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Atmospheric propagation delay correction is the key to improving the accuracy of
deformation measurement of satellite interferometric synthetic aperture radar (InSAR).
The empirical phase-elevation models and external data-based models present uneven
performances of atmospheric delay correction for InSAR deformation monitoring. In this
study, based on our previous fusion of delays predicted by multiple weather models
(FDWM), we propose a new approach of adaptive fusion of multi-source tropospheric
delay (AFMTD) estimates derived from multiple models over wide areas, i.e., ERA5,
GACOS, WRF, MERRA2, NARR, MODIS, Linear model, and Powerlaw model. The
spatially varying scaling algorithm is employed to refine the tropospheric delays
predicted by the weather models. Meanwhile, we adopt a multiple-window strategy to
cope with the spatially lateral variation of tropospheric delays. The AFMTD not only
improves the spatial heterogeneity of tropospheric delay, but also adaptively combines
multiple models to achieve a more reliable delay estimation. This AFMTD method is
incorporated into the StaMPS-SBAS procedure. We compared the AFMTD with other
single models using ENVISAT ASAR and Sentinel-1 datasets over Los Angeles of Southern
California. The result of ASAR first demonstrates the effectiveness and reliability of the
AFMTD method by referring to the assumed ground truth of simultaneous MERIS
observations. The results of Sentinel-1 data show that over 95% of unwrapped
interferograms have the minimum root-mean-square values after AFMTD correction for
both descending and ascending tracks. The validation against GPS observation presents
that the RMSEs of InSAR displacement time series after AFMTD correction decreases at
more than 90% of 125 GPS stations. The average reductions of RMSE are 35.79% and
36.28% for descending and ascending data, respectively, and the maximum improvement
is more than 70%. Overall, the proposed AFMTDmethod outperforms any single model for
InSAR tropospheric delay correction and provides an open framework to fuse multi-source
tropospheric delay estimates.
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INTRODUCTION

The atmospheric propagation delay (APD), which stemmed from
the refraction of electromagnetic waves when propagating in the
nonhomogeneous atmosphere, is a major confusing source in
InSAR deformation measurements (Zebker et al., 1997). The
APD consists of the ionospheric delay component and
tropospheric delay component (Gray et al., 2000). The
spatiotemporal variations of ionospheric electron density cause
the ionospheric effect. Since the magnitude of ionospheric delay
depends on the radar wavelengths, the ionospheric delay in the
C-band is about one-sixteenth of that in the L-band (Liang et al.,
2019). The ionospheric disturbances rarely affect the C-band SAR
at mid-latitude regions.

The tropospheric delays depend on the variations in
atmospheric parameters between SAR acquisitions. For
example, if the relative humidity changes by 20%, the delay
can reach 0.1 m in magnitude, which is sufficient to mask
small deformation signals (Zebker et al., 1997). Considering
the spatial physical properties of the troposphere delay, it can
be divided into vertically stratified delays and turbulence delays
(Hanssen, 2001). Many methods were proposed to alleviate the
tropospheric effect and can be categorized as follows:

A straightforward estimation solution involves the statistical
properties of atmospheric delay and its empirical relationship
with local elevations, including stacking (Ferretti et al., 2011),
spatial-temporal filtering (Hooper et al., 2007), and phase-
elevation models. Apart from linear phase-elevation model
that estimates terrain-related tropospheric delays (Cavalié
et al., 2007), improved empirical models were proposed, such
as multiscale approach (Lin et al., 2010), multiresolution wavelet
analysis (Shirzaei and Bürgmann, 2012), iterative linear phase-
elevation model (Dong et al., 2019), troposphere height
regression (Zebker, 2021), Powerlaw method (Bekaert et al.,
2015a) and quad-tree aided joint model (Liang et al., 2018).

The tropospheric delays can also be calculated from external
data. There have been several successful cases of estimating
tropospheric delays from GNSS zenith delay observations
(Onn and Zebker, 2006; Xu et al., 2011; Yu et al., 2018a),
weather models of different resolutions (Jolivet et al., 2014;
Parker et al., 2015; Murray et al., 2019; Cao et al., 2021),
weather forecasting model (Yun et al., 2015; Ulmer and Adam,
2017), and satellite multispectral imagery (Li et al., 2006; Barnhart
and Lohman, 2013).

Ignoring the great progress made in estimating tropospheric
delays, the aforementioned approaches present unstable
behaviors or have inherent defects in certain situations. The
empirical phase-based models are difficult to deal with
deformation signals correlated with topography. The
tropospheric delay estimation from external auxiliary data is
not always effective for all scenes. The total zenith delay with
short time intervals can be derived from GNSS data, while the
spatial distribution of GNSS stations is sparse in most regions of
the world. Although the meteorological reanalysis data has the
advantage of global or regional coverages, their performances of
tropospheric delay corrections differ largely due to the different
resolutions in spatiotemporal and various assimilation

algorithms. Using space-based multispectral data to obtain wet
delays is limited to daylight and cloudless conditions, meanwhile,
the errors caused by the time difference between multispectral
data and SAR acquisitions vary with the time and region (Li et al.,
2009).

In light of the drawbacks of individual tropospheric correction
methods, Li et al. (2009) proposed to correct the atmospheric
delays by combining MERIS and MODIS. Bekaert et al. (2015b)
made a statistical comparison of different atmospheric delay
correction methods and suggested that the optimal result can
be realized through model fusion. Yu et al. (2018b) developed a
tropospheric correction method to integrate weather models and
GPS observations. Dong et al. (2019) proposed a fusion model
named FDWM that combines tropospheric delays derived from
multiple weather models to correct the stratified delay when
monitoring single landslides. Shen et al. (2019) proposed the
spatially varying scaling (abbreviated as SVS here) algorithm to
alleviate the deviation in the estimated tropospheric delay from
its truth.

Based on the framework of our previous FDWM fusion model
(Dong et al., 2019), we propose a new method to adaptively fuse
more tropospheric delays estimated or predicted by the empirical
models (Linear and Powerlaw), meteorological reanalysis models
(ERA5, GACOS, MERRA2, and NARR), numerical weather
forecast model (WRF), and multi-spectral image (MODIS).
The new method adopts the SVS algorithm to alleviate the
deviation of tropospheric delays calculated by the external
weather models. A strategy of multiple windows is used to
handle the spatially lateral variation of tropospheric delays for

FIGURE 1 | The SRTM DEM of the study area as a background map for
display. The white rectangles indicate the coverages of descending ENVISAT
ASAR data and descending/ascending Sentinel-1 data. The black squares
represent the 125 continuous GPS stations. The red star is the location
of the InSAR reference point. The red square in the inset represents the
location of Southern California.
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large-scale ground deformation measurements. The tropospheric
delay output from the fusion model is imported into the StaMPS-
SBAS processing program for correcting the tropospheric delay
phases. We first evaluated the performances of individual models
and our new fusion model using ENVISAT ASAR data through
settingMERIS-derived tropospheric delays as the truth. Then, the
applicability of the new fusion model to Sentinel-1 data was
explored in terms of unwrapped phases, deformation rates, and
displacement time series. Lastly, we ranked the tropospheric delay
correction methods and investigated the improvements of our
new fusion model to the FDWM and SVS.

STUDY AREA AND DATA

The densely populated Los Angeles basin has complex geological
structures andmany active faults, whichmakes it often subjected to
the complicated subsidence related to tectonic movement and
human activities (Watson et al., 2002). This area is adjacent to
the Pacific Ocean, and the north is surrounded by mountains. Our
study area is marked by white rectangles in Figure 1, with
significantly changed topography. There are extensive researches
related to atmospheric delay correction conducted here due to the
abundant data of weather models and multi-spectral images, as
well as dense and continuous GPS observation data.

Data
SAR Data
The SAR data contains one stack of C-band ENVISAT ASAR
(ASAR-desc) images and two stacks of C-band Sentinel-1 (S1-
desc and S1-asc) images. The former is acquired in stripmap (SM)
mode from april 2007 to February 2009 in descending track 170.
The latter are acquired in interferometric wide swath (IW) mode
fromMay 2015 to July 2018 in descending track 71 and ascending
track 64, respectively. The white rectangles in Figure 1 mark the
spatial coverages of the three SAR data stacks. The characteristics
of the three SAR datasets are elucidated in Table 1. The Shuttle
Radar Topography Mission (SRTM) DEM of approximately 90-
m resolution is used for the removal of topographic phases.

GPS Data
The Southern California Integrated GPS Network (SCIGN), one
of the most densely spaced GPS networks in the world (Hudnut
et al., 2001), is constructed to monitor the seismic activities in
entire Southern California. Figure 1 shows the locations of 125

permanent GPS stations indicated by black rectangles. The GPS
deformation results can be found from the website (http://www.
scign.org), which are used to validate the deformation results of
InSAR with tropospheric delay corrections.

Weather Model Data
Four meteorological reanalysis models (ERA5, GACOS,
MERRA2, and NARR) and one numerical weather prediction
model (WRF) are used to obtain the tropospheric propagation
delays. Table 2 lists the parameters of the four meteorological
reanalysis models.

As a new generation of mesoscale numerical weather forecast
model, the Weather Research and Forecasting (WRF) model is
dedicated to atmospheric simulation and weather forecasting
research (Skamarock and Klemp, 2008). The WRF (ARW) 4.0
prediction model developed by National Center for Atmospheric
Research (NCAR) is used to simulate atmospheric conditions. The
Final Operational Global Analysis (FNL) data of the National
Environmental Forecast Center provides initial values and
boundary conditions. The experimental simulation runs for 18 h.
To enhance the resolution, we set up a three-layer nesting scheme for
theWRF simulation experiment, and from the initial grid resolution
to the inner nested domain resolution are 27, 9, and 3 km,
respectively. The tropospheric delay is estimated using data with
a spatial horizontal resolution of 3 km and 37 layers in the vertical
direction (1,000–100 hPa).

Multi-Spectral Images
The Moderate Resolution Imaging Spectroradiometer (MODIS)
onboard the Terra and Aqua satellites of NASA is a passive
imaging spectrometer including five near-infrared bands that are
sensitive to water vapors. The spatial resolution of water vapor
products is about 1 km × 1 km, and the water vapor accuracy is
claimed to be 5–10%. If the daytime and clear weather are not
met, the data accuracy will be worse (Gao and Kaufman, 2003).
Given the wet delay estimated by MODIS is overestimated
compared with the GPS zenith delay, they need to be
corrected before application (Li et al., 2005).

METHODOLOGY

We propose an adaptive fusion of multiple tropospheric delay
corrections and incorporate it into the standard StaMPS-SBAS
process, with the flowchart shown in Figure 2.

TABLE 1 | Parameters of the SAR images.

Sensor ASAR-desc S1-desc S1-asc

Track 170 71 64
Pass Descending Descending Ascending
Number of SAR images 19 67 82
Number of interferograms 50 322 468
Resolution (Az × Rg) 20 m × 4 m 20 m × 5 m 20 m × 5 m
Incidence angle 22.6° 34° 36°

Polarization VV VV VV
Time span April 2007 to February 2009 May 2015 to July 2018 May 2015 to July 2018
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Small Baselines Subset InSAR
The ENVISAT ASAR and Sentinel-1 datasets are preprocessed
using the commercial GAMMA software (Wegmüller and
Werner, 1997). The pre-processing includes SAR image co-
registration, interferogram generation, topographic phase
removal, and geocoding. We use SRTM DEM to remove the
topographic phase.

The interferograms with small baselines are imported into the
StaMPS-SBAS time series analysis (Hooper et al., 2007). The
amplitude dispersion index (ADI) is used for the selection of
coherent candidate points (Ferretti et al., 2001). The slowly-
decorrelating filtered phase pixels (SDFP) are further
determined by phase stability analysis. The unwrapped phase

Δϕunw after 3D phase unwrapping (Hooper and Zebker, 2007)
contains the following components:

Δϕunw � Δϕtopo + Δϕdefo + Δϕatm + Δϕorb + Δϕn (1)
where Δϕtopo indicates topographic phase component due to
inaccurate external DEM, which is proportional to
perpendicular baseline. Δϕdefo represents the deformation
phase component. Δϕatm denotes the atmospheric delay phase,
including the ionospheric component and tropospheric
component. Since our purpose is to study the tropospheric
delay, the ionospheric component is not considered here.
Δϕorb is the inaccurate orbit phase component, which can be

TABLE 2 | Informations of the meteorological reanalysis models.

Type Time span Time interval Spatial resolution (lon
× lat)

Vertical
levels

Time lag Production organization References

ERA5 Since 1989 1 h 0.25 ° × 0.25 ° (~32 km) 137 5 days ECMWF Hersbach et al. (2020)
GACOS Since 1979 6 h 0.125 ° × 0.125 ° (~16 km) 137 Near-real time ECMWF Yu et al. (2018b)
MERRA2 Since 1980 6 h 0.625 ° × 0.5 ° (50–70 km) 72 1 month NASA Gelaro et al. (2017)
NARR Since 1979 3 h 0.3 ° × 0.3 ° (~32 km) 45 1–2 months NCEP/NCAR Mesinger et al. (2006)

FIGURE 2 | Flowchart of the adaptive fusion of multi-source tropospheric delay (AFMTD) estimates.
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estimated and separated by using a bilinear or biquadratic model.
Δϕn indicates the phase component caused by the thermal noise,
decorrelations, and possible ‘fading signal’ due to multi-looking
operation (Ansari et al., 2021).

Adaptive Fusion of Multi-Source
Tropospheric Delay (AFMTD) Estimates
The proposed adaptive fusion of multiple delay estimates
contains two main steps. The first step is to refine the
tropospheric phases calculated from the weather models using
unwrapped phases. The second step is to perform the adaptively
weighting fusion of multi-source tropospheric delays through
multiple windows.

The tropospheric delays are estimated from weather models
(ERA5, GACOS, MERRA2, NARR, and WRF), spectrometer
observation products (MODIS), and empirical models (Linear
and Powerlaw) using the TRAIN software (Bekaert et al., 2015b).

Scaled Tropospheric Phases Estimated by Weather
Model Data
When predicting tropospheric phases using the weather models, the
interpolations in space and time generally result in biased
tropospheric delay estimation. We introduce the SVS algorithm
to alleviate the biases and to make it closer to the correct value of
tropospheric delay for large-scale areas (Shen et al., 2019). The SVS
algorithm is repeated simply here to keep the methodology intact.

We divide each interferogram into N regular non-overlapping
windows. The window size is set as 50 km here. The relationship
between unwrapped phase Δϕunw and tropospheric delay phase
Δϕtropo predicted from weather model data in a single window is
taken as linear:

Δϕunw � KiΔϕtropo + Ci (i ∈ N) (2)
where Ki and Ci indicate the scaling factor and constant offset at
window i, respectively.

The scaling factors for each window are smoothed through a
weighting strategy, which is carried out as follows:

(1) The first step is to weigh each window through a signal-to-
noise ratio. Var(ϕtropo(i)) represents the variance of
tropospheric delay phase in window i, i.e. signal.
Var(ϕres(i)) is the variance of residual phase, i.e. noise.
The residual phase equals to unwrapped phase subtracted
by the tropospheric delay phase. The signal-to-noise ratio of
tropospheric delay phase in window i is expressed as:

wi
var �

Var(ϕtropo(i))
Var(ϕres(i)) (i ∈ N) (3)

(2) The second step is to weigh each pixel. The weight of each
pixel is calculated according to the distance using a two-
dimensional Gaussian smoothing function:

wi
dis(x, y) � 1

2πσ2d
exp

−(x−xi)2+(y−yi)2
2σ2

d (i ∈ N) (4)

where (xi, yi) represents the central coordinate of window i, the
coordinates of each pixel are denoted by (x,y). σd is the standard
deviation width, i.e. the Gaussian filter width. A Gaussian filter
width of 70 km is used here.

(3) The last step is to combine the weights in steps (1) and (2) to
derive the smoothed scaling factor K (x,y) for every pixel:

K(x, y) � ∑
N

i�1
{Kipw

i
varpw

i
dis(x, y)} (i ∈ N) (5)

The smoothed scaling factor K (x,y) is used to replace the one
in Eq. 2 to obtain the scaled tropospheric delay phase for each
weather model.

Weighted Fusion of Multiple Tropospheric Delay
Estimates
The tropospheric delay phases predicted from the weather model
data and spectrometer observation products are refined in Scaled
tropospheric phases estimated by weather model data. Since these
methods present unstable performances for different SAR data at
different regions, Dong et al. (2019) proposed an optimal
weighting fusion of multiple tropospheric delays using a single
weight. However, in the case of wide coverages (larger than tens of
kilometers), the single weight is not sufficient to describe the
spatially lateral variation of tropospheric delays for the entire
scene (Bekaert et al., 2015a).

We divide the large scene into N windows using the same
window size and layout as described in Scaled tropospheric phases
estimated by weather model data and derive weights for each
window. The final tropospheric delay phase Δϕtropo (x,y) on pixel
(x, y) can be obtained through weighting fusion ofM tropospheric
delay corrections:

Δϕtropo(x, y) � ∑
M

j�1
wj(x, y)pΔϕj

tropo(x, y) (j ∈ M) (6)

where Δϕjtropo (x,y) denotes the tropospheric delay phase
estimated by correction model j with corresponding weight wj

(x, y). The weight is calculated from the root-mean-square (RMS)
value δrms of the unwrapped phase subtracted by the tropospheric
delay phase. The standard deviation (STD) σrms of RMS values of
all correction models is also calculated for each interferogram to
remove outliers. The weight wi,j of correction model j in window i
is derived as follows:

wi,j �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, δi,jrms > σ i
rms

1/δi,j prms

∑M
j
1/δi,j prms

, δi,jrms ≤ σ
i
rms

, (i ∈ N) (7)

where the p is set as two here. If the RMS value δi,jrms is larger
than the standard deviation σ irms, the weight becomes zero.
Therefore, the tropospheric delay estimated by various
correction methods is weighted according to the RMS of
residual phase after correction. The weighting strategy
achieves the adaptive fusion of multiple delay estimations.
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Once the weight is determined for each window, we use the
same smoothing strategy in Scaled tropospheric phases estimated
by weather model data to obtain the smoothed weight wj (x, y)
for each pixel to prevent jumps of tropospheric delays between
adjacent windows. We tested Gaussian filter widths of 30 km,
50 km, and 70 km, respectively, and found the optimal width of
30 km. This implies that the closer pixels have greater
contributions to the weight.

RESULTS AND ANALYSES

In this section, the effectiveness of AFMTD method was first
evaluated on ENVISAT ASAR data using the integrated
precipitable water vapor from MERIS. We then analyzed the
applicability of AFMTD method to correct tropospheric delays
for frequently-used Sentinel-1 data, which is validated by the GPS
measurements.

Evaluation Experiments Using ENVISAT
ASAR and MERIS Data
The MERIS sensor mounted on the ENVISAT satellite is
synchronized with ASAR acquisitions and has two modes of full
and reduced resolutions. Previous studies have demonstrated the
advantages of MERIS water vapor products for mitigating
atmospheric effects from ASAR data under cloud-free conditions
(Xu et al., 2010). Compared with GPS observations, the standard
deviation of MERIS water vapor products is 1.1 mm (Li et al., 2006).

We used MERIS-derived tropospheric delays as truth values to
evaluate the effects of tropospheric delay corrections. Since the
hydrostatic delay component cannot be ignored for total
tropospheric delay (Jolivet et al., 2014), we obtained the
MERIS tropospheric delay by adding the mean value of
hydrostatic delays derived from ERA5, WRF, MERRA2,
and NARR.

A total of 50 interferograms were generated from 19 ENVISAT
ASAR images. The maximum temporal and normal baselines were

FIGURE 3 | Tropospheric delay correction for interferogram 20080607_20080816. (A)Original unwrapped phase and the tropospheric delay phases derived from
(B)MERIS, (C) ERA5, (D) GACOS, (E)WRF, (F)MERRA2, (G) NARR, (H)MODIS, (I) Linear (J) Powerlaw (K) AFMTD, and (M) AFMTD without MODIS. The RMSEs of
the difference between the MERIS-derived delay and the others are labeled in corresponding sub-plots.
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set as 150 days and 450 m to exclude observations of strong
temporal-spatial decorrelations, respectively. Figure 3A shows the
original unwrapped phase of one interferogram with the primary
and secondary images acquired on 7 June 2008 and 16 August 2008,
respectively. The temporal and normal baselines are 70 days and 25
m, respectively. The MERIS-estimated delay was taken as the
reference to evaluate other models (Figure 3B). The MODIS
water vapor products met the 80% cloud-free conditions on the
two SAR acquisition dates. Figures 3C–J represents the tropospheric
delays obtained by ERA5, GACOS, WRF, MERRA2, NARR,
MODIS, Linear, and Powerlaw, respectively. The root mean
square errors (RMSEs) of the difference between the MERIS-
derived delay and the others are labeled in corresponding sub-
plots. The RMSEs for NARR and Powerlaw exceed 5 rad. The other
models have RMSEs ranging from 2 rad to 3.5 rad. The NARR may
fail to model the atmospheric effect due to its low spatial resolution
and the employed assimilation algorithm. Only one sounding ball
data used to estimate the Powerlaw coefficient is insufficient to
represent the spatially varying atmosphere and results in a deviation
in the estimated scale coefficient for the Powerlaw method (Bekaert
et al., 2015b). The AFMTD method fused the tropospheric delay
phases in Figures 3C–J and has the minimum RMSE value of
1.94 rad (Figure 3K), outperforming all other models. Since the
MODISwater vapor products are restricted to daytime and cloudless
conditions, we tested the effectiveness of AFMTD without MODIS.
The AFMTDwithoutMODIS still has the minimumRMSE value of
2.19 rad (Figure 3M).

The MERIS data with 80% cloudless observations are available
for 25 out of the 50 interferograms. Among these 25
interferograms, the AFMTD method has 12 interferograms
with minimum RMSE values. Furthermore, a statistical
evaluation on all 50 unwrapped phases was performed.
Figure 4 shows the RMS values of unwrapped phases after
tropospheric delay correction. In total, 40 out of 50

interferograms have the minimum RMS values after AFMTD
correction. Therefore, the AFMTD has its superiority in
correcting tropospheric delays over any individual models.

Application of AFMTD method to Sentinel-1
data
Since the massive archived Sentinel-1 data largely promotes the
wide applications of InSAR technology in various fields, it is
essential to evaluate the applicability of the AFMTD method to
Sentinel-1 data. In terms of image combination of S1-desc and
S1-asc, seven secondary scenes were connected to the primary
scene on both sides, with the limitation of the normal baselines
and temporal were lower than 200 m and 90 days, respectively.
We adopted amulti-looking operation with 24 looks and six looks
in range and azimuth, respectively. The red star in Figure 1marks
the spatial reference point.

Correction of Unwrapped Phases
We made a statistical analysis of the RMS values of residual
unwrapped phases corrected by all tropospheric delay correction
methods to assess their performance. In terms of S1-desc data
(Figure 5), the mean RMS values for ERA5, GACOS, WRF,
MERRA2, NARR, MODIS, Linear, and Powerlaw range from
3.24 rad to 10.42 rad, and the STD of RMS values range from
1.02 rad to 5.21 rad. The AFMTD method has 320 minimum
RMS values out of all 322 interferograms. The mean and STD of
RMS values are 2.15 rad and 0.56 rad, respectively. Both the mean
and STD declined by more than 30% compared to any
single model.

The statistical histograms of RMS values on the S1-asc data in
the supplementary material (Supplementary Figure S1). There
are 450 out of 468 interferograms having the minimum RMS
values after AFMTD correction. The mean and STD are 3.09 rad

FIGURE 4 | The RMS values of ASAR unwrapped phases corrected by tropospheric delays estimated by ERA5, GACOS, WRF, MERRA2, NARR, MODIS, Linear,
Powerlaw, and AFMTD.
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and 0.98 rad, respectively, which decreased by more than 25%
compared to any single model.

The STD of the S1-asc RMS values is larger than the S1-desc,
indicating stronger fluctuation of the former. Besides, the S1-asc
RMS presents an approximately periodic fluctuation
(Supplementary Figure S2), with the maximum and
minimum values appearing in summer and winter,
respectively. The acquisition time of S1-asc data is 01:50 UTC,
corresponding to the local time of 17:50 at dusk. The S1-desc data
is obtained at 13:52 UTC, corresponding to the local time of 05:52
a.m. at dawn. The stronger variation of water vapor at dusk than
at dawn may cause the discrepancy between S1-desc and S1-
asc data.

Validation of Corrected Deformation Rates With GPS
Data
We evaluate the effects of tropospheric delay correction on the
InSAR annual mean linear deformation rate. The original
deformation rates of S1-desc data and the ones corrected
using ERA5, GACOS, WRF, MERRA2, NARR, MODIS,
Linear, Powerlaw, and AFMTD are plotted in Figure 6. There
are several active geological faults in the study area, among which
the most active San Andreas Fault (SAF) is the boundary between

plates, driving much of the geological disasters (Tong et al., 2013).
The deformation rate reflects the crustal movement around the
SAF fault and the subsidence caused by non-tectonic activities,
such as the subsurface fluid extraction.

The effectiveness of AFMTD method for InSAR
deformation was validated by continuous GPS observations.
Excluding the reference station, we collected the observations
at 125 GPS stations from 2015 to 2018 from the website of
http://www.scign.org. The three-dimensional GPS time series
were projected onto the Sentinel-1 LOS direction (Hanssen,
2001). We averaged the InSAR deformation rate within a
300 m radius at each GPS station and compared them with
the GPS observations.

We estimated the GPS deformation rate along the SAR LOS
direction on the 125 GPS stations by the least square method,
as shown in Figure 6. The InSAR deformation rate corrected
by AFMTD method shows the best consistency with GPS in
terms of both pattern and magnitude. Figure 7 shows the
scatterplots of InSAR and GPS deformation rates on 125 GPS
stations, as well as the RMSE and R2 provided in each sub-plot.
The AFMTD method has a minimum RMSE of 3.25 mm/yr.
The RMSEs of other models vary from 3.29 mm/yr to
7.92 mm/yr.

FIGURE 5 | The statistical histograms of the RMS of residual unwrapped phases for S1-desc data corrected by (A) ERA5, (B)GACOS, (C)WRF, (D)MERRA2, (E)
NARR, (F) MODIS, (G) Linear, (H) Powerlaw, and (I) AFMTD. The corresponding mean and STD values are labeled in each sub-plot.
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FIGURE 6 | The LOS annual mean deformation rate of S1-desc data. The original deformation rate (A) and the deformation rate using (B) ERA5, (C)
GACOS, (D) WRF, (E) MERRA2, (F) NARR, (G) MODIS, (H) Linear, (I) Powerlaw, and (J) AFMTD correction. The 125 GPS stations (represented by circles) in
this region were colored with the deformation rate calculated from GPS observations along the LOS direction. The red star is the location of the InSAR
reference point.
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Although the NARR and Powerlaw methods have high R2
of 0.87 and 0.89, there are large discrepancies between their
deformation rates and GPS observations as shown in Figures
7F,I. The ERA5 and NARR overestimated the deformation
rate in the north side of SAF fault (Figures 6B,F and Figures
7B,F), while the WRF and MERRA2 underestimated the
deformation rate (Figures 6D,E and Figures 7D,E). These
may be caused by different assimilation algorithms and
spatio-temporal resolutions of each weather model data.

Different from WRF and MERRA2, the rate
underestimation by the linear method is located in
mountainous areas (Figure 6H and Figure 7H). The
deformation rate discrepancy between GPS and MODIS
correction is caused by the inconsistent acquisition time of
MODIS data with SAR data (Figure 6G and Figure 7G). The
deviation of deformation rate corrected by Powerlaw method
from GPS may result from the inaccurate powerlaw
coefficient estimation (Figure 6I and Figure 7I).

FIGURE 7 | Comparison between the GPS observations and (A) the original deformation rate of S1-desc data and the ones using (B) ERA5, (C) GACOS, (D)
WRF, (E) MERRA2, (F) NARR, (G) MODIS, (H) linear, (I) powerlaw, and (J) AFMTD corrections on 125 GPS sites. The corresponding RMSE values are labeled in
each sub-plot.
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The original deformation rate and the ones corrected by every
single model and AFMTD for the S1-asc data and the scatterplots
between InSAR and GPS are put in the supplementary material
(Supplementary Figure S3 and Supplementary Figure S4).
Similar to the S1-desc result, the S1-asc deformation rate after
AFMTD correction is most accurate relative to the GPS
observations.

Evaluation of Corrected Displacement Time Series
Using GPS Data
We calculated the RMSE of InSAR displacement time series with
and without tropospheric delay corrections relative to the GPS
observations. 123 out of 125 GPS stations are presenting reduced
RMSE values for the S1-desc (Figure 8A). Figure 8B shows the
improvement of RMSE corresponding to each GPS site. The
positive and negative values indicate decreased and increased
RMSE after AFMTD correction. The AFMTD method achieved
an average RMSE reduction of 35.79%, and the biggest
improvement is more than 75%.

We compared the displacement time series between InSAR
and GPS observations on 12 GPS stations (black squares in
Figures 9A,B). Compared with the original InSAR
displacement time series, the displacement time series after
AFMTD correction becomes much closer to the GPS
observations, which can also be confirmed by the RMSE
marked in each sub-plot (Figure 9C).

For the S1-asc data, 116 out of 125 GPS stations are showing
decreased RMSE after AFMTD correction (Supplementary
Figure S5). The average and maximum improvements of
RMSE values are 36.28% and 73.16%, respectively. The
comparison of displacement time series on 12 GPS stations for
S1-asc data is shown in Supplementary Figure S6. The InSAR
time series corrected by AFMTD shows good agreement with

GPS observations, especially, the seasonal variation of
deformation time series was effectively reduced on sites BSRY
and RAMT after the AFMTD correction. The InSAR time series
fluctuations of S1-asc data are greater than the S1-desc data. This
may be explained by the fact that the periodic phenomenon of
tropospheric delay in the S1-asc acquisition time is more obvious,
which can be demonstrated using the phenomenon in
Supplementary Figure S2.

DISCUSSION

The above experimental results demonstrate the advantages of
AFMTD in InSAR tropospheric delay correction. We first ranked
the performance of all the used tropospheric delay corrections by
comparing them against the GPS observations. Then, we
compared the proposed AFMTD with our previous fusion
model (FDWM) (Dong et al., 2019) and the SVS method
(Shen et al., 2019). Lastly, some future improvements were
discussed.

Performance Ranking of Correction Models
We computed RMSEs of InSAR time series corrected by
different tropospheric delays for the 125 GPS stations
relative to the GPS measurements. In Figures 10A,B, we
showed the number of minimum RMSE values for the eight
single models and the AFMTD method for S1-desc and S1-asc
data, respectively. The AFMTD method has the largest
numbers of minimum RMSE for both the S1-desc of 92
stations and the S1-asc of 98 stations. The GACOS takes
second place with 12 and nine stations for the S1-desc and
S1-asc, respectively. Other models have less than eight stations
with minimum RMSE for both SAR tracks.

FIGURE 8 | Statistical analysis of RMSE for S1-desc data. (A) The RMSE of the InSAR displacement time series without and with AFMTD correction. (B) The
reduction percentage of RMSE after AFMTD correction.
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In addition, we calculated the average RMSE improvement of
displacement time series on 125 GPS stations after tropospheric
delay corrections for the S1-desc and S1-asc (Figures 10C,D).
The AFMTD improves 35.79% and 36.28% for the S1-desc and
S1-asc, respectively. The GACOS has just over 20% improvement
for both tracks. The ERA5 has a slightly worse effect than
GACOS. The improvements for WRF, MERRA2, NARR, and
Linear are small.

On the contrary, the MODIS and Powerlaw have negative values
for both tracks, indicating the degeneration of time series after their
corrections. The MODIS water vapor product with high spatial
resolution did not achieve the result we expect. In addition to the
overestimation of MODIS itself, the reason for this phenomenon is
that MODIS products are restricted to be acquired under daytime
and cloudless conditions, which cannot be applied to all SAR images.
More importantly, the large time gap of several hours between
MODIS and Sentinel-1 makes it impossible to capture the true water
vapor during SAR image acquisitions. For Powerlaw, the two input
coefficients are estimated from one balloon sounding data, which
may cause the deviation of tropospheric delay estimation from the
true value. The wrong separation of the bands insensitive to
deformation may be another factor that causes distortion signal
to be confused with troposphere delay correction. The selection of
window size also affects the Powerlaw correction.

Overall, considering the number of minimum RMSEs and
the average improvement, our AFMTD method takes first
place, following by the GACOS. The ERA5 ranks third. The
performances of other models are limited and unstable.

Comparison of AFMTDWith FDWMand SVS
Our AFMTD method enriches the framework of the FDWM
fusion model proposed by Dong et al. (2019). The FDWM
method is only applicable to local-scale landslides. However,
the AFMTD adopts the strategy of multiple windows to
achieve tropospheric delays correction for large-scale ground
deformation measurements. Furthermore, the SVS algorithm is
integrated into the AFMTD to alleviate the deviation of
tropospheric phases estimated by the external weather models
(Shen et al., 2019). We evaluated the improvements of AFMTD
relative to FDWM and SVS.

Here, the S1-desc and S1-asc data use the FDWM method
to correct the tropospheric delay phase. Only one weight over
the whole scene was used for each model for the final fusion.
We calculated the mean and STD of the S1-desc and S1-asc
RMS for AFMTD and FDWM, as shown in Figures 11A,B.
The mean and STD of the S1-desc data are 2.15 rad and
0.56 rad for AFMTD, respectively. The FDWM has slightly
poor performance with the mean and STD of 3.17 rad and 1.03

FIGURE 9 | Validation of S1-desc InSAR displacement time series against GPS observations (gray cross) on 12 GPS stations marked by black squares in (A) the
original deformation rate and (B) the one corrected by AFMTD. (C) The InSAR time series without (black dots, rmse-k) and with AFMTD correction (red dots, rmse-r).
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rad, respectively. The mean RMS of the S1-asc data is 3.09 rad
and 4.10 rad for AFMTD and FDWM, respectively, as well as
the STD of 0.98 rad and 1.46 rad.

We also compared the RMSEs between the GPS displacements
time series and the InSAR ones with FDWM and AFMTD
correction on the 125 GPS stations. The mean of S1-desc
RMSEs are 14.78 mm and 12.61 mm for FDWM and AFMTD,
respectively, and the STD are 4.51 mm and 3.51 mm
(Figure 11C). The S1-asc results are similar to those of S1-
desc data (Figure 11D). Therefore, the AFMTD performs
better than the FDWM in both unwrapped phases and InSAR
time series.

The tropospheric delays predicted from the weather model
can be refined by the SVS algorithm. We conducted a
statistical comparison between SVS-refined tropospheric
corrections and the AFMTD for both S1-desc and S1-asc
data (Figure 12). In terms of the S1-desc data, the AFMTD
method has 219 minimum RMS values out of the 322
interferograms. The number of minimum RMS values
corrected by the refined GACOS (GACOS_svs) is 34,
ranking second, followed by ERA5_svs with 29 minimum
RMS values. The number of minimum RMS values of other
models ranges from zero to 16. The S1-asc has a similar
phenomenon. After using AFMTD correction, 247 out of
the 468 interferograms have the minimum RMS. The

number of minimum RMS are 93, 90, 20, 11, 7, and 0 for
GACOS_svs, ERA5_svs, WRF_svs, MERRA2_svs, NARR_svs,
MODIS_svs, respectively. Therefore, the AFMTD model does
better than the SVS-refined tropospheric delay corrections.

Future Improvements of AFMTD
The most important part of the AFMTD model fusion is to
optimally weigh each model. The weight of each model is
determined by the RMS of residual unwrapped phase
corrected by tropospheric delays. The study area includes a
large-scale tectonic deformation caused by a strike-slip fault
(SAF). After using the SVS method to refine the weather
model, the tectonic deformation will be underestimated. A
strategy of subtracting the estimated deformation before
conducting the SVS algorithm can partly alleviate the
underestimation of large-scale tectonic deformation. Other
metrics, for example, the spatial structure functions (Murray
et al., 2019), can be employed to calculate the weights of each
model to maximize the accuracy of the tropospheric delay
estimation.

Another key to the AFMTD method is the window size and
Gaussian filter width when smoothing the scaling factors of
each window. We used empirical values in this study.
Although the regular window can reflect the spatially
lateral variation of troposphere delays, we expect that the

FIGURE 10 | The performance evaluation of tropospheric delay corrections. The number of minimum RMSE for (A) S1-desc and (B) S1-asc data. The average
improvement of RMSE for (C) S1-desc and (D) S1-asc data. Comparison of AFMTD with FDWM and SVS.
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FIGURE 11 | The RMS values of residual unwrapped phases using FDWM and AFMTD corrections for S1-desc (A) and S1-asc (B) data. The RMSE between GPS time
series and the InSAR time serieswith FDWMandAFMTDcorrection for S1-desc (C) andS1-asc (D)data, respectively. TheMean andSTDaremarked in corresponding sub-plots.

FIGURE 12 | Statistical comparison between SVS-refined tropospheric corrections and AFMTD for (A) S1-desc and (B) S1-asc data, respectively.
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adaptive window can be closer to the troposphere delays.
Using GPS observations to estimate the true value of water
vapor to define the Gaussian width is the most accurate way.
However, in the future, we expect to obtain the empirical value
of Gaussian filter widths through many statistical calculations
when no true values of water vapor are available.

The InSAR displacement time series becomes gentle
after AFMTD correction, but small fluctuations still exist.
This may be owing to the coarse spatiotemporal resolution
of the weather model (ranging from few to tens of
kilometers), which cannot effectively estimate the
turbulence effects of small and medium scales. The
remaining small fluctuations can be optionally corrected by
spatio-temporal filtering.

CONCLUSION

This study proposed an adaptive fusion of multi-source
tropospheric delay (AFMTD) to estimate the optimal
InSAR tropospheric delay. The AFMTD can mitigate the
uneven performance of single tropospheric delay models by
assigning weights to different tropospheric delay estimates.
The SVS algorithm improves the tropospheric delay
estimates from weather model data. The multiple-window
strategy can cope with the lateral variation of tropospheric
delays over wide areas. We summarized the main conclusions
as follows.

First, the MERIS-derived truth value demonstrated the
advantage of AFMTD over any single model to correct
tropospheric delays for individual interferograms. The mean
and STD of RMS values of residual unwrapped phases after
AFMTD correction are more than 30% and 25% lower than
any single model for both S1-desc and S1-asc data,
respectively.

Second, the validation of AFMTD-corrected InSAR results
against GPS observations shows that more than 90% of 125 GPS
stations have reduced RMSE of displacement time series. The
average reductions of RMSE are 35.79% and 36.28% for S1-desc
and S1-asc, respectively, and the maximum improvement is more
than 70%.

Third, the AFMTD model extends our previous FDWM
model to apply for large-scale InSAR tropospheric delay
correction and outperforms the SVS-refined tropospheric delay
estimates.

The AFMTD provides an open framework to fuse multiple
tropospheric delays, which is easy to take in new tropospheric
delays. Future work will consider adaptive window segmentation
according to application scenarios. Meanwhile, other weighting
methods can be adopted to deal with different types of
tropospheric correction methods to maximize the contribution
of each model.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

LZ: Conceptualization,Methodology, Visualization, Formal analysis,
Writing—original draft. JD: Formal analysis, Data pre-processing,
Writing—review and editing. LZ: Writing—review, Supervision.
YW:Methodology.WT:Data curation, Validation.ML: Supervision.

FUNDING

This work was financially supported by the National Natural Science
Foundation of China (grant numbers 41904001 and 41774006), the
Natural Science Foundation of Hubei Provincial (grant number
2019CFB141), the China Postdoctoral Science Foundation (grant
number 2018M640733), and the National Postdoctoral Program for
Innovative Talents (grant number BX20180220).

ACKNOWLEDGMENTS

We thank European Space Agency (ESA) for providing the
ENVISAT and Sentinel-1 data through the ESA-MOST Dragon
five Program (id 59332). We thank Andrew Hooper and Bekaert
David for sharing the StaMPS and TRAIN programs, respectively.
We thank the National Aeronautics and Space Administration
(NASA) for providing the SRTM DEM. We thank European
Centre for Medium Range Weather Forecasts (ECMWF) for
providing the ERA5 data. Thanks for the GACOS products were
provided by Newcastle University, and WRF data provided by
NCAR/UCAR, and the MERRA2 data provided by NASA/
GMAO, and the NARR data provided by NCEP/NCAR, and the
MODIS product provided by NASA Earth Data. We thank UNA
VCO Data Center to provide the GPS data. We thank the
Department of Atmospheric Science of the University of
Wyoming for providing us the sounding data. We thank P.
Wessel, W. H. F. Smith, R. Scharroo, J. Luis and F. Wobbe from
the University of Hawaii for providing the General Mapping
Tools (GMT).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenvs.2022.859363/
full#supplementary-material

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 85936315

Zhang et al. Adaptive Fusion Tropospheric Delay for InSAR

https://www.frontiersin.org/articles/10.3389/fenvs.2022.859363/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2022.859363/full#supplementary-material
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


REFERENCES

Ansari, H., De Zan, F., and Parizzi, A. (2021). Study of Systematic Bias in
Measuring Surface Deformation with SAR Interferometry. IEEE Trans.
Geosci. Remote Sensing 59, 1285–1301. doi:10.1109/TGRS.2020.3003421

Barnhart, W. D., and Lohman, R. B. (2013). Characterizing and Estimating Noise
in InSAR and InSAR Time Series with MODIS. Geochem. Geophys. Geosyst. 14,
4121–4132. doi:10.1002/ggge.20258

Bekaert, D. P. S., Hooper, A., and Wright, T. J. (2015a). A Spatially Variable Power
Law Tropospheric Correction Technique for InSAR Data. J. Geophys. Res. Solid
Earth 120, 1345–1356. doi:10.1002/2014JB011558

Bekaert, D. P. S., Walters, R. J., Wright, T. J., Hooper, A. J., and Parker, D. J.
(2015b). Statistical Comparison of InSAR Tropospheric Correction
Techniques. Remote Sensing Environ. 170, 40–47. doi:10.1016/j.rse.2015.08.035

Cao, Y., Jo´nsson, S., and Li, Z. (2021). Advanced InSAR Tropospheric Corrections
fromGlobal Atmospheric Models that Incorporate Spatial Stochastic Properties
of the Troposphere. JGR Solid Earth 126, e2020JB020952. doi:10.1029/
2020JB020952

Cavalié, O., Doin, M.-P., Lasserre, C., and Briole, P. (2007). Ground Motion
Measurement in the Lake Mead Area, Nevada, by Differential Synthetic
Aperture Radar Interferometry Time Series Analysis: Probing the
Lithosphere Rheological Structure. J. Geophys. Res. 112, B03403. doi:10.
1029/2006JB004344

Dong, J., Zhang, L., Liao, M., and Gong, J. (2019). Improved Correction of Seasonal
Tropospheric Delay in InSAR Observations for Landslide Deformation
Monitoring. Remote Sensing Environ. 233, 111370. doi:10.1016/j.rse.2019.
111370

Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A. (2011). A
New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE
Trans. Geosci. Remote Sensing 49, 3460–3470. doi:10.1109/TGRS.2011.2124465

Ferretti, A., Prati, C., and Rocca, F. (2001). Permanent Scatterers in SAR
Interferometry. IEEE Trans. Geosci. Remote Sensing 39, 8–20. doi:10.1109/
36.898661

Gao, B.-C., and Kaufman, Y. J. (2003). Water Vapor Retrievals Using Moderate
Resolution Imaging Spectroradiometer (MODIS) Near-Infrared Channels.
J. Geophys. Res. 108, a–n. doi:10.1029/2002JD003023

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al.
(2017). The Modern-Era Retrospective Analysis for Research and Applications,
Version 2 (MERRA-2). J. Clim. 30, 5419–5454. doi:10.1175/JCLI-D-16-0758.1

Gray, A. L., Mattar, K. E., and Sofko, G. (2000). Influence of Ionospheric Electron
Density Fluctuations on Satellite Radar Interferometry. Geophys. Res. Lett. 27,
1451–1454. doi:10.1029/2000GL000016

Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error
Analysis. Springer Science & Business Media.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
et al. (2020). The ERA5 Global Reanalysis.Q.J.R. Meteorol. Soc. 146, 1999–2049.
doi:10.1002/qj.3803

Hooper, A., Segall, P., and Zebker, H. (2007). Persistent Scatterer Interferometric
Synthetic Aperture Radar for Crustal Deformation Analysis, with Application
to Volcán Alcedo, Galápagos. J. Geophys. Res. 112, B07407. doi:10.1029/
2006JB004763

Hooper, A., and Zebker, H. A. (2007). Phase Unwrapping in Three Dimensions
with Application to InSAR Time Series. J. Opt. Soc. Am. A. 24, 2737–2747.
doi:10.1364/JOSAA.24.002737

Hudnut, K. W., Bock, Y., Galetzka, J. E., Webb, F. H., and Young, W. H. (2001).
“The Southern California Integrated GPS Network (SCIGN),” in The 10th FIG
International Symposium on Deformation Measurements (USA): Orange
California), 19–22.

Jolivet, R., Agram, P. S., Lin, N. Y., Simons, M., Doin, M. P., Peltzer, G., et al. (2014).
Improving InSAR Geodesy Using Global Atmospheric Models. J. Geophys. Res.
Solid Earth 119, 2324–2341. doi:10.1002/2013JB010588

Li, Z., Fielding, E. J., Cross, P., and Muller, J.-P. (2006). Interferometric Synthetic
Aperture Radar Atmospheric Correction: Medium Resolution Imaging
Spectrometer and Advanced Synthetic Aperture Radar Integration. Geophys.
Res. Lett. 33, 272–288. doi:10.1029/2005GL025299

Li, Z., Fielding, E. J., Cross, P., and Preusker, R. (2009). Advanced InSAR
Atmospheric Correction: MERIS/MODIS Combination and Stacked Water

Vapour Models. Int. J. Remote Sensing 30, 3343–3363. doi:10.1080/
01431160802562172

Li, Z., Muller, J., Cross, P., and Fielding, E. J. (2005). Interferometric Synthetic
Aperture Radar (InSAR) Atmospheric Correction: GPS, Moderate Resolution
Imaging Spectroradiometer (MODIS), and InSAR Integration. J. Geophys. Res.
110, B02410. doi:10.1029/2004JB003446

Liang, C., Agram, P., Simons, M., and Fielding, E. J. (2019). Ionospheric Correction
of InSAR Time Series Analysis of C-Band Sentinel-1 TOPS Data. IEEE Trans.
Geosci. Remote Sensing 57, 6755–6773. doi:10.1109/TGRS.2019.2908494

Liang, H., Zhang, L., Ding, X., Lu, Z., and Li, X. (2019). Toward Mitigating
Stratified Tropospheric Delays in Multitemporal InSAR: A Quadtree Aided
Joint Model. IEEE Trans. Geosci. Remote Sensing 57, 291–303. doi:10.1109/
TGRS.2018.2853706

Lin, Y.-n. N., Simons, M., Hetland, E. A., Muse, P., and DiCaprio, C. (2010). A
Multiscale Approach to Estimating Topographically Correlated Propagation
Delays in Radar Interferograms. Geochem. Geophys. Geosyst. 11, 3228. doi:10.
1029/2010GC003228

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C., Ebisuzaki, W.,
et al. (2006). North American Regional Reanalysis. Bull. Amer. Meteorol. Soc.
87, 343–360. doi:10.1175/bams-87-3-343

Murray, K. D., Bekaert, D. P. S., and Lohman, R. B. (2019). Tropospheric
Corrections for InSAR: Statistical Assessments and Applications to the
Central United States and Mexico. Remote Sensing Environ. 232, 111326.
doi:10.1016/j.rse.2019.111326

Onn, F., and Zebker, H. A. (2006). Correction for Interferometric Synthetic
Aperture Radar Atmospheric Phase Artifacts Using Time Series of Zenith
Wet Delay Observations from a GPS Network. J. Geophys. Res. 111, B09102.
doi:10.1029/2005JB004012

Parker, A. L., Biggs, J., Walters, R. J., Ebmeier, S. K., Wright, T. J., Teanby, N. A.,
et al. (2015). Systematic Assessment of Atmospheric Uncertainties for InSAR
Data at Volcanic Arcs Using Large-Scale Atmospheric Models: Application to
the Cascade Volcanoes, United States. Remote Sensing Environ. 170, 102–114.
doi:10.1016/j.rse.2015.09.003

Shen, L., Hooper, A., and Elliott, J. (2019). A Spatially Varying Scaling Method for
InSAR Tropospheric Corrections Using a High-Resolution Weather Model.
J. Geophys. Res. Solid Earth 124, 4051–4068. doi:10.1029/2018JB016189

Shirzaei, M., and Bürgmann, R. (2012). Topography Correlated Atmospheric Delay
Correction in Radar Interferometry Using Wavelet Transforms. Geophys. Res.
Lett. 39, a–n. doi:10.1029/2011GL049971

Skamarock, W. C., and Klemp, J. B. (2008). A Time-Split Nonhydrostatic
Atmospheric Model for Weather Research and Forecasting Applications.
J. Comput. Phys. 227, 3465–3485. doi:10.1016/j.jcp.2007.01.037

Tong, X., Sandwell, D. T., and Smith-Konter, B. (2013). High-resolution
Interseismic Velocity Data along the San Andreas Fault from GPS and
InSAR. J. Geophys. Res. Solid Earth 118, 369–389. doi:10.1029/2012JB009442

Ulmer, F.-G., and Adam, N. (2017). Characterisation and Improvement of the
Structure Function Estimation for Application in PSI. ISPRS J. Photogrammetry
Remote Sensing 128, 40–46. doi:10.1016/j.isprsjprs.2017.03.005

Watson, K. M., Bock, Y., and Sandwell, D. T. (2002). Satellite Interferometric
Observations of Displacements Associated with Seasonal Groundwater in
the Los Angeles basin. J. Geophys. Res. 107, 8–1. doi:10.1029/2001JB000470

Wegmüller, U., and Werner, C. (1997). "Retrieval of Vegetation Parameters With
SAR Interferometry," in IEEE Transactions on Geoscience and Remote Sensing
35, 18–24.

Xu, W. B., Li, Z. W., Ding, X. L., and Zhu, J. J. (2011). Interpolating Atmospheric
Water Vapor Delay by Incorporating Terrain Elevation Information. J. Geod.
85, 555–564. doi:10.1007/s00190-011-0456-0

Xu, W., Li, Z. W., Ding, X., Feng, G. C., Hu, J., Long, J. P., et al. (2010). Correcting
Atmospheric Effects in ASAR Interferogram with MERIS Integrated Water
Vapor Data. Acta Geophys. Sin. 53, 1073–1084. doi:10.3969/j.issn.0001-5733.
2010.05.007

Yu, C., Li, Z., Penna, N. T., and Crippa, P. (2018b). Generic Atmospheric Correction
Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys.
Res. Solid Earth 123, 9202–9222. doi:10.1029/2017JB015305

Yu, C., Li, Z., and Penna, N. T. (2018a). Interferometric Synthetic Aperture Radar
Atmospheric Correction Using a GPS-Based Iterative Tropospheric
Decomposition Model. Remote Sensing Environ. 204, 109–121. doi:10.1016/j.
rse.2017.10.038

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 85936316

Zhang et al. Adaptive Fusion Tropospheric Delay for InSAR

https://doi.org/10.1109/TGRS.2020.3003421
https://doi.org/10.1002/ggge.20258
https://doi.org/10.1002/2014JB011558
https://doi.org/10.1016/j.rse.2015.08.035
https://doi.org/10.1029/2020JB020952
https://doi.org/10.1029/2020JB020952
https://doi.org/10.1029/2006JB004344
https://doi.org/10.1029/2006JB004344
https://doi.org/10.1016/j.rse.2019.111370
https://doi.org/10.1016/j.rse.2019.111370
https://doi.org/10.1109/TGRS.2011.2124465
https://doi.org/10.1109/36.898661
https://doi.org/10.1109/36.898661
https://doi.org/10.1029/2002JD003023
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1029/2000GL000016
https://doi.org/10.1002/qj.3803
https://doi.org/10.1029/2006JB004763
https://doi.org/10.1029/2006JB004763
https://doi.org/10.1364/JOSAA.24.002737
https://doi.org/10.1002/2013JB010588
https://doi.org/10.1029/2005GL025299
https://doi.org/10.1080/01431160802562172
https://doi.org/10.1080/01431160802562172
https://doi.org/10.1029/2004JB003446
https://doi.org/10.1109/TGRS.2019.2908494
https://doi.org/10.1109/TGRS.2018.2853706
https://doi.org/10.1109/TGRS.2018.2853706
https://doi.org/10.1029/2010GC003228
https://doi.org/10.1029/2010GC003228
https://doi.org/10.1175/bams-87-3-343
https://doi.org/10.1016/j.rse.2019.111326
https://doi.org/10.1029/2005JB004012
https://doi.org/10.1016/j.rse.2015.09.003
https://doi.org/10.1029/2018JB016189
https://doi.org/10.1029/2011GL049971
https://doi.org/10.1016/j.jcp.2007.01.037
https://doi.org/10.1029/2012JB009442
https://doi.org/10.1016/j.isprsjprs.2017.03.005
https://doi.org/10.1029/2001JB000470
https://doi.org/10.1007/s00190-011-0456-0
https://doi.org/10.3969/j.issn.0001-5733.2010.05.007
https://doi.org/10.3969/j.issn.0001-5733.2010.05.007
https://doi.org/10.1029/2017JB015305
https://doi.org/10.1016/j.rse.2017.10.038
https://doi.org/10.1016/j.rse.2017.10.038
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Yun, Y., Zeng, Q., Green, B. W., and Zhang, F. (2015). Mitigating Atmospheric
Effects in InSAR Measurements through High-Resolution Data Assimilation
and Numerical Simulations with a Weather Prediction Model. Int. J. Remote
Sensing 36, 2129–2147. doi:10.1080/01431161.2015.1034894

Zebker, H. (2021). Accuracy of a Model-free Algorithm for Temporal InSAR
Tropospheric Correction. Remote Sensing 13, 409. doi:10.3390/rs13030409

Zebker, H. A., Rosen, P. A., and Hensley, S. (1997). Atmospheric Effects in
Interferometric Synthetic Aperture Radar Surface Deformation and
Topographic Maps. J. Geophys. Res. 102, 7547–7563. doi:10.1029/96JB03804

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Dong, Zhang, Wang, Tang and Liao. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 85936317

Zhang et al. Adaptive Fusion Tropospheric Delay for InSAR

https://doi.org/10.1080/01431161.2015.1034894
https://doi.org/10.3390/rs13030409
https://doi.org/10.1029/96JB03804
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Adaptive Fusion of Multi-Source Tropospheric Delay Estimates for InSAR Deformation Measurements
	Introduction
	Study Area and Data
	Data
	SAR Data
	GPS Data
	Weather Model Data
	Multi-Spectral Images


	Methodology
	Small Baselines Subset InSAR
	Adaptive Fusion of Multi-Source Tropospheric Delay (AFMTD) Estimates
	Scaled Tropospheric Phases Estimated by Weather Model Data
	Weighted Fusion of Multiple Tropospheric Delay Estimates


	Results and Analyses
	Evaluation Experiments Using ENVISAT ASAR and MERIS Data
	Application of AFMTD method to Sentinel-1 data
	Correction of Unwrapped Phases
	Validation of Corrected Deformation Rates With GPS Data
	Evaluation of Corrected Displacement Time Series Using GPS Data


	Discussion
	Performance Ranking of Correction Models
	Comparison of AFMTD With FDWM and SVS
	Future Improvements of AFMTD

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


