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The rapid process of urbanization has been accompanied by a disordered expansion of
construction land, which has resulted in the degradation of ecosystem services. The
identification of ecological security patterns (ESPs) is an important means to coordinating
human-land relationships and carrying out ecological restoration strategies, which are of
great significance to protecting ecological sustainability. However, previous studies have
ignored the mutual impact of urbanization and ecological protection, which leads to the
contradiction between them and useless of ESPs. This paper takes a rapidly urbanizing
metropolitan area as an example. Ecological sources were identified based on the
integration of ecosystem services and socioeconomic indicators by the Ordered
Weighted Averaging (OWA) method, which considers the trade-off between
ecosystems and socioeconomic systems. The Linkage Mapper tool was used to
extract ecological corridors, and thus ecological barrier points and pinch points were
identified to implement ecological restoration. ESPs included 158 ecological sources
according to the results. In more detail, the ecological sources and corridors were mainly
distributed in the area dominated by ecosystem indicators, whereas the central urban area
contributed less ecological sources, which indicates that the trade-off between
ecosystems and socioeconomic systems has a significant impact on the construction
of ESPs. Specifically, 406 ecological corridors were classified into different resistance
levels to extract 433.26 km2 barrier points and 458.51 km2 pinch points. The study also
proposed primary and secondary ecological restoration strategies for medium-, high- and
low-resistance corridors based on the optimization of ESPs, which could not only improve
ecosystem quality, but also fulfil the demands of human well-being. The integration of
ecosystems and socioeconomic systems improves the existing methods for identifying
ecological sources and restoration priority areas, and provides a scientific basis for
balancing the development of urbanization and ecological protection in metropolitan
regions.
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1 INTRODUCTION

Along with the continuous urbanization of recent decades,
disorderly expansion of urban construction land and
significant loss of ecological land have restricted the
sustainability of urban development (Feist et al., 2017; Peng
et al., 2018; Zhai and Huang, 2022). Within a coupled human
and natural system, the quantity and quality of the ecosystem
services are impacted by anthropogenic disturbances, which
affects regional landscape patterns and ecological security
(Peng et al., 2017b). As a result, how to ensure the structural
stability and functional security of natural ecosystems for
sustainable urban development is an urgent issue (Li et al.,
2015; Cumming and Allen, 2017; Serra-Llobet and Hermida,
2017). The construction of ecological security patterns (ESPs) was
proposed to develop a method for improving ecological security.
The ESPs, an interconnected ecological network composed of
different ecosystems, is an effective approach to support
biological species, maintain natural ecological processes and
promote ecosystem services, as well as to achieve regional
ecological sustainability (Su et al., 2016; Peng et al., 2018; Fu
et al., 2020).The concept of ESPs was derived from landscape
ecological planning in the 1990s (Yu, 1996). Many scholars have
studied ESPs on different scales from the perspective of landscape
ecology and urban planning (Peng et al., 2017b; Peng et al., 2018).

Landscape elements of key significance for ensuring regional
ecological processes and ecosystem services, such as ecological
sources, ecological corridors and strategic points, are all focused
on ESPs (Dong et al., 2021; Gao et al., 2021). Therefore, the basic
research paradigm of “identification of ecological sources,
construction of resistance surfaces, and extraction of ecological
corridors” has been gradually formed (Zhang et al., 2017). The
strategy for selecting ecological source areas is fundamental to the
construction of an ESPs, which is mainly conducted through
assessing the ecological sensitivity, ecological importance or
connectivity (Su et al., 2016) (Zhang et al., 2017). The method
of identification of ecological sources has changed from the direct
selection of nature reserves to the evaluation of ecosystem services
that affect regional ecological security (Peng et al., 2017a; Wu
et al., 2018). The integration of multiple ecosystem services, such
as water yield and biodiversity protection, has been applied to
source identification (Peng et al., 2018; Fu et al., 2020).

Integrating various components of coupled human and
natural systems is necessary to address complex
interconnections and to identify effective solutions to
sustainability challenges (Liu et al., 2015). However,
ecosystem services and human activities are seldom
considered jointly in the assessment of ESPs (Wang et al.,
2019); most studies have not adequately considered the ability
to fulfill people’s demand for ecosystem services when
identifying sources of ESPs, which still focus on ecological
patches as the supplier of ecosystem services, ignoring the
interaction between ecosystems and human socioeconomic
systems (Zhang et al., 2017). These ecological patches with
the ability to fulfill human demand (e.g., cultural ecosystem
services) is essential to consider when evaluating their capacity
to form part of the source area.

It is worth noting that previous studies that considered an
integrated valuation approach weighting various overlapping
types of ecosystem services, may have overlooked the
relationships (trade-offs or synergies) between these services.
This may have either induced space competition among
multiple ecosystem services or undermined the causal
interrelationship among multiple ecosystem services (Dai
et al., 2017; Zhao et al., 2020; Pan and Li, 2021). There is thus
an urgent need to study and balance the trade-offs among
multiple ecosystem services in decision-making processes
(Zhang et al., 2015). One of the multicriteria evaluation
methods, the ordered weighted averaging (OWA) operator,
was first developed in the context of fuzzy set theory (Yager,
1988). The use of the OWA method has proven to be an effective
approach in decision-making processes, and proposed a set of
scientific and flexible planning methods to balance multiple
conflicting ecosystem services in ESPs construction processes
(Zhao et al., 2020; Pan and Li, 2021). Moreover, increasing
economic development has led to urbanization in previous
undeveloped areas (Deng et al., 2021), and caused many
ecological and environmental problems in the meanwhile. The
increasing ecosystem services may lead to the control of the
development of urbanization (Li et al., 2022). These are issues
needed to be discussed, the mutual impact of urbanization and
ecological protection has not been considered and the trade-off
between ecosystems and the socioeconomic system is still unclear.
To address this gap, socioeconomic indicators should be
considered to integrate with ecosystem services in order to
construct the ESPs. Therefore, the OWA method was
introduced to resolve the contradiction between ecological
protection and urbanization decisions in this study. The
optimization of ESPs in most of the current studies focused
on the improvement of the evaluation process (Peng et al.,
2018; Wang et al., 2019). However, there was little research on
optimization after the establishment of ESPs (Fu et al., 2020).
ESPs can provide a practicable way for ecological restoration to
spatially identify key landscape elements; existing studies have
identified key restoration areas in ecological corridors, pinch
points, break and barrier points (Wang et al., 2018; Fang
et al., 2020), and put forward zoning ecological restoration
solutions (Ying et al., 2019; Ni et al., 2020). In addition, the
ecological restoration of a coupled ecosystem and socioeconomic
system based on ESPs is still in its infancy.

In recent years, Guangzhou has grown rapidly and has spread
in a disorderly manner (Fan et al., 2018), and the ecological land
has been seriously damaged, which seriously affects the welfare of
the residents (Zhang et al., 2020). Hence, the Municipality
government of Guangzhou proposed a framework of
ecological networks and corridors in the metropolitan area
and municipal administrative area according to ecological
civilization construction planning (2016–2020). There have
been similar approaches to constructing an ecological network
of Guangzhou and to improving environmental protection under
rapid urbanization (Zhao et al., 2017; Yang et al., 2018). However,
previous approaches focused solely on ecological elements, such
as forest land, natural reserves and the habitats of crucial species,
without using an ecosystem service importance evaluation. The
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studies mentioned above only assessed the landscape
connectivity, failing to consider both the importance of
ecosystem services and socioeconomic indicators, as well as
restoration strategies. Therefore, it is urgent to move the
process of ecological protection and restoration forward in
order to identify key restoration regions for Guangzhou based
on the optimization of the ESPs.

Based on the above considerations, the research objectives
were to identify ecological sources by comprehensively evaluating
the integration between ecosystem and socioeconomic indicators,
to build ESPs based on the lowest cost path and identify the
barrier point and pinch point for the corridors and to propose the
optimization of the ecological restoration regions on the basis
of ESPs.

2 MATERIALS AND METHODS

2.1 Study Area
Guangzhou is the central city in the Guangdong-Hong Kong-
Macao Greater Bay Area, with a total area of 7434.4 km2. There
are eleven municipal districts in Guangzhou (Figure 1). Having a
topographical structure of densely forested mountains, the
northern area is the ecological supporting area of Guangzhou.
The central area, with its topography of hilly and basins, is the
location of the socioeconomic center. Besides, the southern area is

also a potential area for the future development of construction
land due to the plain topography. With the rapid socioeconomic
development of Guangzhou in the past decade, the construction
land has expanded rapidly and the population has grown about
500,000 people per year. Therefore, Guangzhou has become one
of the cities where the conflict between urban development and
the ecological environment is most prominent in the Greater Bay
Area (Li et al., 2021).

2.2 Data
The basic data in this study mainly include: 1) the 2020 Globe
Land 30M surface coverage dataset from Globe Land http://www.
globallandcover.com/; 2) the 2020 GDEMV2 30M resolution
digital elevation data from NASA https://search.earthdata.nasa.
gov/search/; 3) Guangdong Province 30M resolution soil
erodibility factor dataset from National Science and
Technology Infrastructure Platform - National Earth System
Science Data Center http://www.geodata.cn; 4) 2020 MODIS
MOD13Q1 NDVI 16-days data from NASA https://modis.gsfc.
nasa.gov/data/; 5) 2020 monthly values of basic elements of
China’s international exchange station for meteorological
radiation and monthly values of China’s ground climate data
from the National Meteorological Science Data Center http://
data.cma.cn/; 6) 2020 national urban road dataset from Gaode
Map https://www.amap.com; 7) 2020 Guangzhou city POI data
from Gaode Map https://www.amap.com; 8) NPP/VIIRS annual

FIGURE 1 | (A)is the site of the study area, (B) is the elevation of the study area, (C) is land cover types of the study area.
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nighttime lighting index sourced from National Oceanic and
Atmospheric Administration https://ncc.nesdis.noaa.gov/VIIRS/;
9) 100 m population density raster dataset for 2020 sourced from

worldpop https://www.worldpop.org/; (10) Guangzhou City Park
Directory http://lyylj.gz.gov.cn/attachment/6/6806/6806818/
7295517.pdf

TABLE 1 | Assessment methods.

Indicator Method Calculation

Carbon Fixation To study the metabolic capacity of the ecosystem, the net primary
productivity is used to characterize the Carbon fixation Yang et al.
(2016). Carnegie Ames Stanford (CASA) model

NPP(i,t) = APAR(i,t) × ξ(i, t); NPP(i,t) is the net primary productivity on-grid i in
time period t; APAR(i,t) is the photosynthetically active radiation index on-
grid i in time period t, and ξ(i, t) is the light energy conversion rate on-grid i in
time period t

Water Yield The Water Balance Method Casagrande et al. (2021) WY = P−ET−D; WY is the annual water yield; P is annual precipitation; ET
indicates the annual evapotranspiration; D is the surface runoff, which is the
product of surface runoff coefficient and precipitation Wang et al. (2020)

Soil Conservation RUSLE Erosion Model Ye and Shi (2021) A = R× K× LS× C× P; A is the erosion amount of soil; PA is the erosion
amount of soil; R is the rainfall erosion factor; K is the soil erodibility factor; LS
is the slope length slope factor; C is the vegetation cover and management
factor, and P is the soil conservation measure factor. Among them, the
rainfall erosion factor (R) is set as a constant due to the small difference of
precipitation in the study area, and the P and C coefficients will refer to the
research results of related literature

Habitat Quality Habitat Quality module of the InVEST model Liu et al. (2021)
Cultural Ecosystem
Service

Recreation services, accessibility, and historical heritage services Yu
et al. (2018); Marina et al. (2020) demonstrate the level of cultural
resources in the study area, so the study identifies the potential for
sustainable cultural development through this index

CS = 0.9L+0.1CH; L = 0.2LU+0.5P+0.15RD+0.15 PT; CS is the value of
cultural services; L is the value of recreation and leisure; CH is the value of
spiritual and cultural resources, calculated by estimation of historical and
cultural facilities in the study area. LU is the type of land use coverage; P is
the service of the parks in the study area, which is quantified with reference
to the evaluation of Guangzhou city parks in “Guangzhou City Park
Directory” “Guangzhou City Green Space System Plan (2020–2035)”. RD is
road density, and PT is public transport station distribution density, which is
quantified by kernel density estimation to POI data of public transport
stations Yang and Li (2021); Bing et al. (2021)

Landuse Development
Degree

The ratio of construction land to the total land area in the study unit. This
study quantifies the degree of land use development by the ratio of built-up
land to total land area within a 100 m grid Peng et al. (2017a)

Population Density Worldpop 100 m population density raster dataset There are significant differences in population density and nighttime lighting
index between different areas. Therefore, the study will take the logarithm of
the two indicators PD and NL Gong et al. (2019)

Nighttime Lighting NPP/VIIRS annual nighttime lighting index

FIGURE 2 | The research framework.
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3 METHODOLOGY

3.1 Indicator Assessment
As shown in Table 1 and Figure 2, The assessment of the
importance of ecosystem services is the basis for the
construction of ESPs. In terms of the topography and land
cover types of Guangzhou, the study area is facing some
ecological problems of soil erosion, massive destruction of
native vegetation, habitat fragmentation and the decline of
water yield. Therefore, ecosystem services of Soil Conservation
(SC), Habitat Quality (HQ) and Water Yield (WY) were selected
as indicators and Carbon Fixation (CF) was also selected because
it is a quantitative approach to the delineation of ecological
redline for ecological protection in planning. In the
meanwhile, due to the incomplete parks and recreation system
and increasing demands of cultural ecosystem service in the study
area, Cultural Service (CS) was also selected as ecosystem
indicators. On the other hand, the degree of Land-use
Development (LD), Population Density (PD) and Nighttime
Data (NT) were selected to represent the socioeconomic
system (Ding et al., 2019).

3.2 Correlation Analysis
According to the previous study, ecosystem and socioeconomic
indicator trade-offs and synergies were based on linear data
fitting, which can show the direction and intensity of
interactions between each of the two indicators (Li et al.,
2020). In this study, we first used Pearson correlation analysis
to form a correlation matrix by using the GGally package in R,
version 4.1.1 The values of eight types of indicators were
randomly extracted from a total of 50,000 locations at the
scale of the study area. The Pearson correlation coefficients
between two indicators were calculated and tested for
significance. When the correlation coefficient between two
indicators is positive, there was synergy between them. When
the correlation coefficient is negative, there were trade-offs
between the indicators (Chen et al., 2021). The magnitude of
its absolute value reflects the degree of trade-offs or synergy
between the indicators. Complex trade-offs may exist among
different indicators of the same factor, while specific trade-offs
may exist between the ecosystem and socioeconomic system.

3.3 Multicriteria Evaluation
Multicriteria evaluation (MCE) can measure and evaluate
regional suitability by weighing multiple relationships
(Valente and Vettorazzi, 2008). The OWA method can
weigh different decision objectives to determine the optimal
decision by performing spatial operations on each evaluation
metric. OWA method presents different decision sets by
considering the trade-off relationships between different
criteria (Chen et al., 2021). OWA method can weigh
different decision objectives to determine the optimal
decision by controlling each evaluation indicator for spatial
operations and balance multiple conflicting indicators in the
decision-making process. By considering the trade-offs
between different criteria, different decision scenarios were

simulated and different decision sets were presented. The
formula is as follows (Zhao et al., 2020):

OWA xij( ) � ∑n
i�1

wisij, wi ∈ 0, 1[ ],∑n
i

wi � 1, i and j � 1, 2, 3, . . . , n⎛⎝ ⎞⎠ (1)

where xij is the standardized comprehensive evaluation index
value; sij is the sequence value arranged in descending order by xij
through the size of the attribute value; wi is the order weight
arranged in descending order by xij through the size of the
attribute value; n is the number of indicators.

According to different decision risks, the bit-order weights
generated and the trade-offs obtained based on the bit-order
weights under various decision risks were calculated as follows:

wi � QRIM
i

n
( ) − QRIM

i − 1
n

( ), i � 1, 2, 3, . . . , n (2)
QRIM r( ) � rα, α ∈ 0,∞( ) (3)

trade-off � 1 −
�����������
n∑n

i wi − 1
n( )2

n − 1

√
, 0≤ trade−off ≤ 1 (4)

In the formula,QRIM is the monotonical rule function;wi is the
number of the bit order; n is the number of indicators; α is the
decision risk coefficient under different decisions.

In this study, seven decision scenarios (α of
0.001,0.1,0.5,1,2,10,1000)were presented, It shows that under
the decision scenario of α < 1, ecology space will be restricted
protected or even reach the scenario of Complete Protection. On
the other hand, changes in decision making from α = 1 to α =
1,000 gradually shows the scenario of developing with the risk of
ecological destruction (Li et al., 2022). In the process of OWA
method, eight evaluation indicators were min-max normalized
from 0 to 1 and ranked in descending order by the mean size of
the normalized values to obtain the rank order weights of each
indicator. The decision risk level was ordered into seven types,
and a total of eight decision scenarios were dynamically generated
for different decision levels. By multiplying the rank order
weights of each indicator with the weighted weight values of
the eight assessment indicators and their indicator values,
comprehensive ecosystem and socioeconomic evaluation maps
can be obtained under different scenarios. The top 20% of each
scenario were identified as ecological priority areas based on the
comprehensive evaluation map (Chen et al., 2021). By comparing
the degree of trade-off in different scenarios, the scenario with the
highest degree of trade-off was selected as the optimal scenario. In
this scenario, ecological conservation and socioeconomic
development will be in dynamic balance, and the city will be
in a state of effective conservation while developing (Li et al.,
2022).

3.4 Building the Ecological Security Pattern
3.4.1 Ecological Source
In this study, ecological sources were identified by combining
ecosystem and socioeconomic system. Ecological priority areas of
a certain size are essential for the material and energy connection
of the ecological network (Cui et al., 2020). Referring to previous
studies and the actual situation of Guangzhou (Long et al., 2018),
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our study integrated and screened all ≥ 1km2 areas from
ecological priority areas as ecological sources (Mao et al., 2020).

3.4.2 Ecological Corridor
Urban ecological corridors connect ecological sources in the urban
system network (Mao et al., 2020). The resistance surface is the key
to influencing material and energy flow between ecological sources.
Therefore, the resistance surface value was determined based on the
comprehensive evaluation value of the ecosystem and
socioeconomic system. In particular, we normalized the
integrated assessment value raster to calculate the resistance of
the raster with the following equation (Peng et al., 2018).

Ri � 1000 × 1 − Ai( ) (5)
where Ri is the surface value of resistance in grid i; Ai is the
comprehensive evaluation value in grid i.

In the next step, the least-cost path was calculated by the
Linkage Mapper tool and set the maximum cost-weight distance
as 20,000 (Xu et al., 2021a). Linkage Mapper filters the optimal
corridors from the source to the neighboring source to map the
optimal paths by simulating the minimum cost distance
accumulated by ecosystem services (Song and Qin, 2016). This
study identifies each ecological corridor’s average resistance level
by the ratio of the cost-weighted distance of each least-cost path to
the Euclidean distance between sources. The corridor ratios were
separated by the natural breakpoint method into extremely high
resistance, high resistance, medium resistance, low resistance, and
extremely low resistance (Su et al., 2021).

3.4.3 Barrier Point Analysis
Barrier points are high-resistance areas that prevent ecological
corridors from connecting to the ecological source (Pan and
Wang, 2021). In this study, the Barriers Mapper function in the
Linkage Mapper tool was used to identify ecological barriers by
setting 250, 500, 750 and 1000 m as the search radius. Five
intervals were set based on the identification results by the
natural breakpoint method, and the highest-value interval was
selected as the barrier point (Wang et al., 2022).

3.4.4 Pinch Point Analysis
Ecological pinch point is a high-flow, key node in the ecological
process, that should be protected as a priority. Pinch points play an
important role in ecological connectivity, being in areas of high
resistance and making a large contribution to connecting ecological
corridors (Peng et al., 2018). Pinch points can be identified using the
Pinch point Mapper function in the Linkage Mapper tool. In this
study, the analysis results were divided by the natural breakpoint
method. The category with the highest current values (which means
the least average resistance distance) is extracted as the ecological
pinch point (Zhu et al., 2020).

4 RESULTS

4.1 Indicator Assessment
The normalization result of each indicator value was shown in
Figure 3. The high values of HQ and SC were located in the

northern area and river around the southern area, and therefore
would be rich in biodiversity and high soil retention. Besides, the
high value of CF was concentrated in the northern area due to the
high vegetation cover and woodland there. What’s more, there
was a relatively low WY capacity due to the effects of high
urbanization in the central area. By contrast WY was generally
at high value in the northern and southern areas because of
abundant precipitation and the impact of rivers in the study area.
However, compared with other ecosystem indicators, the high
value areas of the CS are situated sporadically in the large forest
parks and landscape areas from northern and central area in hilly.
In addition, the indicators from the socioeconomic system
including LD, PD and NL were highly similar. Their high
value was concentrated in the highly urbanized areas in the
central area and the southern area under rapid development
(Ding et al., 2019).

4.2 Correlation Analysis
The study calculated the correlation coefficients among the
comprehensive evaluation indicators (Figure 4).The
correlation coefficients between ecosystem indicators generally
showed a positive correlation. Most indicators’ correlation indices
were concentrated in the range of 0.1–0.5. The correlation
between CF-WY (0.544) and CF-HQ (0.705) showed a
significantly positive correlation, indicating synergies between
these two relationships, while CS weakly correlated with WY and
SC at 0.012 and 0.037, respectively. On the other hand, the data
revealed significant positive correlations between the
socioeconomic indicators.

Overall, all indicators show negative correlation between
ecosystem and socioeconomic system, which indicates that
there was an apparent trade-off relationship between them.

4.3 OWA Method for Different Scenarios
As shown from Table 2, with the increase in the decision risk
coefficient, the rank order weight of high-level comprehensive
evaluation indexes decreases continuously. In contrast, the rank
order weight of low-level comprehensive evaluation indicators
increases continuously.

Under different scenarios, the top 20% of the
comprehensive evaluation value was selected as the
ecological priority area. Consequently, the map of ecological
priority areas under different scenarios was shown (Figure 5).
From the seven different types of scenarios (Table 3), it can be
seen that the decision result was optimistic at α = 0.001,0.1,0.5.
The high-value areas were mainly concentrated in the north
and south of the study area, and most of the land types in the
ecological priority protection areas were woodlands.
Obviously, this type of scenario makes it difficult to develop
construction land and maybe not easy to meet the growing
population needs of megacities. Meanwhile, the criterion
weights of all indicators in this study were 0.125 when α =
1. The high-value areas were evenly distributed throughout the
study area, and the ecological priority areas were mainly forest
land at that time. Moreover, farmland, water area and
construction area occupy part of the ecological priority
area. The comprehensive evaluation weighting value was the
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largest when α = 1. However, when α = 2,10,1000, the decision
result was pessimistic. The high-value area was concentrated in
the central area, and the ecological priority protection area was

mainly dominated by construction land. The indicator of the
socioeconomic system currently dominates the comprehensive
evaluation indicator, and the area was at a high-risk level. As

FIGURE 3 | Spatial pattern of ecosystem and socioeconomic system indicators in Guangzhou.
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the ecological risk gradually increases, the ecological priority
area changes from green space, woodland and grassland, to
farmland and construction areas.

4.4 The Ecological Security Pattern of
Guangzhou
4.4.1 Ecological Source
By simulating the decision risk of each scenario in the OWA
method, the result (α = 1), with the highest trade-off was
selected as the final scenario. Therefore, the comprehensive
evaluation was shown in Figure 6A and resistance surface was
shown in Figure 6B based on the final scenario. In this study,
spots of more than 1 km2 were selected as ecological sources of
the study area.

According to Figure 7, the number of ecological sources
was 158 and the total area of ecological sources was
1,085.34km2, accounting for 15.03% of the total area of
Guangzhou.

From the spatial layout, most ecological sources were
distributed in the northern area, accounting for 84.91% of the
total area of ecological sources.

The ecological sources in the central area account for
8.88% of the total area of ecological sources. This revealed
the fragmentation of green space caused by the expansion of
urban construction areas in the central area of Guangzhou, as
there were relatively few ecological sources with eligible area
and high comprehensive evaluation values.

Moreover, the area of ecological sources in the southern
part accounts for 6.21% of the total area of ecological sources.
The ecosystem values were much lower than those of the
northern part of the study area, where woodland was the
main land cover type. The socioeconomic system indicators
were lower than those of the central area due to the lack of
urbanization activities and population density, which results in
a low overall evaluation value. Ecological sources were
spatially scattered, and the area of individual sources
was small.

FIGURE 4 | Correlation matrix.

TABLE 2 | Bit order weight operators under different decision risk scenarios.

Scenario 1 2 3 4 5 6 7

α 0.000 1 0.1 0.5 1 2 10 1,000

w1 0.999 8 0.812 3 0.353 6 0.125 0 0.015 6 0.000 0 0.000 0
w2 0.000 1 0.058 3 0.146 4 0.125 0 0.046 9 0.000 0 0.000 0
w3 0.000 0 0.036 0 0.112 4 0.125 0 0.078 1 0.000 1 0.000 0
w4 0.000 0 0.026 5 0.094 7 0.125 0 0.109 4 0.000 9 0.000 0
w5 0.000 0 0.021 1 0.083 5 0.125 0 0.140 6 0.008 1 0.000 0
w6 0.000 0 0.017 6 0.075 5 0.125 0 0.171 9 0.047 2 0.000 0
w7 0.000 0 0.015 1 0.069 4 0.125 0 0.203 1 0.206 8 0.000 0
w8 0.000 0 0.013 3 0.064 6 0.125 0 0.234 4 0.736 9 1.000 0

trade-off 0.000 2 0.213 4 0.728 0 1.000 0 0.783 5 0.272 3 0.000 0
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Most of the ecological sources were woodland, accounting
for 85.58% of the total area of ecological sources, with a small
proportion of water land and construction land. Due to the

trade-offs between ecosystem and socioeconomic system, the
sources in the northern and southern area were mostly
dominated by ecosystem indicators. Moreover, the

FIGURE 5 | Ecological priority area of different scenarios in Guangzhou.
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ecological sources in the central urban area were generally
dominated by economic indicators.

4.4.2 Ecological Corridor
In total, 406 major ecological corridors with a total length of
1520 km and an average length of 3.3 km were identified in
Guangzhou. As shown in Figure 7, the ecological corridor in
Guangzhou was uniformly distributed, changing from dense in
the northern area to sparse in the southern area.

The northern area in Guangzhou has the largest number of
ecological corridors, with 334 in total. There was a short average
corridor length due to the dense and continuous distribution of
ecological sources. Some of the smaller ecological sources connect
the northern area through dense, low-cost-distance corridors,
occupying most of the area. Therefore, most of the northern
corridor could maintain the connectedness of the whole area.
There was the lowest number of ecological corridors in the central

area, at 30. The spatial layout of corridors in this area was in a
circular radial shape. The socioeconomic system index-driven
ecological sources link the northern and southern parts,
increasing ecological space connectedness in the central zone.
However, the average cost distance of corridors in the region was
much higher. There were 41 ecological corridors in the southern
area. Due to the remote distance between ecological sources, the
average distance of corridors was relatively long, and they have a
higher cost distance. The southern area was in its initial
development stage, and the socioeconomic conditions were far
lower than the central area.

Overall, 30 extremely high-, 65 high-, 161 medium-, 147 low-
and 2 extremely low-resistance corridors were identified.
Extremely high- and high-resistance corridors were normally
distributed in the north area, at extremely close distances
among the ecological sources. However, the intervening
patches of extremely low ecological value significantly reduce

TABLE 3 | Changes in the proportion of land use in ecological priority areas under different scenarios.

α Farmland (%) Woodland (%) Grassland (%) Waterland (%) Constructionland (%)

0.000 1 21.73 52.90 3.29 17.24 4.85
0.1 0.00 93.36 0.15 6.49 0.00
0.5 0.05 93.05 0.70 6.20 0.00
1 1.23 85.58 1.16 6.29 5.73
2 2.00 5.76 0.48 1.52 90.25
10 0.33 0.22 0.05 0.10 99.30
1,000 0.77 0.30 0.08 0.13 98.71

FIGURE 6 | (A) is comprehensive evaluation, (B) is resistance surface.
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the connectedness of the corridor between two sources.
Furthermore, medium-resistance corridors were generally
located in two ecological sources with longer cost-weighted
distances. The complex and various land-use types have an
impact on the overall resistance of the corridor.

4.4.3 Barrier Point Analysis
Comparing the results of the different radii, the four different
radii have a similar range of barriers. The search results from a
smaller radius can accurately search for a higher barrier score in
the fine area in the corridor. Therefore, a 250 m radius was
selected to identify ecological barrier point and the total area was
433.26 km2 (Figure 8A).

Most of the ecological barrier points were located in the
farmland and construction land. When it comes to the spatial
layout, there were a large number of scattered barrier points in the
northern part of the study area, and it would be very difficult to

completely remove them in the future. In the central and
southern areas, there were large-scale barrier points. Corridor
connectivity can be significantly improved by removing barrier
points in this area. Ecological restoration measures should be
recommended for optimization.

4.4.4 Pinch Point Analysis
The results (Figure 8B) show that the ecological pinch points
were mainly located in the northern area. Pinch points were
mostly situated in woodland, with a small amount in farmland
and construction land. On the other hand, in the southern area,
the proportion of pinch points in farmland and construction land
was significantly higher.

The narrow pinch point area acts as a catalyst for corridor
connectively when the relatively high-resistance patches spread
around the area. However, the analysis of ecological corridors
with different resistance types shows that although the study

FIGURE 7 | Ecological source and corridor.
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identifies high-value pinch points, they were mostly in low-
resistance corridors. Medium- and high-resistance corridors
were impeded by the disorderly encroachment of construction
land in the northern and southern areas, resulting in the
fragmentation of green space and farmland patches. The
fragmented areas were highly mixed with various land-use
types, and therefore contribute less to connectivity.

5 DISCUSSION

5.1 Significance for Integration of
Ecosystem and Socioeconomic System
Previous studies directly select forest patches or habitat areas of
wild animals as source areas, but the subjective interference in this
selection method was large. Although good accessibility was
considered in this selection method, the results only identified
ecological patches as the sources of Guangzhou (Yang et al.,
2018). Therefore, the high comprehensive value areas in other
land-use types tend to be ignored. Furthermore, by changing the
selection criteria of sources, the importance of core patches could
also be quantitatively evaluated based on the structure of
ecosystem and ecological sensitivity (Peng et al., 2017a; Su
et al., 2022). The ecosystem services-based ESPs were regarded
as an effective method for strengthening the integrity of
ecosystems and socioeconomic systems (Fan et al., 2021). It is
reasonable to rank patches based on their multifunction of

providing key ecosystem services, however, the interaction
between the ecosystem and human socioeconomic system
cannot be neglected due to the role of ESPs in figuring out the
contradiction between ecological land protection and urban
development.

We proposed a comprehensive selection method containing
five crucial ecosystem services in Guangzhou; aside from
regulation and provision ecosystem services, cultural services
were also included to quantify the importance of ecological
areas. To understand the relationship between ecosystem and
socioeconomic system, several scenarios based on the OWA
method were compared to identify the ecological sources. Our
approach identified the demand for human well-being and the
ability to provide effective services (Peng et al., 2017a). Green
space and parks in the central part of Guangzhou were also
extracted, although the patches were fragmented due to the
expansion of construction land. Specifically, a small proportion
of construction land also extracted due to the trade-offs between
ecosystem and socioeconomic system, which can be identified as
the strategic points in the ESPs. Our selection method, therefore,
is more conducive to the identification of ecological sources.

In the context of global climate change and anthropogenic
disturbances, socioeconomic development will lead to more
prominent eco-environmental problems (Liu, 2016). Aiming to
solve problems of ecological security,the Guangzhou government
has carried out a series of projects and plans such as ecological
protection redline, however, these “bottom-line” policies mainly

FIGURE 8 | (A) is ecological barrier point, (B) is ecological pinch point.
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concerned ecological space while neglected the human-land
contradiction in metropolitan area (Xu et al., 2021b), or
neglect the potential crucial patches outside the ecological
protection redline (Ye et al., 2018). To address this gap, this
study considered both the ecosystem and socioeconomic system
to construct the ESPs. It is worth noting that the most ecological
sources were distributed in the hilly area with woodland, which
tend to be threatened by unforeseeable human activities. It should
be of great concern to integrate ecosystem and socioeconomic
system to deal with future climate changes and sustainable
development.

5.2 Limitations and Challenges
Previous studies mostly used the artificial discrimination method
to eliminate results directly, but it was not easy to determine the
ecological sources (Fu et al., 2020). In this study, the ecological
sources were selected under the specified threshold, and as a
result, ecological sources in the southern and central areas of
Guangzhou were much less abundant than in the northern area.
Several important “green core” areas such as Dafu Mountain,
Seagull Island, and Huang Shan lu forest park were identified.
Some important patches such as Nansha wetland in the southern
area were eliminated due to their small area, though they may
have potential value in other ecosystem services. Future study is
still needed to determine the rationality of the threshold, and the
assessment indexes need to be enhanced to make sure that the
ecological sources are in their best state.

Referring to related studies, the selection of ecosystem
indicators is mainly based on support, cultural and regulating
services. However, the farmland is usually contributed to the
provision of ecosystem services and may be underestimated when
the study does not select food production as an indicator (Xu
et al., 2014). As a result, high-quality farmland in the southern
area may not be highly valued, leading to a reduction in ecological
sources in the south. Therefore, the range of evaluation indicators
could be expanded in future studies, which could add into the
integration of ecosystem and socioeconomic system relationships
in comparison with the results of current studies.

The connectivity of heterogeneous landscapes can be
effectively identified by the least-cost path. However, the
identification of corridor importance merits further discussion
(Song and Qin, 2016). Circuit theory can provide multiple
potential corridors and contribute to identifying corridors of
priority importance (Liu et al., 2021; Pan and Wang, 2021),
but it is not possible to intuitively investigate corridor
movement pathways and connectivity because of random-walk
(LaPoint et al., 2013). Therefore, we use the intuitive least-cost
path to describe the priority of each corridor and ratio of cost-
weighted distance to length to determine the relative resistance.
This could be more flexible in researching corridor connectivity.
However, compared with circuit theory it is still insufficient in
identifying the importance of multiple pathways (McRae et al.,
2008).

Different ecological corridor widths have an impact on the
identification of ecological barrier points and pinch points.
Consequently, they can provide the scientific basis for the
definition of ecological restoration and protection areas in

ecological corridors (Hou et al., 2021). An agreement
regarding the widths of different ecological corridors has not
yet been reached (Peng et al., 2017c). Therefore, determining the
widths of corridors is an essential point in the implementation of
ESPs (Zhai and Huang, 2022). However, this has not been
discussed due to the constraints of the study, but should be
considered in future research.

5.3 Optimization and Restoration
Different strategies should be proposed depending on the land-
use types of different areas. For the northern areas dominated by
the ecosystems, it is necessary to consider this area as the role of
the ecological supporting area and focus on ecological
conservation strategy. Ecological protection areas such as
forest parks should be strictly protected, while appropriate
recreational services should be provided as rationally direct
ecological resources. For the central area, which is dominated
by socioeconomic systems, small green spaces should be
constructed and distributed throughout the area. Moreover,
green spaces should be designed to deliver recreational and
cultural characteristics, balancing ecosystem values with
socioeconomic system values. In addition, in the southern
area, which is a potential area for urban construction in
Guangzhou according to Territorial Spatial Planning, the
expansion of construction land should be rationally restricted
to prevent the shrinkage of ecological space. Strategies such as
exposure to green space and ecological greenways (Zhang et al.,
2021), which can deliver different kinds of ecosystem services and
enhance the multifunctionality of corridors, are recommended to
integrate complementary ecosystem connectivity (Carlier and
Moran, 2019).

Corridors play an important role in the maintenance of
ecological processes (Peng et al., 2018). Furthermore, in order
to implement ecological restoration in ecological corridors, the
areas of barriers points and pinch points should be given more
priority (Peng et al., 2018). Medium-to-high-resistance ecological
corridors should be set as priority areas for future ecological
restoration. Ecological restoration should start by prioritizing
the removal of ecological barriers. In urban spaces, corridors
should be connected by road green belts and greenways. It is
possible to improve the corridor barrier points by enriching the
green space with various types, vegetation species and vertical
structures. Furthermore, the barrier point can be also improved by
combining green and blue spaces to form an ecological network
and green infrastructure (Yu et al., 2020), which simultaneously
contribute to human well-being and sustainable climate adaption
planning (Ignatieva et al., 2011; Monteiro et al., 2020; Yang et al.,
2020; Yu et al., 2021). When it comes to the connectedness of
farmland, high-standard farmland should be interpenetrated by
building connecting channels within the space which could
interfere with the corridor’s connectivity.

Ecological pinch points should be a conservation priority,
including strategies to maintain and recover the areas (Castilho
et al., 2015). It is necessary to integrate the fragmented patches
through land consolidation, which can integrate different spaces
with various land-use types in a unified way and carry out spatial
reconfiguration. Low-resistance ecological corridors should
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be flexibly maintained. These scattered barrier points can be
set as secondary areas for ecological restoration and can be
gradually improved by nature-based solutions (Bush and
Doyon, 2019). In the future, the area needs to avoid being
divided into fragmented spaces. Throughout the stages of
development, these areas should be centrally classified by a
unified authority, which will also facilitate maintenance at a
later stage.

6 CONCLUSION

Although previous studies have identified ecological security
patterns based on multiple ecosystem services, traditional
methods only identified what were considered “ecological
patches” as the suppliers, and lacked integration between
ecosystems and the socioeconomic systems. This study selected
comprehensive evaluation indicators including ecosystems and
socioeconomic systems to identify ecological sources, introducing
the OWA method from the perspective of trade-off. The highest
trade-off scenario was selected and, finally, the ecological sources
and resistance surfaces were identified.

There were 158 ecological sources with an area of 1,085.34 km2

and 406 ecological corridors with a total length of 1506 km in
Guangzhou. The pattern of ecological sources and corridors from
various areas were influenced by the dominant ecosystem or
socioeconomic system, which indicates that the trade-off between
ecosystem and socioeconomic system has a significant impact on
the construction of ESPs. Moreover, ecological barrier points and
pinch points with total areas of 433.26 and 458.51 km2,
respectively, were recognized to implement ecological
restoration. This study also proposed primary ecological
restoration strategies for medium- and high-resistance
corridors. A large number of scattered barrier points were
located in the northern area and large-scale barrier points
were generally situated in the central and southern areas.
Therefore, restoration strategies including enriching vegetation
types and vertical structures and building green belts and
greenways should be proposed to restore large-scale barriers
points. When it comes to pinch points, land consolidation
strategies such as construction land reclamation and farmland
preservation should be implemented in medium- and high-
resistance corridors, while buffer zones should be constructed

to enhance the resilience of low-resistance corridors. This could
achieve the win-win scenario of preserving ecological space while
furthering urban development.

The integration of ecosystems and the socioeconomic
systems was used as a fundamental basis to improve the
existing methods of constructing ecological security
patterns. The proposed ecological restoration solutions
based on this method contribute to the overall
improvement of the connectivity of the ESPs, offering a
reference for balancing the development of urbanization
and ecological protection in other metropolitan areas.
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