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Construction, tunneling, and other urban anthropogenic activities strain neighboring
buildings through distortion and rotation on both the surface and underground,
resulting in instability of the local geological structure. This may cause devastating
structural damage to buildings. Therefore, quantitative assessment of building
structural damage is essential for the safety of local communities. In this study, a novel
data-driven approach was applied to assess the building damage risks in urban areas.
Data collected from over 50 buildings adjacent to the construction site were analyzed. The
extreme learning machine (ELM) algorithm was applied to predict building structural risks.
A modified Lanczos algorithm was used to regularize the ELM and improve the overall
prediction performance. The computational results demonstrate the robustness and
efficiency of the proposed Lanczos algorithm-regularized ELM.

Keywords: building damage risk management, quantitative assessment, machine learning, feature engineering,
area under the receiver operation characteristics

INTRODUCTION

Intensive urbanization in China has resulted in rapid and widespread infrastructure construction in
megacities. Overconstruction, tunneling, and other activities distort the ground surface and cause
irreversible damage to the ground structure (Zhou et al., 2021). Consequently, adjacent buildings are
at risk of structural damage. Accurate evaluation of building structural damage risk is essential for
preventing devastating risks. In addition, it is beneficial to mitigate risk in advance (Feng et al., 2021a;
Feng et al., 2021b).

Traditional building structural risk assessment approaches correlate the extent of the damage with
ground movements using empirical, semiempirical, and numerical methods. Most empirical studies,
such as Skempton and MacDonald (1956), often limit the cause of damage to settlements arising
from the weight of the structure, ignoring the fact that deformation could be a consequence of
neighborhood excavation (Charles and Skinner, 2004). As an advanced improvement approach,
semi-analytical methods have attracted considerable attention and have been widely applied in
engineering practices. Burland and Wroth (1974) applied the idea of a critical tensile strain to the
initial visible cracking of a simple beam for building damage evaluation. Boscardin and Cording
(1989) developed a building damage criterion based on the critical strain for a given damage level,
which was determined from the combined effect of the lateral strain induced by lateral ground
displacements and angular distortion of the structure. Finno et al. (2005) used the deflection ratio as

Edited by:
Yusen He,

Grinnell College, United States

Reviewed by:
Peng Feng,

Chengdu University, China
Peng Tang,

Jiangxi University of Science and
Technology, China

*Correspondence:
Ting Zeng

tzeng_scu@163.com
Weiqi Yang

yangweiqi2824121@163.com
Lingling Wang

346697906@qq.com
Yuran Feng

fengyuran2017@163.com

Specialty section:
This article was submitted to

Environmental Informatics and Remote
Sensing,

a section of the journal
Frontiers in Environmental Science

Received: 25 January 2022
Accepted: 09 February 2022
Published: 28 February 2022

Citation:
Yang W, Wang L, Feng Y and Zeng T

(2022) Ground Settlement-Induced
Building Damage Assessment With

Modified Lanczos Algorithm and
Extreme Learning Machine.

Front. Environ. Sci. 10:861747.
doi: 10.3389/fenvs.2022.861747

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8617471

BRIEF RESEARCH REPORT
published: 28 February 2022

doi: 10.3389/fenvs.2022.861747

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.861747&domain=pdf&date_stamp=2022-02-28
https://www.frontiersin.org/articles/10.3389/fenvs.2022.861747/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.861747/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.861747/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.861747/full
http://creativecommons.org/licenses/by/4.0/
mailto:tzeng_scu@163.com
mailto:yangweiqi2824121@163.com
mailto:346697906@qq.com
mailto:fengyuran2017@163.com
https://doi.org/10.3389/fenvs.2022.861747
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.861747


an evaluation criterion with a laminate beam model for building
damage risk assessment. Similar studies also utilized
Timoshenko’s first-order shear deformation theory for
building damage evaluation, which assumes that the degree of
damage is positively correlated with the relative density of soil
(Netzel, 2009). However, both empirical and semi-analytical
studies have failed to consider building stiffness on the ground
movements.

To overcome these limitations, numerical analysis, which
considers the interactions between building stiffness and soil,
has attracted significant attention (Tang et al., 2021). Potts and
Addenbrooke (1997) utilized a 2D finite element model to study
the influence of a surface structure on ground movement due to
tunneling. Son and Cording (2005) investigated building damage
due to excavation-induced ground movement using a damage
criterion based on the average state of strain in the distorting
portion of the underlying building structure. Dimmock and Mair
(2008) used stiffness values to present the upper and lower
envelopes for a numerical analysis of the building structural
distortion. The computational results demonstrate the
effectiveness of the proposed approaches. In addition, case
studies analyzing landslide–tunnel interactions have been
extensively studied (Vassallo et al., 2016; Li et al., 2018;
Vassallo et al., 2019). A preliminary structural analysis was
performed using 2D FEM non-linear models of tunnel cross
sections by simulating tunnel shear strength values.

Recent advances in machine learning and information
technology have created unprecedented opportunities to study
building structural damage risks from a data-driven perspective.
Machine learning-based regression and classification algorithms
have achieved promising results in various engineering domains
such as mechanical engineering (He et al., 2017; Sun et al., 2017;
Dekhtiar et al., 2018; Ouyang et al., 2019), civil engineering
(Afzaal et al., 2020; Li et al., 2021a), natural hazards (Xu et al.,
2019; Cui et al., 2021), renewable energy (He and Kusiak, 2017;
Ouyang et al., 2017; Liu et al., 2020; Ouyang et al., 2020),
computer vision (Pereira et al., 2016; Havaei et al., 2017; Li
et al., 2022), and others (Wei and Yang, 2018; Li et al., 2020;
Li et al., 2021b). According to the literature review, in building
risk analytics, Kim et al. (2001) introduced artificial neural
networks (ANNs) to predict ground surface settlement
induced by tunneling. Boubou et al. (2010) applied least-
squares regression and ANN to correlate ground surface
settlements and tunneling operation parameters in a case
study. Adoko and Wu (2012) proposed an approach to predict
building structural damage using neural networks. Tunnel
convergence and velocity were collected as inputs in the
neural net models. Recently, Mishra et al. (2021) applied an
ANN to predict the deflection behavior of various types of beams
and achieved promising results. Machine learning algorithms
have been demonstrated to be effective at predicting the
compressive strength of masonry.

This study explored data-driven risk assessment of building
structural damage in urban areas due to ground excavation
activities such as tunneling using feature selection and a
comprehensive comparison of data-driven methods. A handful
of features collected from the on-site investigation were used.

Two feature selection approaches, the wrapper and filter
methods, were applied to screen predictive features, which
were used as inputs in the data-driven classifier. To
comprehensively compare the prediction performance of the
algorithms tested, four state-of-the-art machine learning
algorithms were applied and compared. For a fair comparison,
the same feature set selected by the wrapper/filter was used for all
the algorithms, and their hyperparameters were well tuned via
grid-based search. An extensive computational experiment was
conducted to evaluate the classification performance of the
algorithms and identify the best performing model.

METHODOLOGY

Problem Definition
Tunneling and other types of underground excavation cause
ground movements, exposing building structures to potential
damage (Feng et al., 2022). In this study, monitoring data
from the buildings adjacent to an urban excavation site were
analyzed for a comprehensive risk assessment of the buildings.
The data were collected from 50 buildings.

Figure 1 shows the horizontal view of the mechanism of
building structural damage caused by ground excavation
activities in the unground geological structure. Tunneling
activity in urban areas causes ground movements, which
represent a major factor in building damage (Tang et al., 2020).
Many design approaches for evaluating damage to building
structures adjacent to excavation sites are based on greenfield
displacement input. The greenfield shape function, which
follows Gaussian distribution, is usually applied to compute the
transverse ground surface and is presented in Eq. (1):

Sv � Smaxexp( − y2

2i2
), (1)

where Sv and Smax represent the surface settlement andmaximum
surface settlement at the tunnel centerline, respectively; y is the
horizontal distance between the excavation site and the
underlying building location; and i is the horizontal distance
from the excavation point of inflection of the settlement through.
The greenfield function is governed by Smax and i in which the
former term is related to the intensity of the settlement trough,
whereas the latter describes the width and steepness of the
envelope.

In addition to the ground features associated with the
excavation site, building parameters, including the building
height and width, were also taken into account in this study.
According to the domain expertise of the field engineers, two
labels were assigned, providing a comprehensive overview of the
structural risk caused by the settlement (low risk/moderate risk)
and treated as the target output. This predictive framework may
be formulated as a binary classification problem.

Feature Selection Methods
The wrapper method is a feature selection algorithm that uses
induction learning as the evaluation function to select the
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most important features. Intuitively, a wrapper algorithm
searches the space of all possible feature combinations and
evaluates each subset by building a regressor/classifier. The
one with the best prediction performance is selected by
comparing the predictive performance of each subset. In
most scenarios, the wrapper method has a high
computational cost (Kusiak et al., 2011). Three widely used
solutions, namely, genetic search, greedy search, and linear
forward search, were considered in this study. A schematic of
the wrapper method is intuitively illustrated in Figure 2A.
The first step of the wrapper algorithm is to select a subset of
features from the dataset and build a classification model to
test the prediction power. Next, another randomly selected
feature subset is created from the dataset and another
classification model is built. After several repeated feature
subsamplings, the well-performing classification experiments
can add votes to the most predictive features, and the total

number of votes indicates the overall predictive power of the
underlying feature.

A single wrapper algorithm may select features with biases in
certain aspects. The voting-based wrapper algorithm can be more
robust in selecting the most appropriate feature subset. In this
study, we selected three different wrapper search methods with 10-
fold cross-validation. For each wrapper evaluation, the number of
candidate features selected within the 10-fold cross-validation
experiments was added. Next, the summed results for the three
search methods were aggregated to determine the importance of
each feature by counting the total number of times it was selected.

By comparison, the filter method is a more effective approach for
evaluating the importance of features (see Figure 2B). It uses
heuristic-based characteristics (e.g., correlation) of the data. A
correlation-based feature selection filter is faster and more effective
than a voting-based method as it selects a feature if it correlates with
the decision outcome but not with any other feature that has already

FIGURE 1 | Horizontal view of building damage mechanism.

FIGURE 2 | Schematic of wrapper (A) and filter algorithms (B). FIGURE 3 | Schematic of extreme learning machine algorithm.
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been selected. Thus, it avoids multicollinearity, which is often
observed in multivariate regression/classification tasks.

Extreme Learning Machine
The ELM algorithm is a specific type of single-hidden layer
feedforward neural network (SHLFN) with higher robustness
and computational efficiency. It has a single hidden layer
feedforward network (SHFFN) structure (Huang et al., 2006).
A schematic of the ELM algorithm is illustrated in Figure 3.

The basic ELM consists of three key components: the input,
hidden, and output layers. For a given training dataset (xi, ti) and
a total of L hidden nodes, the ELM can be expressed as Eq. 2:

∑L

i�1 θiG(wi, bi, xi) � yi, (2)
where xi is the input feature vector, wi the weight vector
connecting the ith hidden node and the input node, bi the
vector of bias in the ith hidden node, θi the weight vector
connecting the ith hidden node and the output node, and G()
the activation function in the hidden nodes. Usually, the weights
and biases of the hidden nodes are randomly assigned. The
output matrix H can be expressed as Eq. 3, and the optimal
solution for θ can be computed using Eq. 4:

H(wi, bi, xi) � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
G(w1, b1, x1) / G(wL, bL, x1)

..

.
1 ..

.

G(w1, b1, xN) / G(wL, bL, xN)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

θ � H†y, (4)
where y represents the actual target output, and H† denotes the
Moore–Penrose pseudo inverse of the hidden layer output matrix
H, which is equivalent to solving an ordinary least square
regression problem and can be expressed as Eq. 5:

H† � (HTH)−1HT, (5)
whereHTH is a positive semi-definite symmetric matrix. Hence,
the calculation ofHTH to solve the above linear system has a time
complexity of O(N2m).

Modified Lanczos Algorithm
The modified Lanczos algorithm was selected to optimize the
computation process to solve the linear system in ELM. The
Lanczos algorithm was originally proposed by Parlett (1980) to
compute the eigenvalue and eigenvector problems. It can also be
used to accelerate the solution of symmetric systems using linear
equations (Hu et al., 2020).

In a given symmetric linear system expressed as Aθ � Y ,
where A is a symmetric matrix as A ∈ RN×N , the true solution
is θ � A−1Y . Usually, the initial approximation of θ expressed as
θa has a residual term r0 � Y − Aθa. Then, we can reformulate the
problem by finding the correction term θc that satisfies Aθc � r0.

Here, the Lanczos algorithm is proposed by performing
several iterations to approximate the true r0. In each iteration,
a sequence of Lanczos vectors qi and scalars αi, βi are
computed following the Lanczos iteration rules (Hu et al.,
2020). To obtain the true solution, N iterations are required,
and θN is solved using Eq. 6:

θN � QNZ
−1
N β1e1, (6)

where QN in Eq. 6 is composed of the orthonormal Lanczos
vectors qN and ZN is expressed by Eq. 7:

ZN �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 0 / 0
β2 α2 β2 / 0

..

.
1 1 1 ..

.

0 / βN−1 αN−1 βN−1
0 / 0 βN αN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

To incorporate the Lanczos algorithm in the ELM, we can replace
the expensive computation ofHTH withMTM, whereM � Hqj
is a crafted matrix based on H. Hence, instead of computing
HTH,MTM � qTj H

THqj can be more efficiently computed. The
detailed process is given in Hu et al. (2020).

Measurement Matrices
In a binary classification task, the confusion matrix is usually the first
step in comparing the predictive performance of different algorithms.
A confusion matrix consists of four events: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).

Applying these four numbers, we can compute three evaluation
metrics, namely, accuracy (8), precision (9), and recall (10), for the
quantitative evaluation of the predictive performance as follows:

Accuracy � Num(TP) +Num(TN)
Num(TP) +Num(TN) +Num(FP) +Num(FN),

(8)
Precision � Num(TP)

Num(TP) +Num(FP), (9)

Recall � Num(TP)
Num(TP) +Num(FN), (10)

where Num () represents the total number of events in the
confusion matrix.

Nevertheless, simple accuracy-related measures are not sufficient
for assessing classifiers when data are affected by additional
complexity factors, such as imbalance. To overcome this issue,
receiver operating characteristic (ROC) serves as a fundamental
tool for evaluating the performance of a binary classifier in many
research domains. It compares the two operating characteristics (TP
rate and FP rate) as the cutoff threshold changes. As a common
solution, the area under the ROC curve (AUC), which summarizes
the relationship between the TP and FP rates of a binary classifier,
was used in this study. Intuitively, the AUC measures the sensitivity
of a binary classifier with respect to different decision thresholds, and
the implementation details can be found in Bradley (1997).

ON-SITE INVESTIGATION

In this study, an urban area in Shanxi Province, China, with extensive
underground excavation activities was selected for the case study. The
study area is located in the provincial capital of Taiyuan city, where
the underground structure consists of clay, mudstone, and sandstone,
as illustrated in Figure 1. Recent tunneling activities for subway
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construction have escalated the risk of ground subsidence in buildings
located in adjacent communities.

The study was conducted in collaboration with the Shanxi
Provincial Geological Prospecting Bureau, and civil engineers
from the Bureau conducted on-site data collection, including the
measurement of related geological features. Data from 50
buildings adjacent to the excavation site were collected over
3 years. The civil engineers had domain expertise, and a risk
level (low/moderate risk) was assigned as a ground truth label for
each building. The majority of the buildings were old-framed
residential and commercial buildings, and many were founded on
reinforced concrete rafts. Figure 4 shows photographs of some of
the buildings, and hair cracks are visible in many of them.

Both geological and building features were considered for
constructing the classification models. As indicated in the
Problem Definition Section, the geological features that represent
the impact from the excavation activities include the axial stiffness
ratio, bending stiffness ratio, maximum settlement, inflection point,

and eccentricity. The building features include the building height,
building width, building length, and building stiffness ratio. The
basic statistics for these features are summarized in Table 1.

In addition to the data features listed in Table 1, the civil
engineers provided a comprehensive evaluation of building
structural risk. Based on these evaluation documents, the
buildings were classified into two groups: low risk and high
risk. Hence, this can be converted into a binary classification
task for constructing the predictive models.

EXPERIMENTAL RESULTS

Feature Analysis
Feature selection is a critical step in avoiding over-parametrization in
predictive modeling by using all the features to construct the
mapping between the input and output. Based on the domain
knowledge, nine features obtained by the engineering geologists

FIGURE 4 | Structural damages in some of the buildings selected for the case study area.

TABLE 1 | Description of geological and building features.

Feature name Category Unit Mean Standard deviation Maximum value

Axial stiffness ratio Geological % 164.41 80.52 388.86
Bending stiffness ratio Geological % 1.19 1.94 10.02
Maximum settlement Geological mm 30.74 20.11 78.83
Inflection point Geological m 12.36 2.77 21.15
Eccentricity Geological m 19.94 4.51 25.53
Building height Building m 7.71 4.27 20.33
Building width Building m 8.34 5.05 27.72
Building length Building m 16.66 6.96 41.11
Building stiffness ratio Building % 7.74 5.13 13.31
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during on-site investigations were taken into consideration. The
voting-based wrapper algorithm and filter algorithm were used to
select the predictive features.

The voting-based wrapper algorithm uses 10-fold cross-
validation to generate the feature subset that contains the
predictive features. The most predictive feature has the highest
votes as it is more frequently selected in each experiment. On the
contrary, less predictive features have a lower chance of being
selected in each experiment and thus result in fewer votes. A
summary of the results from the voting-based wrapper algorithm
is shown in Figure 5A. The bending stiffness ratio and building
width have the highest number of votes (10 votes), demonstrating
their high predictive capacity. The eccentricity has only 5 votes,
indicating that it may not be strongly predictive of the building
damage outcome. A cutoff threshold of seven votes was selected
based on a literature review, and a total of five features were
chosen to construct the predictive models in the next section.

The filter feature selection algorithm provides scores for each
candidate feature based on its correlation with the output. In
comparison with the wrapper algorithm, which uses feature
subsets, filter selection focuses more on each feature. The scores
generated for each candidate feature in this study are shown in

Figure 5B. The inflection point, building height, and building
stiffness ratio have the most significant correlations with building
damage. Upon applying a cutoff threshold of 70, the axial stiffness
ratio, bending stiffness ratio, inflection point, building height, building
length, and building stiffness ratio were selected as the predictive
features for the modeling experiments described in the next section.

Cross-Validation
Three case studies were examined using all features, features selected
by the voting-based wrapper, and the filter algorithm. As a binary
classification task is performed, confusionmatrices were constructed
to evaluate the prediction performance of all the algorithms tested.

The predictive performance of the algorithms tested using all
features is summarized in Scenario I in Table 2. Four
measurement metrics, including accuracy, precision, recall, and
AUC, were computed. The receiver operating characteristic
(ROC) curves of each tested algorithm are illustrated in
Scenario I of Figure 6. According to the computational
results, the Lanczos-ELM has the best performance, with an
accuracy of 0.75 and an AUC of 0.77 via 10-fold cross-validation.

The predictive performance of all algorithms using the voting-
based wrapper-selected features is summarized in Scenario II of

FIGURE 5 | Feature selection from voting-based wrapper algorithm (A) and filter algorithm (B).

TABLE 2 | Predictive performance of building structural damage risk classification algorithms.

Scenario Algorithm Accuracy Precision Recall AUC Time (s)

I ELM 0.68 0.59 0.77 0.65 0.06
OP-ELM 0.71 0.65 0.77 0.71 0.04
Lasso-ELM 0.72 0.66 0.78 0.74 2.78
Lanczos-ELM 0.75 0.71 0.79 0.77 0.02

II ELM 0.84 0.81 0.87 0.85 0.08
OP-ELM 0.79 0.77 0.81 0.81 0.05
Lasso-ELM 0.87 0.86 0.88 0.86 3.55
Lanczos-ELM 0.88 0.91 0.85 0.87 0.04

III ELM 0.85 0.88 0.85 0.87 0.09
OP-ELM 0.83 0.85 0.81 0.83 0.07
Lasso-ELM 0.84 0.83 0.85 0.88 3.12
Lanczos-ELM 0.91 0.89 0.93 0.89 0.03
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Table 2. It can be observed that all algorithms show significant
improvement over classical classification algorithms according to
the measurement metrics. The Lanczos-ELM classifier has the best
performance in classifying building structural damage risks among
all the algorithms tested. It achieves an accuracy of 0.88 and an
AUC of 0.87 according to the 10-fold cross-validation. The ROC
curves of all algorithms are presented in Scenario II of Figure 6.

The predictive performance for all algorithms using the filter
selected features is summarized in Scenario III of Table 2. The
Lanczos-ELM classifier still outperforms all the algorithms tested,
which demonstrates its superiority in binary classification tasks. It
achieves an accuracy of 0.91 and an AUC of 0.89 according to the
10-fold cross-validation. The ROC curves of all algorithms are
presented in Scenario III of Figure 6.

In summary, the feature selection algorithms offered improved
performance over classical classification algorithms for predictive
modeling algorithms. The comparative analysis showed that the
filter selection algorithm selects the most predictive feature
subset, which improves the prediction performance over
classical classification algorithms most significantly.

CONCLUSION

In this study, two core aspects of building structural damage risk
assessment were investigated: the selection of relevant features and
the comparison of data-driven algorithms. To determine the best
feature set and use features in an effective manner, two feature

selection approaches, the wrapper method and the filter method,
were comparatively assessed. To select the best data-driven algorithm,
the ELM, OP-ELM, Lasso-ELM, and Lanczos-ELM were considered
as candidate algorithms and their performances compared.

In the computational experiments, the Lanczos-ELM algorithm
provided the most accurate prediction performance in all scenarios.
The computational results demonstrated that the Lanczos-ELM
classifier with the filter’s feature selection method had the best
classification performance across all combinations of feature
selection and algorithms tested. In summary, this comparative
study offers interesting insights into the risk assessment of
building structural damage for geologists and engineers during
the evaluation process. In the future, we will focus on developing
highly interpretable machine learning pipelines to perform the risk
classification and offer interpretable results to the field engineers.
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