
improve reproduction in this region.

With climate change, extreme climatic events have become
more frequent worldwide (Calanca, 2007; Dobler et al., 2012;
Gama et al., 2013; Schinko et al., 2017; Frame et al., 2020). Thus, it
is essential to explore the different-class precipitation variations,
especially non-rainfall, light, and heavy rainfall, which would
result in drought or flood disasters. In this study, we chose six
classes of precipitation based on the daily intensity in the five
CMIP5 models. They are non-rainfall 0–0.5 mm day−1, very weak
0.5–5 mm day−1, relatively weak 5–10 mm day−1, moderate
10–20 mm day−1, relatively heavy rainfall 20–35 mm day−1, and
very heavy >35 mm day−1. The frequency of each class in each
region (in terms of the province to which belongs) is calculated.
Figure 6 illustrates the histograms of the precipitation frequency

in the nine regions as a function of the daily precipitation class.
Most precipitation falls into either non-rainfall 0–0.5 mm day−1,
very weak 0.5–5 mm day−1, or relatively weak 5–10 mm day−1.
Their frequencies do not show big differences among the five
CMIP5 models and are mainly consistent with the observations.
However, large uncertainties exist in the classes of moderate
10–20 mm day−1, relatively heavy rainfall 20–35 mm day−1, and
especially in very heavy rainfall >35 mm day−1. It is worth noting
that generally, the GCMs overestimate heavy rainfall such as in
Henan province (h) and Shandong province (i). The large
uncertainties and deviations for heavy rainfall from GCMs
indicate more risk in future projections and the necessity to
explore their credibility.

3.2 Multi-Model Ensemble Analysis
Given the huge uncertainty of individual and averaged models,
BMA is employed to produce the MME, taking account of the
model performances. The BMAweights of models are deduced by

FIGURE 5 | Annual total precipitation deviations of the five CMIP5 models with observations in 1986–2005 (mm, positive deviation means overestimation; minus
means underestimation). (A–E) represents five CMIP5 models of (A) CNRM-CM5, (B) CSIRO-Mk3-6-0, (C) EC-EARTH, (D) MIROC-ESM-CHEM, (E) NorESM1-M.
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an EM algorithm and are listed in Table 1. Thus, the ensemble
projection could be derived from the weighted average.

However, one weight group could not reflect the ability of each
CMIP5 model due to the huge spatial differences, as shown in
Figure 5. In view of the spatial differences, especially in a so large-
span Yellow river basin, a new grid-based BMA for each grid is
imported into the MME analysis in this study. Each grid has its
own weight group, according to the different performances of the

five CMIP5 models. Figure 7 illustrates the weights’ distribution
in the Yellow River basin for each CMIP5 model. EC-EARTCH
has high weights on the upper reach, and NorESM1-M has high
weights in the northwest part of Inner Mongolia. There is no
uniform distribution even for the other CMIP5 models of
CNRM-CM5, CSIRO-MK3-6-0, and MIROC-ESM-CHEM.
Thus, grid-based BMA that allows for spatial differences is
more reasonable than BMA for the whole large-span basin.

FIGURE 6 | Histogram of the frequency of the simulated different-class precipitation in provinces from the five CMIP5 models [non-rainfall 0–0.5 mm day−1, very
weak 0.5–5 mm day−1, relatively weak 5–10 mm day−1, moderate 10–20 mm day−1, relatively heavy rainfall 20–35 mm day−1, and very heavy >35 mm day−1: (a–i)
represents nine regions of (a)-Qinghai, (b)-Gansu, (c)-Sichuan, (d)-Ningxia, (e)-Inner Mongolia, (f)-Shaanxi, (g)-Shanxi, (h)-Henan, and (i)-Shandong].
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The Taylor diagram of each model, BMA, and grid-based
BMA ensemble is shown in Figure 8. There are three indexes in
the Taylor diagram. The correlation coefficient of projection and
observation reflects the ability of model simulation in the center
of the location. Root-mean-square error (RMSE) reflects the
pattern similarity of projection and observation: the closer to
0, the better will be the performance of the model. Standard
deviation demonstrates the ability of the model simulation in
center amplitude. As mentioned earlier, here the five models have

first been selected from the CMIP5 models, and it seems that each
model is not too bad in Figure 8. However, the MME projections
improve remarkably using BMA and grid-based BMA. Since the
indexes of the Taylor diagram are derived from the averaged
indexes for all grids, the differences between grids have been
averaged. It seems that the grid-based BMA is slightly better than
BMA, but the advantage lies in its consideration of spatial
differences.

Figure 9 shows the deviations of grid-based BMA and BMA
ensembles from the observation in 1986–2005. The grid-based
BMA presents different results in the northern part of Inner
Mongolia and Ningxia and the western part of Qinghai
province. The grid-based BMA could actually reflect the
local grid’s deviations, which might be very important for
local measures, especially for future water strategy in the
irrigated farming area such as the northern part of Inner
Mongolia and Ningxia. The more detailed projection as
grids could make the local measures more targeted and
effective. Though the deviations there have not been

TABLE 1 | BMA weights of each model for the whole basin.

Model Weight

CNRM-CM5 0.23
CSIRO-Mk3-6-0 0.26
EC-EARTH 0.22
MIROC-ESM-CHEM 0.14
NorESM1-M 0.15

FIGURE 7 | Weights on each grid of the five CMIP5 models from grid-based BMA. (A–E) represents five CMIP5 models of (A) NorESM1-M, (B) MIROC-ESM-
CHEM, (C) EC-EARTH, (D) CSIRO-Mk3-6-0, (E) CNRM-CM5.
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improved remarkably due to the limits of GCMs (e.g., the red
parts in Figure 9), the grid-based BMA generally reduces the
projected errors in terms of local grids.

3.3 Projections of Future Precipitation
With the grid-based BMA weights in the baseline period, the
future precipitation of the Yellow River in 2021–2050 and
2061–2090 is calculated as shown in Figure 10, with the
observed annual precipitation for comparison. In general, the
future precipitation shows an increasing trend, which is
consistent with the previous study (Bao and Feng, 2016; Li
et al., 2020). It is worth noting that it is assumed that the
performance of the models remains consistent and stationary in

the future. From Figure 11, the precipitation will increase
throughout the YRB in the future, while the regions of
rainfall lower than 200 mm will shrink progressively and
other higher rainfall regions will expand, even for 800 mm.
Again, the 400 mm isohyet will move to the north and west (Liu
et al., 2019), which might have a deep impact since it is the
important geographical marker of semi-arid and semi-humid
regions in China. Taking the near and far future into account,
the period of 2061–2090 shows a more remarkable increasing
trend than 2021–2050.

Figure 11 shows the future averaged monthly precipitation
anomaly, which illustrates that the monthly precipitation will
increase, especially between November and the following
January. Only in April in the period of 2021–2050, it will
slightly decrease. Precipitation in 2061–2090 will increase
more than that of 2021–2050. This indicates an overall
increase in the trend in precipitation in space and time.

The future variations in terms of different-class precipitation
do not show vast differences compared with the observed series
in the upper YRB, while a remarkable increase exists in (g)-
Shanxi, (h)-Henan, and (i)-Shandong, especially above 5 mm
(Figure 12). The risk of heavy rainfall might increase in Shanxi,
Henan, and Shandong in the future and deserves more
attention, although the daily precipitation projection might
have great uncertainties.

3.4 Probability and Credibility of Future
Precipitation Projection
3.4.1 Future Probability Projection in the Yellow River
Basin
Three thresholds are selected: 25mm, 50mm, and 100 mm. The
probabilities are quite small for future annual precipitation to
decreasemore than 25mmand increasemore than 100 mm, which
are not displayed here. In the near future period of 2021–2050
(Figure 13), only some areas in the northern part of Inner
Mongolia and the eastern part of Gansu show a decrease of
0–25mm with a probability of above 40% (Figure 13A, yellow
part), while other regions show an increase with higher probability.
In general, precipitation in most of the Yellow River basin will

FIGURE 8 | Taylor diagram of the five CMIP5 models, BMA, and grid-
based BMA ensemble (A represents observation, and B to H represent
CNRM-CM5, CSIRO-Mk3-6-0, EC-EARTH, MIROC-ESM-CHEM, NorESM1-
M, BMA, and grid-based BMA separately).

FIGURE 9 | Annual total precipitation deviations of grid-based BMA (A) and BMA (B) ensembles with observation in 1986–2005 (mm, positive deviation means
overestimation; minus means underestimation).
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increase by 0–25mm, 25–50mm, and 50–100 mm for the
northern part of Shaanxi and Shanxi (Figure 13C).

The probability of a decreasing trend is reduced and that of an
increasing trend rises in the further period of 2061–2091
(Figure 14). The probability is even higher than 80% for some
parts (in red) for a 0–25 mm (Figure 14B) and a 25–50 mm
(Figure 14C) increase. The part of probability higher than 40%
also expands with a 50–100 mm increase (Figure 14D). This is
consistent with the more significant overall increasing trend for
projected precipitation in the far future of 2061–2090.

3.4.2 Credibility of Future Precipitation Ensemble
Projection
Figure 15 provides signal-to-noise ratios for future projected
precipitation based on the grid-based BMA in the Yellow River
basin. The SNR of the northern and southern parts are smaller
than 1, which demonstrates the signals are weaker here and lower
in credibility. Meanwhile, the middle part is larger than 1, which
illustrates the stronger signals and more credibility. These cases
are consistent with the lower probability in Figure 13 for the
northern and southern parts. The far future of 2061–2091

FIGURE 10 | Averaged annual precipitation distribution of the YRB in the historical period of 1986–2005. (A) Grid-based BMA ensemble projection of the Yellow
River basin in the future period of 2021–2050 (B) and 2061–2090 (C).

FIGURE 11 | Averaged monthly precipitation anomaly in the future period of 2021–2050 (A) and 2061–2090 (B).
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FIGURE 12 | Histogram of the frequency of the future projected precipitation in provinces [non-rainfall 0–0.5 mm day−1, very weak 0.5–5 mm day−1, relatively weak
5–10 mm day−1, moderate 10–20 mm day−1, relatively heavy rainfall 20–35 mm day−1, and very heavy >35 mm day−1. (A–I) represents nine regions of (A)-Qinghai, (B)-Gansu,
(C)-Sichuan, (D)-Ningxia, (E)-Inner Mongolia, (F)-Shaanxi, (G)-Shanxi, (H)-Henan, and (I)-Shandong].

FIGURE 13 | Annual average precipitation probability projection in the future period of 2021–2050. (A–D) represents four variations of (A) −25 to 0 mm, (B) 0 to
25 mm, (C) 25 to 50 mm, (D) 50 to 100 mm.
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(Figure 15B) shows more regions with higher SNR and more
credibility. Though the spatial differences in SNR, the GCMs
demonstrate better credibility in the far future. It is worth noting
that the southern parts of Shanxi, Shaanxi, and the northern areas
of Henan are relatively lower in SNR and have weak credibility,
which means that the deduction of the future heavy rainfall risk
and variation analysis in those regions are more uncertain, in
contrast with that of Shandong.

The other interesting phenomenon is that the credibility of
2061–2090 is higher in a larger scope such as in the red regions in
Figure 15B, which not necessarily means a more credible
projection in the far future. It illustrates that for the far future,
the GCMs are more consistent and have smaller differences since
the far future scenarios show more inherent uncertainty and

similar assumptions in all GCMs. Fundamentally, more evidence-
based data, in-depth understanding, and exact mapping in GCMs
are needed to improve their credibility.

4 DISCUSSION AND CONCLUSION

The development of GCMs enables projections of future climate
and even water resource trends. The main challenge is that it is
difficult, especially for decision-makers, to trust the predictions,
given the huge uncertainty and even opposing results of GCMs.
There have been plenty of publications on the evaluation and
uncertainty in GCM models, including the Coupled Model
Intercomparison Project of CMIP5. Normally climate

FIGURE 14 | Annual average precipitation probability projection in the future period of 2061–2090. (A–D) represents four variations of (A) −25 to 0 mm, (B) 0 to
25 mm, (C) 25 to 50 mm, (D) 50 to 100 mm.

FIGURE 15 | Signal-to-noise ratios of the future projected precipitation based on the grid-based BMA in the future period of 2021–2050 (A) and 2061–2090 (B).
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researchers will suggest several models that are more reliable
based on comparative analysis with observations in space and
time for the specified basin. However, it is not still simple or
used directly if the output of GCMs is imported into further
analysis, such as the projected precipitation for future water
resources. The current analysis usually focuses on one point or
some aspects of the uncertainty and credibility of GCMs, but it
lacks an overall operational process to deal with these problems.
Thus, this study proposed a framework for an ensemble result
generation process in a more credible manner for the future-
projected precipitation, in which a new BMA model based on a
grid is built to express spatial differences of models for long-
span basins.

Five models fromCMIP5 are addressed in this study due to the
evaluation of the Yellow River basin from the China
Meteorological Administration. In the historical period of
1986–2005, the models show a significant spread in space and
time. The variations are mostly around ‒50 to 50 mm and
demonstrated a great difference in space and even opposite
trends in some regions. For different-class precipitation, the
uncertainties of the five models are small in relatively weak
rainfall but large in heavy rainfall, indicating more risk in
future projections and the necessity to explore their credibility.
It is quite hard to select the best or most reliable model, given the
large uncertainty. However, it is worth noting that the spatial
complementary could be expected for less deviation in amplitude.
The MME should be a way to reduce the simulation uncertainty
and improve GCM predictions.

In contrast with BMA, the grid-based BMA generally
represents the spatial differences and performances of each
GCM, resulting in a more reliable projection for each grid. It
could somehow overcome individual differences and address
relatively creditable information from more models on a grid-
scale, which could avoid the leveling effect errors in a spatial scale
from BMA. This is very critical for a large and long-span basin.
However, real improvement still depends on better GCMmodels.
If all the selected models fail in one grid, it is still impossible to get
the correct projection even on such a grid scale.

The future precipitation of the YRB in 2021–2051 and
2061–2090 is calculated based on the grid-based BMA, which
presents an increasing trend all over the YRB. The regions of
rainfall lower than 200 mm will shrink progressively and other
higher rainfall areas will expand, even for 800 mm, which is more
remarkable for a further future period of 2061–2090. The 400 mm
isohyet will also move to the north and west, which might have a
deep impact as the geographical marker of semi-arid and semi-
humid regions in China. Moreover, the monthly precipitation
anomaly generally also shows an increasing trend, and the risk of
heavy rainfall might increase in Shanxi, Henan, and Shandong
provinces.

If taking the 40% as the accepted probability of projections, in
the near future period of 2021–2050, precipitation in most of the
Yellow River basin will increase by 0–25 mm and 25–50 mm and
by 50–100 mm for the northern parts of Shaanxi and Shanxi. The
probability goes up even higher than 80% for some parts for
0–25 mm and 25–50 mm, and the area with a probability higher
than 40% extends to a larger region. The increasing trend and

amplitude will be more concrete in the far future period of
2061–2090.

According to the signal-to-noise ratios, the middle parts of the
YRB such as Qinghai, Gansu, and Ningxia provinces, the south
and middle of Inner Mongolia, the north of Shaanxi, and Shanxi
present higher values and credibility, which means that the
projections in these regions have high credibility. While the
other projections are less reliable, the risk exists in the higher
precipitation regions in the southern part of the YRB, which will
bring new challenges for flood control and mitigation. It is also
worth noting that the credibility of 2061–2090 is higher in the
larger scope, which is due to the similar assumptions in all GCMs,
allowing for the more inherent uncertainty in the far future
scenarios rather than better credibility. It ultimately requires
more evidence-based data, in-depth understanding, and exact
mapping in GCMs to improve the credibility of future
projections.

The proposed framework here consists of downscaling,
uncertainty analysis (model spread and Taylor diagram),
ensemble analysis (a grid-based BMA), credibility analysis
(signal-to-noise ratio), and probability projection. It provides a
whole chain and novel way for identifying uncertainty and
credibility. In particular, the new proposed GBMA method
could help produce a more reliable ensemble projection, given
the current capabilities of GCMs. This issue is very crucial for
assessing risks for disaster and water resource management
strategy on the basis of future precipitation projection.

GCMs mainly lie in the spatial differences in performance,
especially for local regions, given the different settings of
boundary conditions, parameters, and dynamical mechanisms.
Quite a few studies find the different GCMs show significant
differences in reproducing the historical climate and weather for
large areas all over the world, which could be relative to the
geography, land cover, etc., Thus, the grid scale or other similar
representative units shall be involved to domulti-model ensemble
rather than model evaluation on a whole large basin. Though the
fundamental improvements of projections rely on more accurate
GCMs, the ensemble way could first go further for a more positive
spatial expression. As the new GCMs of CMIP6 improve and
uncertainties reduce, this proposed framework could play a
powerful role in a more credible ensemble projection in the
future.
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