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The 2017Mw 6.5 Jiuzhaigou earthquake (Sichuan, China) is the first strong ground motion
that struck the famous world heritage site, causing widespread landslides and severe rock
mass damage effects and landscapes undergoing rapid evolution in the Jiuzhaigou
National Geopark. However, the understanding of the variability of pre- and post-
earthquake landslide susceptibility and landslide conditioning factor effects over time
remains limited. This study aims to carry out multi-temporal statistical landslide
susceptibility modeling at the slope-unit level related to this event. To achieve this, we
initially used a set of remote sensing imageries in GIS to obtain systematic landslide
inventories across the pre-, co-, and post-seismic periods. Based on three landslide
inventory datasets, we developed three statistical models by incorporating 14 landslide
conditioning (seismic, topographic, and geologic) factors into a binary logistic regression
(BLR) model. Finally, we utilized the area under the receiver operating characteristic (AUC)
(QA) curve to assess each model’s calibration and validation performance. The results
show that the BLR model has good prediction applicability for both normal and seismic
landslides in the study area with outstanding to excellent predictive accuracy for Mod1
(pre-seismic, AUC = 0.801), Mod2 (co-seismic, AUC = 0.942), and Mod3 (post-seismic,
AUC = 0.880) periods. There are variations in both the importance of landslide conditioning
factors and susceptibility maps through time, and the number of slope units with a mean
probability over 0.8 from only one (pre-seismic) increased to 21 (post-seismic). The
dynamic susceptibility maps are of great significance for identifying potentially unstable
slopes and providing references for hazard and risk assessment, which could provide new
insights into geo-environmental protection and regional landslide evaluation in scenery
spots, even for those world heritage sites in the tectonic active mountainous region.
Moreover, more frequent or extended observation periods could contribute a further
understanding of the post-seismic landslide developments in the Jiuzhaigou area.
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HIGHLIGHTS

◆ Statistical landslide susceptibility space–time modeling at the
slope-unit level for a world heritage site was carried out.

◆ The multi-temporal landslide inventory datasets (154 pre-,
1022 co-, and 364 post-seismic periods) related to the 2017
Jiuzhaigou earthquake (Mw = 6.5) were obtained.

◆ There are variations in both landslide susceptibility and
conditioning factors’ effects over time.

INTRODUCTION

The likelihood of the landslide occurrence in a given area based
on a set of slope failure conditioning factors is known as landslide
susceptibility (Brabb, 1985; Varnes, 1984), and it can be obtained
through different approaches and mapping units (Carrara et al.,
1995; Guzzetti et al., 1999). The landslide research community
has conducted a vast number of landslide susceptibility
assessment studies over the past 3 decades, especially through
four groups of approaches and methods: 1) Heuristic
(knowledge-based) methods (Van Westen et al., 2003); 2)
Deterministic (physically based) methods (e.g., Guzzetti et al.,
1999; Montgomery and Dietrich, 1994; Newmark, 1965; Van
Westen et al., 2003); 3) Data-driven methods, including statistical
methods, such as logistic regression, frequency ratio, certainty
factor, statistical index, and weight of evidence models (Brenning,
2005; Reichenbach et al., 2018), and machine learning techniques
(e.g., Micheletti et al., 2014; He and Kusiak, 2017; Li et al., 2021a,
Li et al., 2021b); and 4) innovative combination of these methods
(e.g., Chen et al., 2017; Strauch et al., 2019; Zhou et al., 2021).
Among the aforementioned techniques, data-driven models were
most frequently chosen in the recent past and characterized as
objective and practical and were proven valuable and robust
(Brenning, 2005; Reichenbach et al., 2018). Effective landslide
susceptibility mapping plays a vital role in risk assessment and
mitigation and could also provide land and infrastructure
management for planners (Guzzetti et al., 2006; Fell et al., 2008).

It is generally recognized that the assumption “future
landslides will be more likely to occur under the conditions
which led to the landslides past and present” is at the base of
statistical landslide susceptibility modeling (Varnes, 1984; Furlani
and Ninfo, 2015; Samia et al., 2017). In this regard, the
susceptibility maps for a given area can be considered to be
static (Segoni et al., 2018). This notion may hold true for non-
seismically caused landslides during a short period. However,
earthquake-induced landslide analyses are inevitably much more
complex, compared to the naturally occurring slope instability
(Nowicki et al., 2014; Nowicki Jessee et al., 2018). A strong
earthquake could not only trigger a large amount of co-
seismic landslides but also drastically deteriorate the rock and
soil physical and mechanical properties. As a result, seismic-
affected quasi-stable cracked slopes are prone to be unstable
during subsequent rainfall, resulting in increased landslide
activity and impacts compared to the pre-earthquake period
(Huang and Li, 2014). The long-term effects of the regional
landslide susceptibility over annual to decadal timescales,

which peaks immediately after a major earthquake, remains
high for several months to years and even decades, and then
falls to the background susceptibility level, were highlighted by
Fan et al. (2019b). Lin et al. (2006) found the intensity of seismic-
induced landslides was the highest in the first 5 years after the
Chi-Chi earthquake and then showed a decreasing trend year by
year. In that case, the long-term effects could lead to considerable
and severe loss of lives and property in mountainous and
tectonic-active areas (Keefer, 1984, Keefer, 2002; Fan et al.,
2019b), and it is necessary to track the response of slopes to a
landslide for a significant period after the earthquake (Khattak
et al., 2010).

To date, co-seismic landslide susceptibility assessments have
been carried out worldwide for single events, particularly those
caused by catastrophic earthquakes (Lee et al., 2008; Kamp et al.,
2008; Xu et al., 2012; Shrestha and Kang, 2019; Cui et al., 2021).
Compared to the single event-based inventory, the multi-
temporal inventory represents the optimal landslide
information for 1) producing reliable susceptibility maps (Galli
et al., 2008) and 2) testing the long-term performances of a
susceptibility model (Guzzetti et al., 2006). In fact, there has been
a surge in interest in the temporal evolution of landslides after
major earthquakes in recent decades, particularly since the
1999 Chi-Chi, the 2008 Wenchuan, and the 2015 Gorkha
earthquakes (Marc et al., 2015; Tang et al., 2016; Yang et al.,
2017; Fan et al., 2018a, Fan et al., 2019a; Kincey et al., 2021). Few
studies have been devoted to the multi-temporal landslide
evolution and time-relevant susceptibility assessment. For
instance, Fan et al. (2021) exploited a multi-temporal
inventory (2005–2018) spanning the epicentral region of the
Wenchuan earthquake and a random forest model to model
the landslide susceptibility. By applying the binary logistic
regression model and analyzing the time series of landslides
related to four earthquakes in Indonesia, Tanyas et al. (2021a)
and Tanyas et al. (2021b) studied the coupled influence of
earthquakes and rainfall to predict landslide occurrences.
These studies are pioneer attempts on the spatial-temporal
variation and dynamic susceptibility/hazard of post-seismic
landslides in an earthquake-affected area.

On 8 August 2017, the Jiuzhaigou earthquake with a
magnitude of Mw 6.5 struck the 76 Jiuzhaigou county,
northern Sichuan province, China. The epicenter is within the
Jiuzhaigou National Geopark, a famous world heritage site
certified by the United Nations Educational, Scientific, and
Cultural Organization (UNESCO). This event triggered a
significant amount of co-seismic landslides, and touristic
infrastructures were seriously damaged (Wang et al., 2018).
After this event, substantial studies were published, most of
which focused on the co-seismic landslide spatial distribution
analysis (Fan et al., 2018b; Wang et al., 2018; Wu et al., 2018; Tian
et al., 2019; Chen et al., 2020; Ling et al., 2021) and susceptibility/
hazard assessment (Fan et al., 2018b; Ma et al., 2019; Yi et al.,
2019; Cao et al., 2020), which could be useful in the emergency
response phase. Despite the rapid evolution of landscapes as a
result of earthquake-induced rock mass damage and three
extremely heavy rainfall events in September 2017, August
2018, and August 2019 (Hu et al., 2019), assessing the
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FIGURE 1 | (A) Geographical location map of the study area in southwestern China; (B) Regional tectonic setting, epicenter, and distribution of multi-temporal
landslide identification points (LIPs) within the Jiuzhaigou National Geopark. EQ stands for the 2017 Mw 6.5 Jiuzhaigou earthquake; (C) Geologic map showing the
outcropping lithology and fault lines of the study area. F1: Ergen Fault, F2: Zharugou Fault, F3: Heye Fault, F4: Luweihai Fault, F5: Zechawa Fault, F6: Jiuzhaigou Fault, F7:
Yingzhuadong Fault, F8: Xuanquan Fault, F9: Loubangou Fault, and F10: Changhai Fault.
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dynamic landslide susceptibility in the years following the
mainshock has rarely been performed. Guo et al. (2021) used
remote sensing data to monitor the spatio-temporal
characteristics of landslides and how they changed after the
Jiuzhaigou earthquake. Preparing dynamic susceptibility maps
is important, which can help us better understand the evolution of
landslides and assist geo-hazard reduction and risk management.
For this purpose, this work selected the Jiuzhaigou National
Geopark as the study region and utilized the binary logistic
regression model at the slope-unit level to conduct a case
study on the spatial patterns of pre-, co-, and post-seismic
landslide susceptibility, as well as the covariates’ effect over
time. This research may enrich the theoretical research
content of post-earthquake landslide regional assessment and
provide references for disaster prevention and mitigation for the
scenery spot in tectonic-active mountainous areas.

Study Area
The study area, a UNESCO world heritage site known as the
Jiuzhaigou National Geopark, is situated in the eastern edge of the
Tibetan Plateau. The site with an area of approximately 653 km2 is
located at 32°54′21″ ~33°16′9″ N and 103°46′24″~104°3′54″ E in
the northern part of Sichuan province, southwestern China (see
Figure 1A). It is a tectonically active hilly mountainous region
characterized by narrow and steep valleys with elevations ranging
from 1429 to 4865m a.s.l. (above the sea level). The annual
precipitation in the region is about 704.3 mm and peaks from
June to September, accounting for approximately 70% of the yearly
precipitation. This region lies between two principal faults: the
nearly NS-trending Minjiang Fault and the NWW-trending left-
lateral strike-slip Tazang Fault (Fan et al., 2018b; Wu et al., 2018)

(Figure 1B). All of these active structures have the potential for
triggering earthquakes of magnitude ML ≥ 7.5 (Li et al., 2016).
According to historical earthquake records, this region was affected
by seven strong earthquake events in the last century, including the
1933 Diexi Mw 7.3 earthquake, 1960 Songpan Mw 6.3 earthquake,
1973 Songpan Mw 6.1 earthquake, 1974 Songpan Mw 5.7
earthquake, and 1976 Songpan–Pingwu earthquake swarm (Mw

6.9 occurred on 16 August,Mw 6.4 on 21 August, andMw 6.7 on 23
August) (see Figure 2 in Luo et al., 2021). These events may have
caused serious damage to the rock masses, increasing the
probability of slope failure. More specific information about the
study area can be found in the studies by Luo et al. (2021) and
Wang et al. (2018), as well as references therein.

The geological map at a scale of 1:50,000 was provided by the
JiuzhaigouManagement Bureau andmodified from the published
research studies (Cui et al., 2005; Hu et al., 2019). Outcrops in the
study area can be grouped into 16 lithological units, and loose
Quaternary materials locally covered the Triassic (T), Permian
(P), Carboniferous–Permian (Cp), Carboniferous(C), and
Devonian(D) rocks (see Table 1 and Figure 1C).

METHOD AND MATERIALS

Multi-Temporal Landslide Inventory
It is a crucial pre-requisite phase to build a trustworthy and accurate
landslide inventory map for landslide analysis (Guzzetti et al., 1999;
Li et al., 2022; Tanyas and Lombardo, 2020). In this study, the
imagery for interpretation was chosen based on the year of
acquisition, coverage, minimum of clouds, and resolution to
detect multi-temporal landslides. In particular, for co-seismic

FIGURE 2 | (A) Pre-earthquake, (B) co-seismic, and (C) post-seismic satellite images around Panda Lake for multi-temporal landslide interpretation; (D)
Photographs obtained from the field surveys showing typical landslides in the study area.
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landslides, it is rather necessary to collect the pre-seismic images
that are closer to the earthquake event occurrence date in order to
exclude the pre-earthquake landslides and misjudged zones (Harp
et al., 2011). This study mapped multi-temporal landslides via a set
of remote sensing images from Spot-5, Gaofen, Landsat, unmanned
aerial vehicle (UAV), and Google Earth platform, followed by field
investigation for the temporal span from August 2017 to September
2020. The spatial resolutions of images range from 0.2 to 3.0 m. We
refined landslide signatures through the systematic visual
interpretation in the geographic information system (GIS)
environment. Table 2 summarizes the sources and characteristics
of data used for landslide interpretation and susceptibility modeling
phases. Satellite images around Panda Lake used for multi-temporal
landslide identification and some typical landslide photographs in
the study area are shown in Figure 2.

As a result, we created detailed polygon-shaped multi-
temporal landslide maps that record the location, surface
area, and types of pre-, co-, and post-seismic landslides.

Unfortunately, landslide initiations were not separated from
the runout and deposition areas. In general, it requires
conducting a polygon-to-point conversion for each landslide
to build a statistical susceptibility assessment model. Previous
studies offer three categories of sampling strategies (Hussin
et al., 2016), and extracting the points populating the scar on a
buffer distance is a common choice. Specifically, we first
extracted the highest and lowest elevations of each landslide
polygon and then calculated the 20% of the height difference as
the buffer distance to the most elevated location of the scar,
producing landslide identification points (LIPs, as shown in
Figure 1B). The types of landslides are mainly small-medium
scale shallow debris/rock slides, rock avalanches, and rockfalls
(Hungr et al., 2014).

The size distribution and morphometric characteristics of the
mapped landslides are illustrated in Figure 3. The pre-EQ
landslide dataset contains landslides covering an area of 3.83 ×
106 m2 in total, and the size varied from ALmin = 940.94 m2 to
ALmax = 30.98 × 104 m2 (µ = 2.49 × 104 m2, σ = 4.24 × 104 m2, see
Figure 3A), spanning the scale from small to moderate.
Subsequently, we mapped 1022 co-seismic landslides with a
total covering area of 3.88 × 106 m2, ranging in size from
ALmin = 10.21 m2 to ALmax = 6.47 × 104 m2 (µ = 0.37 ×
104 m2, σ = 0.62 × 104 m2, Figure 3B). The 364 landslides
(post-EQ, covering an area of 2.11 × 106 m2) range in size
from 3.89 × 102 m2 to 5.39 × 104 m2 (µ = 0.58 × 104 m2, σ =
0.62 × 104 m2, Figure 3C) after the earthquake occurred to the
present. Subsequently, for each landslide dataset, we generated a
corresponding temporal model with a set of covariates in the
Binary Logistic Regression Model.

The aspect ratio (also called the length–width ratio, L/W)
describes the planar shape of a single landslide (Tian et al., 2017).
According to values of this parameter, the landslides were
categorized as 1) the transverse landslide (LA1, L/W ≤ 0.8), 2)
the isometric landslide (LA2, 0.8 < L/W ≤ 1.2), 3) the longitudinal
landslide (LA3, 1.2 < L/W ≤ 3), and 4) the elongated landslide
(LA4, L/W > 3). An aspect ratio close to 1 means a typical
rotational slide, and with the increase of the aspect ratio, it is a
much more elongated shape typical of flow-type landslides.
According to the statistics, the minimum and maximum
aspect ratios for pre-EQ landslides (Figure 3D), co-seismic
landslides (Figure 3E), and post-EQ landslides (Figure 3F) are
2.09, 0.29, and 2.11 and 12.03, 84.08, and 11.36, respectively. The

TABLE 1 | Description of geologic units and lithology of the study area.

Age Acronym Lithology descriptions

Q Q Eluvium, alluvial and diluvial deposits, and colluvium and
diluvium deposits

T T2zg Interbedded sand and limestone
T2q Dolomite intercalated with argillaceous limestone and bioclastic

limestone
T1l Marl limestone, siliceous limestone, and gravelly limestone
T1h Dolomite with a small amount of limestone

P P2c Limestone
P2l Shale intercalated with siliceous limestone and sandy

argillaceous limestone
Pds2 Limestone intercalated with metamorphic siltstone and slate
Pds1 Microcrystalline limestone, oolitic limestone, and breccia

limestone
Cp Cpd2 Chert limestone and bioclastic rock

Cpd1 Limestone mixed with clastic limestone
C Cm2 Bioclastic limestone and dolomitic limestone with chert

limestone
Cm1 Interbedding of bioclastic limestone and calcareous sericite

slate
D Dcy Bioclastic limestone and chert-bearing limestone with gravel

limestone
Dx Argillaceous bioclastic limestone with calcareous slate
Dd Quartzite sandstone with quartz breccia and bioclastic

limestone

TABLE 2 | The type, source, and date of the data used for landslide mapping and the subsequent modeling procedure. USGS represents the U.S. Geologic Survey.

Data type Source Resolution Date Purpose

Imagery Spot-5 2.5 m 2015-12-21 Mapping multi-temporal landslides (Spot-5 image used for identifying pre-seismic landslides, Gaofen-
1, Gaofen-2 and Google Earth used for the interpretation of co-seismic landslides, UAV aerial image
used for field checking, and Landsat-8 used for mapping post-seismic landslides)

Gaofen-1 0.2 m 2017-08-16
Gaofen-2 0.2 m 2017-08-09
Google Earth 3.0 m 2017-08-27
UAV aerial
image

0.2 m 2018-03-08

Landsat-8 3.0 m 2020-09-20
DEM Aster satellite 30 m pre-, post-

earthquake
Preparing landslide conditioning factor raster maps

Earthquake USGS - 2017-08-09 Providing seismic parameters
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average value equals 3.66, 5.04, and 3.34, respectively. Moreover,
it is similar that all landslides for three datasets are mainly
composed of longitudinal (LA3) and elongated landslides
(LA4). Specifically, LA3 accounted for 42.86%, 34.92%, and
54.67% and LA4 for 57.14%, 54.87%, and 45.33% for pre-, co-,
and post-seismic landslides, respectively. This elongation
resulted, in general, from moderately long run-out distances
down steep slopes below landslide source areas.

Slope Units Delineation and Status
Assignment
In the vast literature reports (e.g., Carrara et al., 1995; Guzzetti
et al., 1999; Reichenbach et al., 2018), the most frequent mapping
units for large-scale or regional landslide susceptibility
assessments are grid cells and slope units (SUs, hereafter). SUs
are the basic units of landslide occurrence generated according to
the terrain hydrology unit bounded by drainage and ridgelines
(Carrara et al., 1995). Compared to the grid cells, SUs offered two
main advantages: one for a smaller computational burden and the
other for the geomorphologically oriented interpretation (Steger
et al., 2016). Because it has higher internal homogeneity and
between-unit heterogeneity, SUs have been proven to be reliable,
as tested in some cases by Alvioli et al. (2016), Amato et al. (2019),
and Lombardo et al. (2020). In this study, the r.slopeunits module
(Alvioli et al., 2016) was used to automatically delineate SUs from
an input DEM, and the study area was partitioned into 1234 SUs.
Figure 4A portrays the size distribution and statistic

characteristics of the generated slope-units. Their areas range
from a minimum of 0.05 km2 to a maximum of 3.25 km2 with a
mean of 0.53 km2, and a standard deviation 0.43 km2, indicating
that the local topography is fairly rugged.

For each landslide inventory, we counted the LIPs per SU and
transformed the results to binary presence–absence to reflect the
presence–absence of the landslide distribution over the study area
at the SU level. If an SU included at least one LIP, it was given a
positive landslide status of “1,” and if not, it was set as “0” for an
absence status. The presence/absence status assignment of the
partitioned 1234 SUs for each landslide inventory is shown in
Figure 4B. Consequently, 96 SUs (i.e., ~ 7.78% of the total 1234
SUs) were assigned as “1,” while the remaining 1138 SUs were
allocated as “0” for the pre-EQ landslide dataset. Regarding the
co-seismic landslide inventory, 173 SUs accounting for
approximately 14.02% of the total SUs were classified as
presence, while the rest were classified as absence, which
accounts for 86% of all SUs. For the post-EQ landslides, 163
SUs were assigned as “1,” accounting for 13.21% of the total (N =
1234) SUs.

Binary Logistic Regression Model
In this work, we opted for a probabilistic model as the binary
formulation of the logistic regression model. It is a generalized
linear model belonging to the statistical family and widely used
in the vast majority of slope failure studies for a given mapping
unit to explain the distribution of landslides over space
(Brenning, 2005; Reichenbach et al., 2018). More

FIGURE 3 | Morphometric characteristics of the mapped landslides: the frequency distribution histogram of the landslide area and the scatter plot showing the
aspect ratio (L/W) for (A,D) pre-EQ landslides; (B,E) co-seismic landslides; and (C,F) post-EQ landslides, respectively.
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specifically, it aims at modeling a linear relationship between
covariates and landslide occurrences based on a set of
predictors, which can correspond either to continuous or
categorical variables in the model. The BLR model assumes
a Bernoulli probability distribution as the underlying
stochastic process, and it can be stated as follows:pt

η(x) � In[ π(x)
1 − π(x)] � β0 + β1x1 +/ + βjxj, (1)

where η is the logic link, π(x) is the conditional probability of the
landslide occurrence, given the predictors, β0 is the constant
intercept, and β0, . . . . . ., βj are regression coefficients measuring
the effects of each covariate. Once the model has estimated the
linear predictor, the following logic link η is used to obtain the
probability of the landslide occurrence P:

P � eβ0+β1x1+/+βjxj

1 + eβ0+β1x1+/+βjxj . (2)

Covariates and Multi-Collinearity Analyses
Covariates
Because of the complexity of the nature and evolution of
landslides, there is no standard guideline on which causative
factors should be included in the landslide susceptibility
assessment model. Based on the literature review of other
earthquake cases (e.g., Nowicki et al., 2014; Tanyas et al.,
2021a; Fan et al., 2021), the same area (Fan et al., 2018b; Tian
et al., 2019; Yi et al., 2019; Luo et al., 2021), and data availability
and reliability for the study area, we considered 14 conditioning
factors to explain the spatial distribution of pre-, co-, and post-
seismic landslides. Rainfall was not chosen due to the restricted
variety of precipitation in our study area. Ultimately, these factors
are elevation (EL), slope angle (SL), northness (NN), eastness
(EN), planar curvature (PLC), profile curvature (PRC), relative
slope position (RSP), topographic wetness index (TWI), distance
to roads (Dis2roads), distance to rivers (Dis2rivers), distance to
faults (Dis2faults, see faultlines in Figure 1C), lithology, peak
ground acceleration (PGA), and distance to the seismogenic fault

FIGURE 4 | (A) The size distribution and geometric features of partitioned 1234 SUs; (B) Delineation, landslide intensity, and the presence–absence status
assignment of partitioned SUs in the study area associated with pre-, co-, and post-EQ landslides.
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(Dis2seisfaults). For each continuous factor, the mean (µ) and
standard deviation (σ) values from the normal distribution per SU
were further aggregated and computed as covariates (Guzzetti
et al., 2006). In terms of lithology, we extracted the most
represented class in each slope-unit. Table 3 summarizes the
full list of these causative factors and their properties, which are
then displayed in Figure 5.

A 30 m spatial resolution digital elevation model (DEM) was
used to extract the topographic parameters. The elevation ranges
from 2002 to 4828 m a.s.l. (Figure 5A), and the slope angle ranges
between 0 and 77.5° (Figure 5B). The slope aspect was
transformed according to the study by Lombardo et al. (2018)
into two linear continuous covariates: northness (NN, Figure 5C)
and eastness (EN, Figure 5D), both of which range between −1
and 1. Additionally, PLC, PRC, TWI, and RSP (Figures 5E–H)
were obtained. We computed the Euclidean distance to the
nearest roadways (Figure 5I) and rivers (Figure 5J) to
account for both anthropogenic and hydrology effects.
Lithology and faults were derived by vectorization of 1:50,000
geologic maps (see Figure 1C and Table 1). Similarly, we
computed the distance to faultlines (Dis2faults, Figure 5K),
following the same operation with roadways and streamlines.
The seismic factors used in this research include PGA (see
Figure 5L) and Dis2seisfaults (Figure 5M). The PGA of the
Jiuzhaigou earthquake was available on the website of the USGS
(https://earthquake.usgs.gov/earthquakes/eventpage/
us2000a5x1/impact) and then digitalized into raster; the pattern

shows a generally southward decrease of PGA levels from 0.36 to
0.08 g, with the distance far away from the epicenter. Besides, we
computed the distance to the causative faults (northwest section
of the Huya fault according to Fan et al. (2018b) and Yi et al.
(2018)). Ultimately, we rasterized all the vector layers into
corresponding 30 m resolution layers to support subsequent
analyses.

Notably, the explanatory covariates for multi-temporal
landslide susceptibility models (pre-seismic Mod1, co-seismic
Mod2, and post-seismic Mod3) are pretty different with the
drift of time. Due to the ground shaking damage effects on
the rock masses, the post-seismic landslide susceptibility
assessment should also consider the seismic parameters.
Therefore, all these covariates in Table 3 were incorporated
into Mod2 and Mod3 shared, whereas pre-seismic Mod1
removed these seismic covariates.

Multi-Collinearity Test for Covariates
The large covariates’ hyperspace we have built may posess the
potential multi-collinearity issue, which would have a negative
impact on our statistical models (Kelava et al., 2008). To avoid
this, we performed a multi-collinearity test and utilized Pearson’s
correlation coefficients r to measure how closely the variables are
linearly related. In accordance to Moore et al. (2006), |r| ≤ 0.8
stands for an extremely weak collinearity that can be considered
with barely no linear dependency between the pairs of covariates.
Figure 6 is the Pearson’s correlation coefficient matrix obtained

TABLE 3 | List of topographic, geologic, and seismic factors in the study area for the subsequent modeling procedure. Con or Cat indicates the continuous or categorical
nature of the covariates.

Types Causative factor ID Covariates Category Resolution References

Topographic Elevation 1 ELμ Con 30 m -
2 ELσ Con 30 m

Slope angle 3 SLμ Con 30 m Zevenbergen and Thorne, (1987)
4 SLσ Con 30 m

Northness 5 NNμ Con 30 m Lombardo et al. (2018)
6 NNσ Con 30 m

Eastness 7 ENμ Con 30 m Lombardo et al. (2018)
8 ENσ Con 30 m

Plan curvature 9 PLCμ Con 30 m Beven and Kirkby, (1979)
10 PLCσ Con 30 m

Profile curvature 11 PRCμ Con 30 m Beven and Kirkby, (1979)
12 PRCσ Con 30 m

Topographic wetness index (TWI) 13 TWIμ Con 30 m B¨ohner and Selige, (2006)
14 TWIσ Con 30 m

Relative slope position (RSP) 15 RSPμ Con 30 m Heerdegen and Beran, (1982)
16 RSPσ Con 30 m

Distance to roads 17 Dis2roadsμ Con 30 m -
18 Dis2roadsσ Con 30 m

Distance to rivers 19 Dis2riversμ Con 30 m -
20 Dis2riversσ Con 30 m

Geological Distance to faults 21 Dis2faultsμ Con 30 m -
22 Dis2faultsσ Con 30 m

Lithology 23 Litho Cat 1:50000 Cui et al. (2005)

Seismic Peak ground acceleration (PGA) 24 PGAμ Con 500 m Allen et al. (2008)
25 PGAσ Con 500 m

Distance to seismogenic faults 26 Dis2seisfaultsμ Con 30 m -
27 Dis2seisfaultsσ Con 30 m
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FIGURE 5 | Spatial distribution of conditioning factor raster layers in the grid used for modeling phases in the study area: (A) Elevation, (B) Slope angle, (C)
Northness, (D) Eastness, (E) Plan curvature, (F) Profile curvature, (G) TWI, (H) RSP, (I) Distance to roads, (J) Distance to rivers, (K) Distance to faults, (L) PGA, and (M)
Distance to seismogenic faults.
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in the software R. Overall, not even one case exceeded the
thresholds (|r| = 0.8) for significant dependency although some
moderate pair-wises existed, including these moderate positively
correlated pairs: ELσ-TWIσ (r = 0.71), ELµ-Dis2roadsµ (r = 0.63),
ELσ-SLµ (r = 0.61), ELσ-Dis2roadsσ (r = 0.62), PRCµ-TWIµ (r =
0.68), RSPµ-RSPσ (r = 0.62), Dis2roadsσ-Dis2riversσ(r = 0.63),
Dis2roadsσ-Dis2seisfaultsσ (r = 0.61), and Dis2faultsσ-
Dis2seisfaultsσ (r = 0.61) and negatively correlated pairs
including PRCµ-RSPσ (r = -0.64) and TWIµ-RSPσ (r = -0.65).
Ultimately, no conclusive estimation was pointed out for

excluding the covariates originally reported in Table 3. In
other words, we incorporated all covariates into the Eqs 1, 2
for the following landslide susceptibility analyses.

Receiver Operating Characteristic Curves
Receiver operating characteristic (ROC) curves and their integrated
area under curves (AUCs) can be used to assess model performance,
including the fitting and prediction skill (Hosmer and Lemeshow,
2000). The ROC is obtained by plotting the true positive rate (TPR,
Eq. 3) against the false positive rate (FPR, Eq. 4). The AUC value

FIGURE 6 | Pearson’s correlation coefficient matrix of the continuous covariates used in this research. ID number corresponds to the acronym of covariates in
Table 3. The range of Pearson’s correlation coefficients r lies between −1 and 1, and the larger modulus |r| value stands for more significant collinearity. r = 0 indicates no
correlation. r > 0 demonstrates that there is a positive correlation that one increases with the increase of other covariates. Conversely, r < 0 means a minus linear
dependency.
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spans from 0.5 (random guess) to 1 (ideal fit or predictions), and the
overall model performance can be recognized as a function of AUC
values and classed as follows (Hosmer and Lemeshow, 2000): 1) 0.7
< AUC ≤0.8, acceptable; 2) 0.8 < AUC ≤ 0.9, excellent; and 3)
AUC>0.9 outstanding performance.

TPR � TP

TP + FN
, (3)

FPR � FP

TN + FP
, (4)

where false positive (FP)/false negative (FN) represents the
number of misclassified landslide/non-landslide samples, and
true positive (TP)/true negative (TN) represents the number of
landslide/non-landslide classified correctly.

RESULTS

Covariates’ Effects
The regression coefficients of those examined covariates obtained
for each model we built with the multi-temporal landslide
inventory, that is, pre-seismic Mod1, co-seismic Mod2, and

post-seismic Mod3 are shown in Figure 7. A total of 12
variables were significant in at least one of the three models
out of all the 26 continuous covariates (see Table 3). Due to each
of the continuous variables being rescaled with mean zero and
unit variance, the covariate effects reported in Figure 7 are all on
the same scale and directly comparable. The regression coefficient
values above the zero line indicate a significant positive
contribution to landslide occurrence, and symmetry values
below the zero line correspond to significant negative effects.

As shown in Figure 7, the continuous covariates’ (see
Figure 7A) and categorical fixed effects (see Figure 7B) of
each model are reported by the mean regression coefficient
and the associated 95% credible interval. Overall, some
covariates play a dominant role in the model, and the majority
of covariates have a limited credible interval. Specifically, for
Mod1, the most relevant covariate is the mean slope, which
positively contributes to the landslide occurrence (we utilized
the mean regression coefficient β to describe the covariates’
effects, hereafter, βSLµ = 0.665). In contrast, Dis2roadsμ shows
a negative contribution (β = −0.809). For the co-seismic Mod2,
the mean of PGA appears to dominate the susceptibility pattern
with the contribution (positive, β = 3.199) in the absolute value

FIGURE 7 | Regression coefficients of (A) continuous covariates whose coefficients were significant in at least one of the three models and (B) lithology (Codes
correspond to the strata in Tables 1, 3) for each landslide inventory-based susceptibility model Mod1 (blue), Mod2 (red), and Mod3 (purple). A 95% credible interval is
expressed as the difference between the quantiles of 97.5 and 2.5. The gray dash line corresponds to zero or no contribution to the model.
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much larger than any other covariate, whereas Dis2roadsµ (β =
−1.574) shows a similarly negative contribution to the landslide
with Mod1. With the post-seismic Mod3, the mean Dis2seisfault
(negative, β = −1.366) and elevation (negative, β = −1.417), in the
absolute value, show the greatest degree of negative influence for
the slope instability. In all three models, some covariates appear
to play the same role, such as the regression coefficient of the
mean elevation per SU appears to be negative. The possible
reason is that most of the landslides were recognized in the
lower portions of the topography in the study area (see
Figure 1B). The SLµ positively contributes to the slope
instability (βMod1 = 0.665, βMod2 = 0.713, and βMod3 = 0.526);
this is consistent with the general knowledge that landslides
generally trigger in the steep terrain. The mean of northness
appears to have a similar negative effect on the landslide
occurrence, which may be due to the decrease in the solar
radiation exposure with the increase in northness (βMod1 =
−0.305, βMod2 = −0.246, and βMod3 = −0.309). In terms of the
mean Dis2faults (βMod1 = −0.517, βMod2 = −0.736, and βMod3 =
−0.073), it shows a negative contribution to the landslide
occurrence because a greater extent of weathered and
fractured rock masses around the faults would decrease the
slope stability. Ultimately, RSP, TWI, and PRC showed no
significance in all models.

For all three models, lithology does not appear to be significant
because the zero line crosses the distribution of each categorical
class (Figure 7B). For Mod1, two classes show the slightly
significant for the landslides, that is, Cpd2 chert limestone,
bioclastic rock (negatively, β = −0.179) and Cm2 bioclastic
limestone, dolomitic limestone with chert limestone
(positively, β = 0.102), while the other classes to the
susceptibility are negligible. For Mod2, two classes show the
slightly significant for the landslides, Quaternary eluvium,
alluvial and diluvial deposits, colluvium and diluvium deposits
(negatively, β = −0.193), and Pds2 limestone intercalated with
metamorphic siltstone and slate (positively, β = 0.170). ForMod3,
Cpd1 limestone mixed with clastic limestone (positively, β =
0.277) and Dcy bioclastic limestone and chert-bearing limestone
with gravel limestone (negatively, β = −0.349) show the most
relevant to the landslides out of these outcropping lithology
classes.

Landslide Susceptibility Mapping
Table.4 and Figures 8A–F show the derived landslide
susceptibility results (mean probability and the uncertainty).
The equal spacing method was used to reclassify the mean
susceptibility into five classes: very low (0~0.2), low (0.2~0.4),
moderate (0.4~0.6), high (0.6~0.8), and very high (0.8~1).
According to Table 4, six SUs are highly susceptible to
landslide occurrence, whereas 3 years after the Jiuzhaigou
earthquake, 57 SUs (accounting for 4.62% of the total SUs)
were highly susceptible to instability. The number of slopes
with very high susceptibility increased from only one (pre-
seismic) to 21 (post-seismic). For the pre- and post-
earthquake periods, the very high landslide susceptibility areas
are mainly distributed along the valleys, especially the Shuzheng
valley and Zechawa valley for the pre-earthquake period, whereas

the Rize valley and Panda Lake, which are closer to the epicenter,
for the post-earthquake period. In contrast, the co-seismic
susceptibility map shows clustered around the epicenter of the
earthquake and a southward decreasing trend. Moreover, the pre-
and post-seismic uncertainty maps follow a similar pattern to the
mean susceptibility maps. In the case of co-seismic landslides, the
uncertainty associated with the mean susceptibility appears to be
relatively small in the southernmost sector of the study area,
although it has a considerably greater spread to the north.

The error plot (Figures 8G–I) shows the mean
susceptibility against its associated uncertainty measured in
a 95% confidence interval (CI) per SU of each space-time
model. It is crucial for determining if the estimates of
constructed models are reasonably acceptable in the
landslide susceptibility studies (Rossi et al., 2010). The left
and right tails of the mean probability distribution should be
associated with a very limited uncertainty for an ideal model
(Reichenbach et al., 2018). Compared to the pre-seismic
(Figure 8G) uncertainty map, the error plots of co-seismic
(Figure 8H) and post-seismic (Figure 8I) maps are much
better determined, and this is also proved by the model
performance shown in Model Performance.

Model Performance
A performance evaluation step is required for each landslide
susceptibility assessment model. Figure 9 shows the ROC
curves and AUC values of calibration and 10-fold cross-
validation results for each model. Although all models
produce excellent and outstanding results according to the
Hosmer and Lemeshow (2000) classification, Mod2 appears to
be outperforming the other two models both in terms of
estimated fitting and cross-validation results. More
specifically, the fitness results of AUC values for Mod1,
Mod2, and Mod3 are 0.838, 0.956, and 0.910 (Figure 9A),
respectively, corresponding to be excellent and the rest two for
outstanding goodness-of-fit. Also, the validation scheme (see
Figures 9B–D for ROCs and associated AUCs distribution)
generally performs worse than the corresponding fitting in
Figure 9A; the average AUCs 0.801, 0.942, and 0.880 of Mod1,
Mod2, and Mod3, respectively, showed the excellent
prediction capability for potential slope failure. Our results
show that the BLR model has good applicability in predictive
performance with outstanding AUC results both for non-
seismic, co-seismic, and post-seismic landslide datasets,
which is consistent with the grid-based Jiuzhaigou co-
seismic landslide susceptibility assessment outcomes in Fan
et al. (2018b) (AUC = 0.851) and Ma et al. (2019) (AUC =
0.89). As the validation database changes, a limited variability
between the minimum and maximum AUC in the resulting 10
AUCs is observed, that is, 0.069 (AUCmax = 0.976, AUCmin =
0.907) for Mod2 and 0.15 (AUCmax = 0.880, AUCmin = 0.809)
for Mod3, although this cannot be said same for the pre-
seismic Mod1 which has a significant variability (0.315,
AUCmax = 0.926, AUCmin = 0.611). A minor variability of
AUCs indicates a more robust predictive model performance
that did not change much with the training and test subset
replicates in a cross-validation scheme.
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DISCUSSION

Strong earthquakes can have a considerable impact on geological
conditions, and the seismically induced jointed slopes are
vulnerable to becoming potential post-earthquake landslides
during subsequent rainfall or earthquakes. The preparation of
event-based multi-temporal landslide dataset is an operationally
challenging, time-consuming, and potentially expensive process.
Lombardo et al. (2020) concluded that the lack of an accurate
multi-temporal landslide dataset, rather than the availability of
advanced statistical modeling tools, is the fundamental constraint
to construct the robust space-time landslide susceptibility models.
Due to the absence of the multi-temporal landslide inventory
before and after the Jiuzhaigou earthquake, barely anything about
the variability of landslide spatial distributions and conditioning
factors was known for now. Nevertheless, Guo et al. (2021)
tracked the spatio-temporal characteristics of landslides and
their changes after the Jiuzhaigou earthquake; the author
ignored the pre-seismic, i.e., non-seismic landslides, and the
importance variability of landslide conditioning factors.
Within 3 years after the 2017 Mw 6.5 Jiuzhaigou earthquake
occurred, we utilized a set of satellite imagery to map the pre-,
co-, and post-seismic landslides and conducted multi-temporal
landslide susceptibility modeling to predict the landslide behavior
for the severely affected area—Jiuzhaigou National Geopark (a
famous UNESCO world heritage site) in Sichuan, China. In our
case study, we attempted to track the variability of spatial
distribution of pre-, co-, and post-seismic landslides by using
the binary logistic regression (BLR) model for the period between
2017 and 2020.

To explore the importance variability of conditioning factors
over time, we calculated the relative importance of covariates
according to the value of the regression coefficient in each
model (see Figure 7), which are shown in Figure 10. It is
observed that the mean Dis2roadways and SLμ had the greatest
influence on the occurrence of landslides before the strike of the
Mw 6.5 Jiuzhaigou earthquake. It demonstrated the close
relationship between human activities (slope cutting) and
topography such as elevation and slope angle. Moreover, the
importance of the mean Dis2roads and slope, as well as SLσ,
decreases with the post-seismic landscape evolution in the study
area. In contrast, the importance of the mean of elevation increased
from the pre-seismic bottom to the post-seismic top. Besides, the
Disfaultsμ shows an increasing importance role in landsliding
during the earthquake period, whereas barely any contribution
to the landslide occurrence occurred during the post-earthquake
period, which is possibly due to the strong effect of seismic shaking

(that is, PGA) in the Mod3. For the same purpose, Yang (2019)
made a comprehensive study on the characteristics of the
influencing factors that changed before and after the 2014
Ludian earthquake (Mw = 6.2, Yunnan Province, China) in the
earthquake-affected area. The results showed that the influence of
elevation and distance to roads on post-earthquake landslide
occurrences increases. However, lithology, slope, distance to
faults, distance to streams, and rainfall on post-seismic
landslides decrease. Fan et al. (2021) also tracked the temporal
landslide conditioning factors evolution associated with the
Wenchuan earthquake and concluded that the importance of
elevation, slope, aspect, lithology, and rainfall decreased
significantly, whereas the topographic position index (TPI) and
flow accumulation increased for a given temporal window
(2005–2011). In addition, Fan et al. (2021) demonstrated that
variables’ prediction capability declines over time, whereas the
importance of hydro-topographic parameters increases and
becomes predominant within a decade. For three cases, it is
consistent that the slope has a strong contribution to the non-
seismic landslide occurrence, and with the landscape evolution, the
importance decreases. However, the contributions of other
landslide conditioning factors through time conflict with our
findings, probably due to the different patterns of the geo-
environmental variables or the magnitude of the seismic intensity.

The factors’ relevance to the model and mean susceptibility
can also be observed in the bivariate relationship between mean
susceptibility and each covariate shown by smoothed scatter plots
for Mod1, Mod2, and Mod3 (see Figure 11). If a covariate played
a significant role in the model, its impact on ultimate
susceptibility should appear or be noticeable even when the
other additive components are taken into account. For
instance, when the mean elevation increases from the range of
2002–4865 m, the mean susceptibility in each slope unit decreases
on the whole in all three models, although the maximum
susceptibility corresponds to different elevation values (2500 m
for pre- and co-seismic model and 3000 m for the post-seismic
model) (see Figures 11a, A and A9). A positive contribution of
the mean of slope to the landslide susceptibility can be easily
interpreted for all models because the mean susceptibility
increases immediately with the increase in the mean of slope.
Also, compared with the co-seismic and post-seismic dataset, the
high value of mean susceptibility of the pre-seismic dataset was
distributed in a much more concentrated slope range (30°–40°)
for the pre-seismic dataset (Figures 11b, B and B9). It means the
mean of slope plays a dominant role in Mod1, and the relative
importance decreases with the drift of time in the study area. As
shown in Figures 11c, C and C9, the negative relationship

TABLE 4 | Mean susceptibility (MS) and its classification (the count of SUs in each class and their percentages), as well as 95% confidence interval, (CI) for each
susceptibility model.

ID MS 95%CI Landslide susceptibility zonation mapping ID covariate category

Very low Low Moderate High Very high

Mod1 0–0.88 0–0.741 1101 (89.22%) 99 (8.02%) 27 (2.19%) 6 (0.49%) 1 (0.08%)
Mod2 0–0.99 0–0.712 954 (77.31%) 95 (7.70%) 71 (5.75%) 53 (4.29%) 61 (4.94%)
Mod3 0–0.92 0–0.658 971 (78.69%) 126 (10.21%) 59 (4.78%) 57 (4.62%) 21 (1.70%)
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between theDis2roadsμ and mean susceptibility during the whole
period means the closer to the roadways, the higher the possibility
landslide occurs, especially for the range of 0–2000m in Mod1

and Mod2, but a much larger range of 0–8000 m in Mod3. For
Dis2faultsμ (Figures 11d, D and D9), the susceptibility shows a
similar decreasing trend with the increase in the distance as the

FIGURE 8 | (A–C)Mean susceptibility, (D–F) the uncertainty (95% confidence interval) maps, and (G–I) error plot of each multi-temporal landslide inventory-based
susceptibility model, corresponding to Mod1 (left), Mod2 (middle), and Mod3 (right panel).
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Dis2roadsμ. For the seismic factors (PGA (Figures 11e, E and E9)
and the distance to the causative fault (Figures 11f, F and F9)),
the roles in Mod2 and Mod3 are almost the same, showing the
long-term effect of ground motion and the closer to the epicenter
and seismogenic fault, the larger impact on the geo-environment.

Ultimately, our findings show that there are variations in both
landslide conditioning factors and susceptibility maps through
time. This result is also supported by Kincey et al. (2021), who
found significant changes in the characteristics and distributions of
co-seismic and monsoon-triggered landslides in Nepal from 2014

FIGURE 9 |Receiver operating characteristic (ROC) curves for (A) the actual calibration and 10-fold cross-validation associated AUC values distribution boxplot for
each model corresponding to (B) Mod1, (C) Mod2, and (D) Mod3, respectively. The gray dash line is the reference line (AUC = 0.5), which represents a purely
random guess.

FIGURE 10 | Importance order of each significant covariate obtained for each model based on the regression coefficient. (A) Mod1, (B) Mod2, and (C) Mod3.
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to 2018. Thus, as many as multi-temporal landslide inventories are
required to estimate the time-dependent effect on the landslide
susceptibility over a longer period or in response to several events.

Otherwise, it will be negatively biased (Samia et al., 2017). Notably,
our knowledge of the possible effects of the time-dependent
landslide occurrence on landslide susceptibility remains

FIGURE 11 | Two-dimensional (kernel density) smoothed scatter plots showing the bivariate relationship between the mean susceptibility and each covariate for
Mod1 (left panel), Mod2 (middle panel), and Mod3 (right panel).
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inadequate, posing a substantial source of uncertainty with
important implications for landslide susceptibility modeling.
The results can be the reference for the prediction of the
probability of potential landslides and geological environmental
protection in the world heritage Jiuzhaigou mountainous area.

CONCLUSION

Landslide susceptibility modeling over time scales for a single
trigger (e.g., earthquake and rainstorm) was relatively uncommon
in prior studies. In this study, we conducted a case study of multi-
temporal statistical landslide susceptibility modeling across the
pre-, co-, and post-seismic phases. Three landslide inventory
datasets, including 154 pre-seismic, 1022 co-seismic, and
364 post-seismic landslides, respectively, and spatio-temporal
variations of landslide spatial susceptibility and covariates’
effects were obtained. The slope unit-based binary logistic
regression (BLR) model shows a good predictive applicability
with outstanding performance for the Jiuzhaigou area. Moreover,
our results show that there are variations in both landslide
conditioning factors and susceptibility maps through time.
Furthermore, human activity and slope contribute most to the
pre-seismic landslide occurrence. Meanwhile, PGA dominates
the co-seismic landslide susceptibility pattern, and the distance to
the seismogenic fault and elevation show the most significant
degree of influence to the post-seismic slope instability. The
number of SUs with a mean probability over 0.8 from only
one (pre-seismic) increased to 21 (post-seismic). The spatial
and temporal dynamical changes of landslides highlight the
necessity to carry out continuous landslide monitoring and
analyses over a longer period or in response to extreme events
at a regional scale. It is worth mentioning that the findings could
be different in the other geo-environmental setting and seismic
magnitude conditions. Therefore, our conclusions still need to be

verified through more earthquake-induced landslide inventories
and areas in other contexts. Also, further understanding of the
post-seismic landslide changes for the Jiuzhaigou area could also
be made by a much more frequent or prolonged
observational time.
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