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Source inversion is an effective approach for estimating air pollutant source parameters
(e.g., source emission or source strength [Q0], source horizontal location [x0, y0], and
release height [z0]) in industrial activities or accidents. Air pollution events in the real world
generally correspond to complex application scenarios arising from unknown source
parameters (i.e., Q0, [Q0, z0], [Q0, x0, y0], and [Q0, x0, y0, z0]) and atmospheric dispersion
conditions. However, the source inversion characteristic law of these complex practical
scenarios and the interaction mechanism between source location prior information and
source strength inversion have not been revealed. In this study, the source inversion
performance (accuracy and robustness) under the aforementioned scenarios was
evaluated based on the Prairie Grass field experiments. Results indicated that the
estimation accuracy of source strength was worse with an increase in the number of
unknown source parameters with absolute relative deviations of 34.4, 46.0, 80.1, and
83.6% for a single parameter and double, triple, and quadruple parameters, respectively.
Source strength inversion performance was obviously affected by location parameters;
robustness was markedly reduced when source height was unknown, whereas accuracy
was obviously reduced when source horizontal locations were unknown. Impacts of
atmospheric conditions on different source parameters were distinct. Extreme
atmospheric conditions (stability A and F) can obviously reduce the estimation
accuracy of source strength for single and double parameter inversion scenarios,
whereas unstable conditions (stability A, B, and C) can reduce the estimation accuracy
of source strength for triple and quadruple parameter scenarios. Source inversion
accuracy and robustness were generally poor under extremely stable conditions. This
study can fill the knowledge gap in characteristic laws of source inversion under complex
application scenarios and the interaction relationship between different unknown source
parameters. The results of the influence law of location prior information on source strength
inversion have important guiding significance to further improve the inversion accuracy of
source strength in practical environmental managements.
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INTRODUCTION

As works promoting air pollution treatment and thereby ensuring
the safety of life and property are given importance, air pollution
events in small-scale regions triggered by conventional pollution
discharge or accidents have caught the attention of governments
and the public (Chen and Carter, 2020; Du et al., 2020; Lin et al.,
2021; Liu et al., 2020; Wang et al., 2021). Accurately estimating
unknown source emission information (or source parameters) is
essential for rapidly promoting the refined control of air pollution
or effective emergency response in sudden accidents (Mao et al.,
2021; Zhou et al., 2021). However, capturing source emission
information is difficult because pollutant emissions are generally
abnormal or furtive (Bildirici, 2017; Jeričević et al., 2019).

To solve this problem, optimization inversion technologies
have been proposed and proven promising for identifying
unknown source parameters (e.g., source emission rate or
source strength [Q0], source horizontal location [x0, y0], and
source release height [z0]) of air pollution (Gao et al., 2009; Stohl
et al., 2012; Wang et al., 2020; Zheng and Chen, 2010). The
technology determines the unknown source information by
solving an inversion model (or cost function) that minimizes
the gap between the observed and simulated concentrations (Ma
et al., 2018). The technical structure of the optimization source
inversion mainly consists of two parts: inversion models and
optimization algorithms. In the past decades, scholars have
conducted meaningful research on source inversion.
Algorithms such as gradient-based methods (e.g., least-squares;
Singh and Rani, 2014; Singh and Rani, 2015), direct search
methods (e.g., simulated annealing; Thomson et al., 2007),
genetic algorithms (Cantelli et al., 2015; Hamblin, 2013; Haupt
et al., 2006; Mao et al., 2020b), and hybrid algorithms (Cui et al.,
2019; Wang et al., 2020) have been proposed to estimate the
characteristics of source parameters. A few scholars have focused
on the forms of cost functions (Ma et al., 2017; Wang et al., 2018),
whereas Dong et al. (2020) found that the method involving the
sum of deviation squares exhibited relatively better source
inversion performance. However, the literature has mainly
focused on theoretical research at the technical level. Notably,
from the perspective of practical applications, optimization of
source inversion is also vulnerable to external environmental
factors (e.g., pollutant emission types and atmospheric dispersion
conditions), except the aforementioned technical factors.

In the real world, pollutant-release scenarios are complex,
and various types of pollutant emission events generally
generate different source parameter inversion scenarios.
For instance, conventional pollutants (e.g., volatile organic
compounds and nitrogen oxides [NOx]) can be discharged via
industrially organized or unorganized emissions, which
correspond to inversion scenarios where the source
location (e.g., horizontal location and release height) is
known and unknown, respectively (Amoatey et al., 2019;
Clappier and Thunis, 2020; Wang et al., 2019; Wei et al.,
2014). For sudden accidents, hazardous gas releases from
leakage accidents may occur near the surface or at a certain
height. The release height of hazardous gas from fire accidents
is generally difficult to determine because of the thermal lift

(Koutsomarkos et al., 2021; Lei et al., 2021); however, the
horizontal source location information might be known.
These pollutant release types correspond to the different
source inversion scenarios due to the difference in prior
source location information available for different pollution
event types. Meanwhile, Cervone and Franzese (2011), Cui
et al. (2019), and Cantelli et al. (2015) found that, in the real
world, optimization of source inversion is also affected by
atmospheric dispersion conditions by influencing the
simulation performance of forward dispersion models or
the number of effective monitoring sensors utilized for
source inversion. However, they only focused on the single
inversion scenario where the source location is unknown (i.e,
unknown source parameters are [Q0, x0, y0, and z0]) under
different atmospheric conditions. The inversion characteristic
law under other different complex practical application
scenarios arising from unknown source parameters
(i.e., Q0, [Q0, z0], and [Q0, x0, and y0]), atmospheric
dispersion conditions, and the possible interaction
mechanism between source location prior information and
source strength inversion have not been revealed. This limits
our understanding of the source inversion problem.

Consequently, the aim of this study was to comprehensively
investigate the optimization of source inversion performance
under multiple specific application scenarios. In an effort to
reflect reality, 68 experiments from the Parris Grass field
experiment dataset were used as the basic data (Barad, 1958).
Four inversion models corresponding to four source inversion
scenarios were established based on a relationship analysis
between unknown source parameters and real air pollution
events. Next, the source strength estimation performance
(i.e., accuracy and robustness) under the four inversion
scenarios was evaluated under different atmospheric dispersion
conditions (i.e., Pasquill stability classes A, B, C, D, E, and F). The
relationship between the performance of the source strength
estimation and unknown source location parameters was
revealed. Furthermore, the estimation performances of
different location parameters were evaluated under different
atmospheric conditions, and those of the same parameter
under different application scenarios were compared. The
results of this study can deepen the understanding of the
impacts of external environmental factors on source inversion
and provide a valuable reference for objectively evaluating and
utilizing the source inversion results in practice.

METHODS

As mentioned in the introduction section, the core idea of the
source inversion technology is determining the unknown source
information by solving an inversion model that minimizes the
gap between the observed and simulated concentrations
(Figure 1). Thus, combined with this concept, the
methodology section was divided into four sub-sections:
forward dispersion model, source inversion model, basic field
experimental data, and inversion performance evaluation
method.
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Forward Dispersion Model
A dispersion model with high efficiency and relatively high
accuracy is generally required to conduct source inversion in
small-scale regions in practice. From the viewpoint of practical
applications (source term estimations and prediction
concentrations) (MEPPRC, 2004; Senocak et al., 2008; Lushi
and Stockie, 2011; Stockie, 2011; Ma et al., 2017; Ma et al.,
2018), the Gaussian plume model was adopted in this study.
According to the dispersion theory of the Gaussian model
(Pasquill and Smith, 1983), the simulation concentration at
any point in the downwind direction can be expressed as follows:

C(x, y, z) � Q0

2 · π · u · σy(x−x0) · σz(x−x0)
exp⎛⎝ − (y − y0)2

2 · σ2y(x−x0)
⎞⎠p

⎡⎢⎢⎣exp⎛⎝ − (z − z0)2
2 · σ2z(x−x0)

⎞⎠ + exp⎛⎝ − (z + z0)2
2 · σ2z(x−x0)

⎞⎠⎤⎥⎥⎦
, (1)

where C(x,y,z) is the pollutant concentration (g/m3) at the
monitoring site (x,y,z) (m); Q0, y0, and z0 represent the pollutant
emission rate parameter (g/s), horizontal crosswind location
parameter (m), and the release height parameter (m); u is the
near-surface average wind speed (m/s); σy and σz represent the
dispersion parameters in the horizontal and vertical directions,
respectively, which are the functions of downwind distance
(x-x0). The BRRIGS scheme (Briggs, 1973) was used to calculate
the dispersion parameters. See Table 1 for further details.

Source Inversion Model
The widely used form of the sum of deviation squares (Zheng and
Chen, 2010; Ma et al., 2018; Dong et al., 2020) was also used to

construct the inversionmodels in this study, which is expressed as
follows:

min f � ∑n
n�1

(cobs,i − csim,i)2. (2)

In Eq 2, cobs,i and csim,i are the monitoring concentration and
simulated concentration, respectively, of the sampling site i; and
N is the number of sampling sites in the downwind.

As described in the introduction section, different pollutant
release types may correspond to different prior source location
information available. According to the difference in location
prior information, the source emission estimation of hazardous
pollutants can be divided into two main cases: the known release
source location (i.e., only source strength is unknown) and the
unknown release source location (i.e., source strength and
certain location parameters are unknown). In the case of an
unknown release source location, it can be further divided into
1) only the release height is unknown (e.g., emissions from fires
or certain industrial smokestacks), 2) only the horizontal
location is unknown (e.g., emissions from near-ground
source leakages), and 3) horizontal location and height are
both unknown (e.g., emissions from near-ground or elevated
source leakages). Thus, four source emission estimation
scenarios were determined based on the aforementioned
analysis, and four corresponding source emission inversion
models were built by combining Eqs. 1, 2. The expressions
under four source estimation scenarios are as follows:

Scenario 1. Only estimating source strength (single parameter
estimation).

FIGURE 1 | Concept diagram of source inversion.

TABLE 1 | Dispersion parameter schemes established by BRRIGS.

Atmospheric conditions (Pasquill standard) σy(m) σz(m)

A (extremely unstable) 0.22·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.20·(x-x0)
B (stable) 0.16·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.12·(x-x0)
C (slightly stable) 0.11·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.08·(x-x0)·(1 + 0.0002·(x-x0))−0.5
D (neutral) 0.08·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.06 (x-x0)·(1 + 0.0015·(x-x0))−0.5
E (stable) 0.06·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.03 (x-x0)·(1 + 0.0003·(x-x0))−1
F (extremely stable) 0.04·(x-x0)·(1 + 0.0001·(x-x0))−0.5 0.016 (x-x0)·(1 + 0.0003·(x-x0))−1

Note: x0 represents the horizontal downwind location parameter of the gas release source.
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min f � ∑n
n�1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cobs,i − Q′0
2·π·u·σy(xi−x0)·σz(x−x0)

exp⎛⎝ − (y−y0)2
2·σ2y(xi−x0)

⎞⎠p

⎡⎢⎢⎣exp⎛⎝ − (zi−z0)2
2·σ2z(xi−x0)

⎞⎠ + exp⎛⎝ − (zi+z0)2
2·σ2z(xi−x0)

⎞⎠⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

2

, (3)

where Q0
′ is the unknown source parameter (i.e., the source

strength) to be estimated.

Scenario 2. Estimating both source strength and release height
(double parameter estimation).

min f � ∑n
n�1

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

cobs,i − Q′0
2·π·u·σy(xi−x0)·σz(x−x0)

exp⎛⎝ − (y−y0)2
2·σ2y(xi−x0)

⎞⎠p

⎡⎢⎢⎣exp⎛⎝ − (zi−z′0)2
2·σ2z(xi−x0)

⎞⎠ + exp⎛⎝ − (zi+z′0)2
2·σ2z(xi−x0)

⎞⎠⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

2

, (4)

where Q0
′ and z0′ are the unknown source parameters (i.e., source

strength and release height) to be estimated.

Scenario 3. Estimating both source strength and horizontal
location (triple parameter estimation).

min f � ∑n
n�1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cobs,i − Q′0
2·π·u·σyxi−x′0 ·σz(x−x′0)

exp⎛⎜⎜⎜⎜⎝ − (y−y0′)2
2·σ2y(xi−x0′)

⎞⎟⎟⎟⎟⎠p

⎡⎢⎢⎣exp⎛⎝ − (zi−z0)2
2·σ2z(xi−x′0)

⎞⎠ + exp⎛⎝ − (zi+z0)2
2·σ2z(xi−x′0)

⎞⎠⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

2

, (5)

where Q0
′, x0′, and y0′ are the unknown source parameters

(i.e., source strength, horizontal downwind location parameter,
and horizontal crosswind location parameter, respectively) to be
estimated.

Scenario 4. Estimating source strength, horizontal location, and
release height (quadruple parameter estimation).

min f � ∑n
n�1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

cobs,i − Q′0
2·π·u·σy(xi−x′0)·σz(x−x0′)

exp⎛⎜⎜⎜⎜⎝ − (y−y0′)2
2·σ2y(xi−x0′)

⎞⎟⎟⎟⎟⎠p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣exp⎛⎜⎜⎜⎜⎝ − (zi−z0′)2
2·σ2z(xi−x0′)

⎞⎟⎟⎟⎟⎠ + exp⎛⎜⎜⎜⎜⎝ − (zi+z0′)2
2·σ2z(xi−x0′)

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

2

,

(6)
where Q0

′, x0′, y0′, and z0′ are the unknown source parameters
(i.e., source strength, horizontal downwind location parameter,
horizontal crosswind location parameter, and release height
parameter, respectively) to be estimated.

The aforementioned equations indicate that source inversion
is an ill-posed and nonlinear optimization problem; however, the
degrees of nonlinearity vary with specific unknown parameters.
The genetic algorithm (GA) was selected as the optimization
method of source inversion in this study owing to its excellent

capability in global searching and robustness (Haupt, 2005;
Haupt et al., 2006; Long et al., 2010). It mainly includes the
process of individual evaluation iteration, selection, crossover and
mutation, and finally produces a best solution through the
continuous iterative evolution of population. The mutation
(0.2) and crossover rates (0.5) in the GA were chosen based
on previous studies (Haupt, 2005). The average change in the
fitness function value less than the threshold value (10–6) was set
as the algorithm convergence termination criterion of the search
process. One hundred independent calculations were performed
for each experiment in order to reduce the influence of
randomness on inversion results. Figure 2 shows the flowchart
of performance evaluation of source inversion in this study.

Field Experimental Data
Prairie Grass field experiments were conducted over a broad flat
grassland in O’Neill, Nebraska, in 1956 (Barad, 1958). The overall
roughness of the experimental site was approximately 6 cm. In
total, 68 release experiments of SO2 were performed, and each
experiment lasted for 10 min (Table 2). SO2 gas was continuously
released as a point source at 0.46 or 1.5 m (the last six trials,
i.e., numbers R63 to R68). The downwind sample collection
adopted a semicircular arrangement of points and the base

FIGURE 2 | Flowchart of performance evaluation of source inversion.
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line of the horizontal sampling network was oriented along a true
east–west line to take advantage of the prevailing southerly winds.
Five arcs at distances of 50, 100, 200, 400, and 800 m from the
release source were set as sampling arcs, and approximately 600
sensors were scattered along the sampling arcs to monitor
downwind concentrations with a sampling height of 1.5 m.
The coverage area of each sampling layer was 180°; the first
four layers of sampling points were arranged at intervals of 1°, and
the fifth layer was arranged at intervals of 2°. Wind speeds and
wind direction at the height of 2 m above the ground were
measured during the experiments by the cup anemometers
and the means of airfoil-type vanes, respectively. Cervone and
Franzese (2011) divided the dataset into six subset data of
different atmospheric conditions based on the Pasquill
atmospheric stability classification standard. The number of
field experiments under Pasquill atmospheric stability classes
A (extremely unstable), B (unstable), C (slightly unstable), D
(neutral), E (stable), and F (extremely stable) were 5, 5, 10, 31, 5,
and 12, respectively. To reflect the effects of atmospheric
conditions in the real world, all valid detection concentrations
above the sensor detection limit were used for each experiment.

Inversion Performance Evaluation Method
The absolute value of the relative deviation (ARD) of the source
strength and the absolute value of deviation (AD) of the source
location parameters were introduced to characterize the accuracy
of the source inversion.

ARD � ∣∣∣∣(EQ,J − RQ,J)∣∣∣∣/RQ,J, (7)
AD � ∣∣∣∣EL,J − RL,J

∣∣∣∣, (8)
where E represents the inversion value, R represents the real
value, Q is the source strength, J represents the serial number of
the test experiment, and L represents the source location
parameter (x0, y0, and z0).

The coefficient of variation (CV) was used to evaluate the
robustness of the source inversion. The formula is as follows:

CV � μ(Q,L)/m(Q,L), (9)
where μ represents the standard deviation of the inversion results
(estimation values of source strength or source location) and m
represents the mean value of the inversion results.

In this study, ARDs of the inversion results for 100
independent calculations for each field experiment were
calculated first, then mean of 100 ARDs was taken as the

result of each field experiment, and mean ARD of all field
experiments for each atmospheric stability class was taken as
the final result of each atmospheric stability class. The CV of each
field experiment was calculated first based on the inversion results
of 100 independent calculations, and the mean CV of all field
experiments for each atmospheric stability class was taken as the
final result of each atmospheric stability class.

RESULTS

Source Strength Estimation Under Multiple
Scenarios
Figure 3 shows the change progress of the best fitness value with
evolutionary generations for GA optimization under different
inversion scenarios. From the figure, as evolution progressed, the
fitness value gradually declined. The process for searching source
parameters under each inversion scenario stopped when the
fitness value was less than the threshold value (i.e., 10–6). This
indicates that the genetic algorithm can be successfully converged
and efficiently applied to source parameter inversion.

Figure 4 shows the estimation accuracy and robustness of the
source strength estimation under different inversion scenarios.
Figures 4A,B show results for the single parameter and double
parameter inversion. The atmospheric conditions had a similar
effect on source strength inversion between the two inversion
scenarios. Specifically, regarding the inversion accuracy, the
comparable interquartile ranges, numerical distribution
intervals of deviation data, mean values, and median values
for these two scenarios under nearly all stability classes (except
the stability class F) revealed that the impact of the pollutant
release height parameter on the inversion accuracy of source
strength was limited. The numerical distribution intervals of the
deviations in the box under atmospheric stability classes A
(extremely unstable condition) and F (extremely stable
condition) were obviously higher than those under the other
stability classes. These findings indicated that most experiments
under stability classes A and F had large estimation deviations in
source inversion. Notably, for the stability class A, the minimum
and mean values of ARD under single (71.1 and 130.1%) and
double (72.5 and 129.6%) parameter inversion were obviously
larger than those of other stability classes. These aforementioned
findings demonstrated that the inversion accuracy of source
strength under extreme atmospheric conditions performed
worse than the other conditions, wherein the inversion

TABLE 2 | Information of field experiments under different atmospheric conditions.

Atmospheric stability class Serial number of the experiments

A (extremely unstable) R15, R16, R25, R47, and R52.
B (unstable) R1, R2, R7, R10, and R48S.
C (slightly unstable) R5, R8, R9, R19, R27, R43, R44, R49, R50, and R62.
D (neutral) R6, R11, R12, R17, R20, R21, R22, R23, R24, R29, R30, R31, R33, R34, R35S, R37, R38, R42, R45, R46, R48, R51, R54,

R55S, R56, R57, R60, R61, R65, and R67.
E (stable) R18, R28, R41, R66, and R68.
F (extremely stable) R3, R4, R13, R14, R32, R35, R36, R39, R40, R53, R58, and R59.
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accuracy was the worst under extremely unstable atmospheric
conditions. The worst inversion accuracy under extremely
unstable atmospheric conditions might be the main reason for
the significant decline in the simulation performance of the
forward model for stability class A (Mao et al., 2020a).
However, for the obviously large estimation deviations under
extremely stable conditions, the reasons might have been mainly
caused by the combined action of the poor simulation

performance of the forward model (Mao et al., 2020a) and the
fewer number of sensors with effective ground measurements
owing to a smaller dispersion footprint (Cervone and Franzese,
2011; Cantelli et al., 2015). The aforementioned analysis indicated
that the dominant factors that obviously reduced the inversion
accuracy in two extreme atmospheric conditions were completely
different. Additionally, there were obviously larger interquartile
ranges of deviations under the atmospheric stability classes A

FIGURE 3 |Change progress of best fitness value with evolutionary generations for GA optimization under different inversion scenarios: Scenario 1: only estimating
source strength (Q0); (b) Scenario 2: estimating source strength (Q0) and release height (z0); Scenario 3: estimating both source strength (Q0) and horizontal location (x0,
y0); Scenario 4: estimating source strength (Q0), horizontal location (x0, y0), and release height (z0).

FIGURE 4 | Boxplots of the inversion accuracy index (ARD) and line charts of the inversion robustness index (CV) for source strength (Q0) estimation under different
application scenarios: (A) Scenario 1: only estimating source strength (Q0), and (B) Scenario 2: estimating source strength (Q0) and release height (z0).
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(68.7 and 68.6% for single and double parameter inversion,
respectively) and F (48.8 and 52.0% for single and double
parameter inversion, respectively). This indicated that data in
the box fluctuated greatly, representing a large difference in the
inversion accuracy of different experiments under both stability
classes. The reasons for large individual differences among these
experiments in the inversion accuracy may also be attributed to
the aforementioned factors. Conversely, the estimation accuracy
of source inversion performed well under the stability classes B, C,
D, and E because of small interquartile ranges and low numerical
distribution intervals of inversion deviations, where the number
of tested experiments with ARD less than 50.0% accounted for
more than 75% in each stability class.

For robustness, CVs in all stability classes for single parameter
inversion (<0.001) and double parameter inversion (<0.4) were
both at a relatively low level. This suggested that the atmospheric
conditions had only a limited impact on inversion robustness.
There were slightly higher values of CVs under the atmospheric
stability class F than under other stability classes. It indicated that
the inversion robustness performed relatively worse under
extremely stable atmospheric conditions. However, comparing
the results of Figures 4A,B, the CV of the double parameter
inversion was obviously higher than that of the single parameter
inversion by more than an order of magnitude in each stability
class. This phenomenon indicated that the inversion robustness
of the source strength largely declined as the unknown parameter
was added to the source height. Figures 5A,B show the results
under inversion scenarios of triple and quadruple parameters.
These figures reveal that the variation characteristics of the
parameter inversion performance under atmospheric
conditions under these two scenarios were also similar.
Regarding accuracy, similar to single and double parameter
scenarios, the comparable interquartile ranges, numerical
distribution intervals of deviation data, mean values, and
median values for these two scenarios under each stability
class revealed that the vertical release height parameter had
little influence on the inversion accuracy of source strength.
The numerical distribution intervals of the deviation data in

the box under unstable atmospheric conditions (stability classes
A, B, and C) were obviously higher than those in the box under
neutral (stability class D) and stable conditions (stability classes E
and F), with most ARDs larger than 50.0%. However, the
interquartile ranges (202.8 and 203.2% for triple and
quadruple parameter inversion, respectively), and minimum
values of ARD (225.2 and 225.0% triple and quadruple
parameter inversion, respectively) under the stability class B
were much larger than those of the other two unstable
stability classes. This finding suggests that the inversion
accuracy for unstable atmospheric conditions was obviously
worse than that for extremely unstable and slightly unstable
dispersion conditions. However, what seems to be
contradictory is that the inversion accuracy under unstable
conditions (stability class B) was obviously worse than that
under extremely unstable conditions (stability class A). This
phenomenon was also found by Cui et al. (2019) where the
source inversion performance was evaluated under different
stability classes based on another optimization algorithm
(PSO-NM). Cervone and Franzese et al. (2011) summarized
the calculated error between the simulated and observed
concentrations under all the 68 Prairie Grass field experiments
and found that four out of the five experiments had a remarkably
larger margin of errors between the simulated and observed
concentrations under the stability class B. Meanwhile, Cantelli
et al. (2015) investigated the relationship between the averaged
wind direction standard deviation and distance errors of source
location inversion and found that the worst inversion
performance of source location was associated with high
values of the measured averaged wind direction standard
deviation. It is worthy to note that this phenomenon had no
relation with single and double parameter scenarios. This might
be related to the fact that the horizontal location parameter
increased the complexity of solving nonlinear problems. Thus,
in summary, the large uncertainty of inversion results under
unstable conditions may be attributed to two factors including the
large simulation error of the forward model due to insufficient
description for the turbulent characteristics of the dynamic wind

FIGURE 5 | Boxplots of the inversion accuracy index (ARD) and line charts of the inversion robustness index (CV) for source strength (Q0) estimation under different
application scenarios: (A) Scenario 3: estimating both source strength (Q0) and horizontal location (x0, y0), and (B) Scenario 4: estimating source strength (Q0), horizontal
location (x0, y0), and release height (z0).
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field by the model itself and the nonlinear degree variation with
the addition of unknown horizontal location parameters. On the
whole, from unstable to slightly stable atmospheric conditions
(i.e., stability classes A–E), the inversion accuracy generally
tended to increase because the interquartile ranges, mean
values, and median values all showed a decreasing tendency.
This finding indicates that the inversion accuracy gradually
improved with the stabilization of atmospheric conditions.
However, large interquartile ranges and the mean value of
ARD occurred when the atmospheric dispersion condition
developed to an extremely stable state (i.e., the stability class
F). This finding indicated that the extremely stable condition
increased the uncertainty of the inversion deviations of the source
strength. Our results of atmospheric condition influence based on
the classical GA method are basically consistent with those based
on improved algorithms (PSO-NM, Cui et al., 2019; non-
Darwinian evolutionary algorithm, Cervone and Farnese,
2011) when applied to the same Prairie Grass experiments and
under the same inversion scenarios. However, different
conclusions stating that the inversion accuracy under the A
and B classes performed relatively well were drawn by Catelli
et al. (2015). This is mainly caused by the difference in evaluation
methods of inversion results. In the study by Cantelli et al., the
inversion performance was evaluated by comparing the number
of experiments in which the inversion deviation exceeded a
certain value under different stability degrees, whereas the
inversion performance was evaluated by calculating the mean
value of the inversion deviation of all experiments in the present
and previous studies (i.e., Cui et al., 2019; Cervone and Franzese,
2011).

Comparing the different scenarios, the mean ARDs of 68
experiments were 34.4, 46.0, 80.1, and 83.6% for single parameter,
double parameters, triple parameters, and quadruple parameters,
respectively. This indicated that the estimation accuracy of source
strength gradually worsened with an increase in the number of
unknown source parameters. Additionally, by comparing the
scenarios of single and double parameters and the scenarios of
triple and quadruple parameters, it was obviously found that
source release height had a minimal effect on the estimation
accuracy; whereas, by comparing the scenarios of single and triple
parameters and the scenarios of double and quadruple
parameters, it was obviously found that source horizontal
location largely affected the estimation accuracy. This
indicated that the unknown source horizontal location
parameters were important factors influencing the accuracy of
source strength inversion and source release height only had
limited influence.

For robustness, there were obviously higher values of CVs
under the atmospheric stability class F (0.02 and 0.61 for the triple
and quadruple parameter inversions, respectively) than those of
other stability classes. This phenomenon is similar to the single
and double parameter inversions. The robustness performed
worse in the case of quadruple parameter inversion than in
the case of triple parameter inversion under each stability class
because the CVs were obviously larger (0.037, 0.028, 0,03, 0.124,
0.385, and 0.613 for the stability classes A, B, C, D, E, and F,
respectively) when four parameters were both estimated. Notably,

a remarkable picture occurred when we compared the robustness
of the source strength estimation under all scenarios: CVs had
more than one order of magnitude and were smaller under triple
parameter inversion than under double and quadruple parameter
inversion in all atmospheric conditions except for the stability
classes A and B; and although the CVs of quadruple parameter
inversion were generally higher than those of double parameter
inversion, they were of the same order of magnitude as those of
double parameter inversion. These findings indicated that the
inversion robustness did not necessarily deteriorate as expected
with an increase in the number of unknown parameters, whereas,
it was obviously affected by the type of the unknown source
location parameter. In other words, the inversion robustness was
more susceptible to source release height parameter in the source
strength estimation and relatively insensitive to horizontal
positional parameters.

Source Location Estimation Under Multiple
Scenarios
Accurately locating pollutant sources is also important in some
scenarios, especially in the case of toxic gas release caused by an
accidental leak or terrorist acts (Ma et al., 2018). Figure 6 shows
the estimation deviations and CV for source location parameters
(i.e., x0, y0, z0) estimation under different inversion scenarios.
Figure 6A shows the results of the inversion performance
indicators of horizontal location x0 under triple and quadruple
parameter inversion. Regarding accuracy, the variation
characteristics of inversion deviations under the effects of
atmospheric conditions were similar for these two inversion
scenarios. The magnitude of the deviation values was very
close under each stability class (A, B, C, D, E, and F) for triple
parameter inversion (14.6, 74.2, 21.5, 27.4, 20.4, and 94.7 m) and
quadruple parameter inversion (14.7, 73.9, 19.0, 27.6, 23.3 and
99.4 m). Obviously, the estimation accuracy of location x0
changed little with the addition of release height parameters.
This indicated that the inversion accuracy of location x0 was
insensitive to the source release height. The higher numerical
distribution intervals of the deviation data, larger mean values,
and median values for the stability classes B and F than for other
stability classes suggested that the inversion accuracy was
obviously worse in unstable and extremely stable atmospheric
conditions. The relatively larger interquartile ranges for the
stability classes B and F indicated that there were larger
fluctuations of inversion deviation for different experiments.
These findings for location x0 were similar to source strength
Q0. The inversion accuracy performed relatively well with low
numerical distribution intervals (most ADs <50.0 m) for stability
classes A, C, D, and E. For robustness, all CVs were at a low level,
with values less than 0.1. This finding indicated that the inversion
robustness performed well in estimating the location x0.
However, there were large differences in the robustness. The
CV of each stability class (A, B, C, D, E, and F) was obviously
higher for quadruple parameter inversion (0.102, 0.021, 0.045,
0.093, 0.061, and 0.137) than that of triple parameter inversion
(0.060, 0.005, 0.020, 0.080. 0.014, and 0.020). This finding
indicated that the inversion robustness of location parameter
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FIGURE 6 | Boxplots of the inversion accuracy index (AD) and line charts of the inversion robustness index (CV) for source location (i.e., x0, y0, and z0) estimation.
(A) Comparison of inversion performance indicators of the horizontal location parameter x0, (B) comparison of inversion performance indicators of the horizontal location
parameter y0, and (C) comparison of inversion performance indicators of the vertical height parameter z0.
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x0 was obviously affected by the unknown source height
parameter. Figure 6B shows the comparison results of the
inversion performance indicators of the horizontal location y0.
Overall, the variation characteristics of the inversion accuracy
with atmospheric conditions were consistent for the two
inversion scenarios. Interquartile ranges and minimum values
of inversion deviations were comparable for the triple and
quadruple parameter inversion scenarios. Compared with
parameter x0, inversion deviations were obviously reduced,
with deviations less than 10.0 m in most experiments. For
robustness, the largest CVs for triple parameter inversion and
quadruple parameter inversion were obtained in stability classes
C (0.11) and B (0.40), respectively. Overall, CVs of the triple
parameter inversion were slightly lower than those of the
quadruple parameter inversion in most atmospheric
conditions. Figure 6C shows the comparison results of the
inversion performance indicators of the source release height
z0. There were only slight differences between the double
parameter inversion and quadruple parameter inversion
scenarios in accuracy under each atmospheric stability class,
and the deviations under the two inversion scenarios were
very low (< 4.0 m). Regarding robustness, similar decline
characteristics of the robustness with the atmospheric
condition variation occurred, and the highest CVs (0.69 and
0.59 for triple and quadruple parameter inversions, respectively)
occurred under extreme conditions (stability class F).

DISCUSSION

The practical application and popularization of optimized source
inversion technology must overcome substantial challenges
because complex, real air pollution accident scenes generally
correspond to different source inversion scenarios. This study
investigated the performance variation law of optimization
source inversion in small-scale regions (<1 km) under multiple
scenarios involving different atmospheric conditions (stability
class A–F) and unknown source parameters (source strength and
location) and further explored the influencing mechanism of
different location parameters on the estimation performance of
source strength. The results showed that atmospheric conditions
had different impacts on the source strength inversion under
different parameter inversion scenarios. Extreme atmospheric
conditions (stability classes A and F) can obviously reduce the
estimation accuracy of source strength for single and double
parameter inversion scenarios. However, the dominant factors
that reduced the inversion accuracy in two extreme atmospheric
conditions were completely different. Thereinto, the poor
inversion accuracy under stability class A may mainly be
attributed to poor model simulations. However, the poor
performance under the stability class F was caused by the
combined actions of the poor model simulations and the fewer
available sensors. However, for triple and quadruple parameter
scenarios, the estimation accuracy of the source strength was
worse under unstable atmospheric conditions (stability classes A,
B, and C) than that under other atmospheric conditions.
Thereinto, a contradiction occurred stating that the inversion

accuracy under unstable conditions (stability class B) was worse
than that under extremely unstable conditions. This large
uncertainty of inversion results may be attributed to the
combined effects of the increase in the complexity of
nonlinearity problem with the addition of horizontal location
parameters and poor model simulation performance caused by
the insufficient description for the dynamic wind field.
Relationship analysis between estimation performance of
source strength and source location revealed that source
strength inversion performance was affected by location
parameters; robustness was markedly reduced when source
height was unknown, whereas accuracy was obviously reduced
when source horizontal location parameters were unknown.

These new findings in this article can fill the knowledge gap in
the characteristic laws of optimized source inversion technology
under complex application scenarios and the interaction
relationship between different unknown source parameters.
The results of the influence mechanism of source location
prior information on source strength have important guiding
significance to further improving the inversion accuracy of source
strength in practical environmental management. Additionally,
this study quantified the uncertainty of the inversion results
under multiple specific scenarios based on sufficient
experimental data. This can provide a reference for pollutant
emission estimation in small-scale flat terrains (e.g., small-scale
industrial parks distributed in flat rural or suburban areas) in real
applications. However, the limitations of this study should be
investigated in further research. For example, the number of
experiments used in some atmospheric stability classes
(i.e., stability A, B, and E) was small. This may have caused
uncertainties in the results. For a limited number of searching
problems (less than four variables) in this study, the GA may not
be the optimal method in searching solutions when the factors
such as solving efficiency, absolute accuracy, and so on were
considered. Thus, a more appropriate optimization method
should be selected according to the requirements in actual
research studies or real-world applications. Furthermore, the
conclusions may provide a limited application reference in
practice for more complex scenarios (e.g., urban and long-
range scale) because the basic dataset used is from a flat
grassland terrain on a small scale, and the dispersion model is
a relatively simple Gaussianmodel where the pollution dispersion
process under complex terrains cannot be well described.
Additionally, this study did not focus on the secondary
chemical transformation of pollutants; therefore, the study
results may not be successfully applied to secondary pollutants.

CONCLUSION

This study investigated the estimation performance of source
optimization inversion under multiple application scenarios
involving different atmospheric dispersion conditions and
inversion parameters. Four source inversion models were
constructed based on typical application scenarios of source
estimation. The genetic algorithm was selected as the
optimization inversion method, and the Prairie Grass dataset,
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including 68 experiments, was selected as the basic data to evaluate
the estimation performance. The results showed that the
atmospheric conditions obviously affected the source strength
inversion performance. The atmospheric conditions had similar
effect characteristics on the source strength inversion for the
single and double parameter inversion scenarios. The source
inversion performed poorly with regard to the estimation
accuracy of source strength under extremely unstable (stability
class A) and stable (stability class F) atmospheric conditions.
However, the robustness of source strength estimation was
obviously poor under only extremely unstable atmospheric
conditions (stability class F). For the triple and quadruple
parameter inversion scenarios, similar performances were also
shown; that is, the inversion accuracy of the source strength was
worse under unstable atmospheric conditions (stability classes A, B,
and C) than under other atmospheric conditions. As for robustness,
similar to the single and double parameter inversions, there were
obviously high values of the CV under the atmospheric stability class
F. Comparative results of the four inversion scenarios indicated that
the estimation accuracy of source strength declined with an increase
in the number of unknown source parameters. The estimation
accuracy of the source strength obviously declined when the
horizontal location parameters were unknown, and the
estimation robustness of the source strength greatly declined
when the source height parameter was unknown. The results of
location parameter inversion showed that, for parameter x0, the
variation characteristics of inversion accuracy under different
atmospheric conditions were essentially consistent for the two
scenarios. The robustness of source inversion is vulnerable to the
unknown source height parameter, whereas the inversion accuracy is
not sensitive to the unknown source height. There were obviously
smaller estimation deviation distribution ranges for the parameters
y0 and z0 than for the parameter x0. Furthermore, there was a little
difference in the accuracy of the two parameters y0 and z0 under
different inversion scenarios. Regarding robustness, related to the
parameter y0, the performance was relatively worse owing to the
addition of an unknown source height parameter. Regarding the
parameter z0, similar decline characteristics of robustness
occurred with variations in atmospheric conditions; the

highest CVs occurred under extreme conditions (stability
class F). This study can deepen the understanding of the
impacts of external environmental factors on source
inversion and provide a reference for pollutant emission
estimation and location tracking of air pollution events in
small-scale flat terrains in practice.
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