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As the consumption of Chinese medicine resources increases, the waste of traditional
Chinese medicine extraction cannot be disposed of reasonably, which has a serious
impact on the environment. Dissolved organic matter (DOM), a crucial fraction in herbal
extraction residue, can bond to heavy metals (HMs), creating a potential environmental
risk. This study investigated the binding property of herbal extraction residue DOM with
Cu(II) via two-dimensional Fourier transform infrared (FTIR) and synchronous fluorescence
correlation spectroscopy (2D-COS) in conjunction with parallel factor (PARAFAC)
modeling. Through PARAFAC analysis, three kinds of protein components and one
kind of fulvic acid can be obtained, and protein-like substances are dominant in the
residual DOM of Chinese medicine extracts, becoming the main factor of water quality
deterioration. A fluorescence quenching experiment shows that protein-like materials
provide the primary binding sites with Cu(II). During the detection, the long-wavelength
low-intensity signal will be obscured. The 2D-COS obtained by the 1/9th power
transformation can enhance the fluorescence signal so as to get even more
information about the binding sites and heterogeneity of DOM and heavy metal ion
ligands. The N−H of amine in the protein-like materials could prioritize combining with
Cu(II). This study urges that continuous and effective attention be paid to the impact of the
herbal extraction residue on the geochemical behavior of HMs.
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INTRODUCTION

Chinese herbal medicine is considered one of the traditional industries in China. With the rapid
development of this industry, the output of herbal extraction residues from the major Chinese
medicine pharmaceutical factories increases year by year (Yue et al., 2017; Zhang et al., 2019; Zhang
et al., 2021). Herbal extraction residues are rich in cellulose, organic carbon, nitrogen, phosphorus,
and other soil nutrients (Wang et al., 2010; Zhou et al., 2018; Ma H et al., 2019); they are a typical
biological resource with high utilization value (Huang et al., 2021). The early types of herbal
extraction residue treatment included mainly landfill, incineration, and fixed-area
stacking—treatments that have not only negatively affected the economy but also caused
resource wastage and ecological problems (Ma J et al., 2019; Zhang et al., 2019).
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Herbal extraction residues generally have a high moisture
content, making them extremely prone to corruption, and
consequently, casual discharge of the residue negatively affects
the water and soil quality that brings great challenges to the
management and resource utilization of herbal extraction
residues. Especially in rural areas, weak environmental
awareness and lack of environmental infrastructure increase
the environmental risks associated with the haphazard
stacking and discarding of herbal extraction residues.
Dissolved organic matter (DOM) constitutes a significant
fraction of herbal extraction residues that can be extracted by
water (Gryboset al., 2009). DOM contains abundant active
functional groups, including amino, methylene, amide,
phenolic hydroxyl, and other functionalities, as an important
natural ligand and sorption carrier in the environment, and it is a
very active chemical substance, which affects its environmental
behavior by linking and interacting with minerals and organic
matter (Li et al., 2017; Wei et al., 2019). At the same time, DOM
includes humic-, fulvic-, and protein-like elements. Protein-like
substances exhibit strong complexation ability with cadmium and
even more with copper (Yuan et al., 2015). The complexation of
fulvic- and humic-like components with Fe(III), Cu(II), and
Cr(III) can also enhance the migration ability of these metal
ions (Guoet al., 2020). Thus, deep understanding of the binding
characteristics of heavy metals (HMs) with DOM derived from
herbal extraction residues is of scientific importance and should
be studied (Uchimiyaet al., 2010).

It is well known that spectral techniques present the
advantages of rapid and convenient analysis, simple sample
pretreatment, and low cost and are regarded as the primary
characterization techniques for studying the properties of
DOM components, functional groups, chemical bonds, and
molecular space configuration (Birdwell and Engel, 2010; Li
et al., 2018). For example, the excitation–emission matrix
(EEM) technique can directly reflect the intensity of
fluorescence peaks and is a quick but sensitive method for
exploring the composition of DOM without damaging the
sample (Chai et al., 2019). EEM combined with parallel factor
(PARAFAC) analysis can be applied to analyze different types of
DOM corresponding to independent characteristic fluorescence
components, since it can solve some problems of the overlapping
peak to a certain extent (Yamashita and Jaffé, 2008). Moreover,
two-dimensional correlation spectroscopy (2D-COS) can raise
the resolution of the spectral signal and reveal the relationships
among the changes of different signal peaks (Noda and Ozaki,
2004). Thus, 2D-COS is able to explore the differences of binding
heterogeneity in DOM and HMs, such as the binding sequence of
different sites with metal ions in the complexation process (Xu
et al., 2013). Finally, two-dimensional Fourier transform infrared
(FTIR) and synchronous fluorescence correlation spectroscopy
(2D-FTIR-COS and 2D-SFS-COS) have been extensively used to
research the binding properties between DOM and metal ions
(Hurand Lee, 2011; Huang et al., 2018; Guo et al., 2019; Guo et al.,
2020).

The log-transformed 2D-COS analysis has been applied to
understand the binding sites of DOM-HM complexes (Tian et al.,
2021; Guo et al., 2021). However, we have found many

deficiencies in the log-transformed 2D-COS analysis. When
fluorescent signals are non-linearly transformed, their
physically relevant information will be destroyed. And then,
asynchronous spectra and, consequently, the sequential order
of events will also be lost. Herein, an alternative approach can
avoid these deficiencies by the transformation of the 2D
correlation intensities after the 2D-COS analysis but not
before. In this work, an alternative approach will be used for
identifying small features obscured by strong peaks. Square or
cube root transformations (or 1/n-th power in general) after the
2D correlation can preserve the sequential order information.

The current research on Chinese medicine residues mainly
focuses on microbial treatment, the extraction of Chinese
medicine residues and their resource utilization, etc. Some
scholars’ research on DOM mainly focuses on its own
migration characteristics, etc. However, in view of the lack of
research on DOM in Chinese herbal dregs and its complexation
with heavy metals, it is necessary to explore the relationship
between the decomposition of DOM in Chinese herbal dregs and
the environmental impact of its production of DOM–metal
complexes. The aims of this work are to a) analyze the
spectral characteristics and components of DOM derived from
the herbal extraction residue; b) explore the influence of DOM on
the species distribution, mobility, and bioavailability of HMs by
fluorescence quenching in couple with the complexation mode,
using PARAFAC and 2D-COS analysis; and c) according to the
experimental results, analyze the potential influence of
consequently casual discharge of the residue on soil and water
environment, and the challenges to the management of the herbal
extraction residue. This study provides a solid foundation for
controlling heavy metal pollution and controlling and regulating
the residual pollution of medium- and high-active substance
extracts.

MATERIALS AND METHODS

DOM Extraction
For the preparation of a Chinese herbal medicine, herbal
extraction residues were boiled together with all kinds of
ingredients. Some of these herbal extraction residues were
collected from three pharmacies, and the mixed samples were
dried using a freeze dryer, then sieved using a 100-mesh sieve, and
ground. The samples andMilli-Q water were mixed at a ratio of 1:
10 (w/v) and then shaken horizontally for 24 h at 20°C so as to
collect the DOM samples. The DOM extract was centrifuged at
8,000 rpm for 12 min and then filtered to 0.45 microns
(Millipore). Dissolved organic carbon concentration (DOC) is
a typical DOM concentrate obtained with a total organic carbon
analyzer.

Quenching Experiments
To remove the inner filter influence and ensure the comparability
of samples, TOC with an absorbance of less than 0.08 at 350 nm
was used for the quenching experiments. The temperature of the
solution was fixed at 20°C. NaOH and HNO3 were added to the
processor, and the pH value of the samples was within the range
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of 7.5 ± 0.05. Quenching experiments were carried on by adding
Cu(II) ion solutions to the DOM derived from the herbal
extraction residues. The ultimate Cu(II) concentrations of
DOM solutions were controlled at 0, 20, 40, 60, 80, 100, 120,
150, 180, 210, 240, 270, 300, and 350 μmol L−1. To overcome the
influence of concentration, the proportion of added metal
solution was kept relatively low (less than 5%). All DOM-HM
samples were shaken using a horizontal oscillator for 24 h. The
reaction equilibrium was maintained at 20°C. To quantitatively
describe the complexation reaction between Cu(II) and DOM, a
linear model modified Stern–Volmer (S-V) equation was made
available to determine the complexation stability constant for the
DOM-HM complexes (Lu and Jaffe, 2001), where it was assumed
that metal ions form a 1:1 complex with DOM.

F0/(F0 − F) � 1/(f · KM · CM) + 1/f (1)
where F0 and F indicate the intensity of the fluorescent
component without the metal added and with the
concentration of CM, respectively; f is the initial fluorescence
fraction available to the eliminator; and KM indicates the
conditional stability constant (Wu et al., 2004).

Spectral Scanning
The EEM data were collected with an excitation limit of
200–450 nm, the emission extent of 300–550 nm, with a 5-nm
gap for both excitation and emission, using a Hitachi F-7000
spectrofluorometer (Hitachi, Japan) at 20°C. To subtract Raman
scattering of water, Millie-q water was used for the purpose of a
reference for all EEM data. The absorption spectra were applied
to correct inner filter effects (Jiang et al., 2017). The acquisition of
SFS is constant between the excitation wave and the emission
wavelength (Δλ = 60 nm). The solid powder of the DOM sample
was collected using vacuum freeze-drying equipment for the
measurement of FTIR. The FTIR spectrum was generated
from wavelengths of 3,600 to 800 cm−1.

2D-COS Analysis and the PARAFAC Model
The PARAFAC model is based on the trilinear decomposition
theory and an iterative three-dimensional matrix decomposition
algorithm with the principle of alternating least squares. The essence
of PARAFAC is a decomposition algorithm that uses the core
consistency test to obtain the most appropriate group fraction
(Bro and Kiers, 2003). The preprocessed data are processed in
MATLAB 12.0 software (MathWorks Company, the Natick,
Massachusetts of United States). At the same time, split-half
analysis and defect analysis were applied to verify the
effectiveness of the PARAFAC model and determine the optimal
DOM component fraction. A detailed theory was introduced in the
study (Stedmon and Bro,2008). And in the current study, 56 EEM
data collected from DOM-Cu(II) samples were used with the
PARAFAC model. The PARAFAC model showed that a four-
substance model could be verified with defect analysis, split-half
analysis, and loadings. The maximum fluorescence intensity (Fmax)
was obtained from the PARAFAC model for all the DOM-HM
samples (Stedmon and Bro, 2008).

2D-COS has been applied as an analytical tool for identifying
subtle changes in a spectrum caused by adding HMs (Ozaki et al.,

2001). Herein, 2D-FTIR-COS was applied to reveal the binding
heterogeneity of herbal extraction residue DOMwith Cu(II) ions.
“2D Shige” software was used to obtain synchronous and
asynchronous maps. The synchronous 2D-COS map was
symmetric on the leading line; its peaks belonged to auto-
peaks and were induced by an external disturbance condition
(different Cu(II) concentrations). The asynchronous 2D-COS
map was asymmetric around the main diagonal line; these are
just diagonal vertices and no auto-peaks (Ozaki et al., 2001). The
transformation of the 2D correlation intensities was further
treated by 1/n-th power transformation (n = 9). Origin 2018
was used to draw correlation maps after 1/9-th power
transformation.

RESULTS AND DISCUSSION

Fluorescent Components
Figure 1 reveals the fluorescence components obtained by
PARAFAC analysis. Four fluorescence components can be
identified from the herbal extraction residue DOM: one
humic-like (Component 4) and three protein-like components
(Components 1, 2, and 3). Component 1 (C1) included two
excitation maxima at 220 and 275 nm, with an emission
maximum at 330 nm and a shoulder at 310 nm. It was related
to a tryptophan-like fluorophore in conjunction with a tyrosine-
like peak, and the tryptophan-like fluorophore was an analog to
the traditional tryptophan-like peak B. The presence of
Component 1 suggested that the tyrosine-like fluorophore was
converted into a tryptophan-like fluorophore. Component 2 (C2)
was a typical protein-like material such as a tyrosine-like material
and exhibited a main peak at 275 nm and a second peak at
230 nm, with the same maximum excitation wavelength at
310 nm. Component 3 (C3) consisted of three peaks, at 265,
285, and 330 nm, with an emission maximum at 345 nm. This
substance was also related to tryptophan-like substances and can
be considered a biologically labile substance or an amino acid
(Yao et al., 2011; Guo et al., 2020). Similarly, three fluorescent
peaks at 240, 290, and 320 nm with a maximum emission
wavelength of 435 nm could be found in Component 4 (C4).
Component 4 was due to the substance of fluorescent fulvic-like
substances.

The maximum fluorescence intensity (Fmax) shows the
relative prevalence of fluorescent components in the herbal
extraction residue DOM. It can be observed from Figure 2
that the relative abundance of the four substances followed the
order of C1>C2>C3>C4, accounting for 54.79, 25.90, 15.95, and
3.36%, respectively. It should be noted that fulvic-like C4
presented an extremely low Fmax value. These results also
indicate which protein-like fluorescent components were
mainly fluorophores in the herbal extraction residue DOM
after long decoction of Chinese medicine. A strong correlation
between biochemical oxygen demand (BOD) and protein-like
fluorescent components has also been explained in the literature
(Hudson et al., 2008). Fluorescent components showed a strong
correlation with BOD, chemical total nitrogen (TN), and oxygen
demand (COD) concentrations (Hurand Cho, 2012), suggesting
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that the release of herbal extraction residue DOM can lead to a
risk of water quality deterioration. Therefore, it is very important
to prevent the discarding of herbal extraction residues to protect
the water environment.

2D-SFS-COS Analysis
Two positive peaks could be identified in the synchronous map of
DOM-Cu(II) at 275 and 383 nm, respectively (Figure 3). The peak at

275 nm has a bearing on protein-like materials, such as tryptophan-
or tyrosine-like, and the peak at 383 nm was indicative of humic-like
constituents (Guoet al., 2022). In view of Noda’s rule (Noda and
Ozaki, 2004), the protein-like constituents at 275 nm exhibited a high
sensitivity of Cu(II) compared to the humic-like constituents at
383 nm. The asynchronous map of DOM-Cu(II) presented one
positive and two negative peaks at 286, 301, and 383 nm,
separately. The presence of peaks at 286 and 301 nm belonged to

FIGURE 1 | Calculation of DOM fluorescence component extraction residue by the PARAFAC model.

FIGURE 2 |Maximum intensity of four fluorescent components (no HM).

FIGURE 3 | 2D-COS analysis obtained by synchronous fluorescence
spectra. The red regions show positive correlations, and the blue regions
show negative correlations. An increase in the intensity of a particular color
represents a stronger positive or negative correlation. (A): Synchronous
map; (B): asynchronous map.
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the presence of protein-like materials, specifically tryptophan-like
materials (Barker et al., 2009; Tan et al., 2021). The protein-like
materials identified at a shorter wavelength (286 nm) in Figure 3
indicated the preferential binding of Cu(II) to the herbal extraction
residue DOM. In addition, the priority binding with Cu(II) followed
the subsequence as 286→ 383→301 nm.

Figure 4 shows the asynchronous and synchronous maps of 2D-
COS of DOM-Cu(II) obtained by the 1/9-th power transformation.
The synchronous map displayed two cross- and two auto-peaks at
383/275 nm, 327/275 nm, 275, and 383 nm, separately. The analysis
outcome of the synchronous map was consistent with the result of
the 2D-COS that protein-like fluorophores at 275 nm exhibited a
high sensitivity to Cu(II) compared to the humic-like components at
383 nm. However, the asynchronous map indicated that eight
fluorescent signal regions may be found at 286 nm, 301 nm,
327 nm, 383/275 nm, 383/327 nm, 409 nm, 433 nm, and 463 nm,
suggesting that the 1/9-th power transformation was feasible for
identifying small features obscured by strong peaks. A peak at
327 nm can be found, which was assigned to fulvic-like
components. The peaks at 409 nm, 433 nm, and 463 nm were
also concerned with humic-like fluorophores (Guoet al., 2022).
According to the results of 2D-SFS-COS obtained by the 1/9-th
power transformation, the priority binding of Cu(II) followed the
sequence as protein-like (286 nm)→ fulvic-like (327 nm)→ humic-
like (409 nm) → humic-like (433 nm) → humic-like (463 nm) →
humic-like (383 nm) → protein-like (301 nm). The results also
indicated that the 2D-SFS-COS obtained by the 1/9-th power
transformation strengthened shielded long-wavelength and low-
intensity fluorescence signals and can obtain more information
such as ligand binding characteristics.

2D-FTIR-COS
2D-COS in conjunction with FTIR spectra has been extensively used
to explore information on potential binding sites (Xu et al., 2013; Guo
et al., 2020). Figure 5 depicts the asynchronous and synchronous
maps of 2D-FTIR-COS of DOM-Cu(II). The synchronous map of
DOM-Cu(II) suggests that a large auto-peak and three cross-peaks
appeared at about 2,300 and 2,920 cm−1, separately. The peaks at
about 2,300 cm−1 were considered to be the C≡C stretching vibration

of alkyne, while the band at 2,920 cm−1 was considered to be the C−O
vibration of carboxylic acid or the C−H stretching vibration of alkane
(Yang et al., 2019). These results reveal a preferential response in the
functional group of alkyne due to the increase in Cu(II) concentration.

The asynchronous map of DOM-Cu(II) exhibits three positive
bands (3,370, 2,920, and 1,600 cm−1) and four negative bands (2,270,
1,490, 1,330, and 1,180 cm−1). These bands contain about seventeen
binding sites, suggesting that the herbal extraction residue DOM
provided a large number of binding sites for Cu(II). According to
previous literature (Yu et al., 2012; Huang et al., 2018; Guo et al.,
2020), the peaks at 3,370 and 1,600 cm−1 are related to the N−H
stretching of amine and the aromatic C=C stretching or N−H
bending of primary amide (band II), separately. The two peaks at
1,490 and 1,330 cm−1 were down to the OH deformation of the
phenolic hydroxyl group, and the C−O vibration of esters or the
C−N stretching of aliphatic amine were identified according to the
band at 1,180 cm−1. As a result, the N−H of amine functionalities
could preferentially integrate with Cu(II), and the Cu(II) binding
with the herbal extraction residue DOM followed the order
3370→2920 →1600→2270→1490→1180→1330 cm−1.

Binding Parameters
Supplementary Figure S1 exhibits the quenching curves of
Cu(II) with the herbal extraction residue DOM for the
fluorescence substance determined by the PARAFAC model
and the 2D-COS analysis. The fluorescence intensity of
protein fluorophores declined with the increase in the Cu (II)
ion content. Protein-like materials presented better quenching
effects in the DOM-Cu(II). 2D-FTIR-COS also revealed that the
N−H of amine preferentially combined with Cu(II), suggesting
that the N−H of amine mainly originated from the protein-like
fluorophore. Fulvic-like fluorophores showed poor quenching
effects due to the presence of limited fluorophore which could
bind with Cu(II) ion. Clear quenching curves for these
peaks with low intensities can be found in Supplementary
Figure S1.

Table 1 lists the parameters of DOM-Cu(II) calculated with
the revised Stern–Volmer model. The log KM value was in the
range of 3.96–4.24 for components 1–4, and 4.14–4.81 for C275,

FIGURE 4 | Asynchronous and synchronous maps of 2D-COS of DOM-Cu(II) obtained by the 1/9-th power transformation. The red regions show positive
correlations, and the blue regions show negative correlations. An increase in the intensity of a particular color represents a stronger positive or negative correlation.
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C286, C299, C327, and C433, respectively. These results suggested
that the log KM value of different components with Cu(II)
increased with an increase in the wavelength of these
components. However, the log KM values were generally lower
than those of DOM-Cu(II) from other sources, such as digestate
(Guoet al., 2020), lake water (Craven et al., 2012), and biochar
(Guoet al., 2021; Guo et al., 2022), indicating a relatively chemical
stability of DOM-Cu(II). The f% value decreased with the
increased wavelength of fluorescent components. However,
Component 1 revealed the largest f% value, suggesting that a
combination of tyrosine- and tryptophan-like fluorophores can
increase the concentration of the total ligand. Humic-like
substances showed the largest log KM value, followed by
fulvic-like substances, compared with protein-like materials.
Although fulvic- and humic-like substances with Cu(II) have
high log KM values, their contents were
dramatically low in the herbal extraction residue DOM.
Therefore, protein-like fluorophores dominate due to their
high fluorophore content.

Environmental Impact and Control
Measures
Traditional Chinesemedicine, including herbalmedicine, is still used
extensively in China. As mentioned earlier, the haphazard stacking
and discarding of herbal extraction residue put tremendous pressure
on the environment, especially in rural areas. Protein-like substances
dominated in the herbal extraction residue DOM used in this study,
and this residue can easily enter rivers via rainwater leaching,
resulting in the deterioration of the water environment. The
herbal extraction residue DOM and HMs can affect each other,
affecting their transformation, biotoxicity, and other properties.
With the increase in HM pollution in the soil, herbal extraction
residue DOM increases the risk of HMs entering the groundwater
from the soil because the complexes formed by DOM-HM have low
stability. Therefore, the treatment and utilization of the herbal
extraction residues have become an urgent problem, and solving
this problem can reduce the environmental deterioration caused by
the random stacking and discarding of herbal extraction residues.
Biomass energy, papermaking, composites, and re-extraction of
bioactive components are promising solutions for herbal
extraction residues (Lu and Li, 2021). For example, herbal
extraction residues have been used to explore the feasibility of
producing biogas for industry (Cheng and Liu, 2010; Li et al.,
2011). Herbal extraction residues can also be used to prepare
biochar materials for other applications (Wang et al., 2010). In
addition, the improvement of environmental protection awareness
and environmental infrastructure is also an important way to solve
the environmental pollution of the herbal extraction residue in rural
areas. The implementation of garbage classification can greatly
reduce the environmental risk of the herbal extraction residues.

CONCLUSION

Chinese medicine residues—especially leached Chinese medicine
residues, extraction residues, and DOM—bring huge risks to the
environment through the migration, transformation, and

FIGURE 5 | 2D-COS analysis obtained by FTIR of DOM-Cu(II). The red regions show positive correlations, and the blue regions show negative correlations. An
increase in the intensity of a particular color represents a stronger positive or negative correlation.

TABLE 1 | Binding parameters are calculated after the modified
Stern–Volmer model.

Component logKM f% R2

C1 3.96 1.49 0.986*
C2 3.57 53.76 0.981*
C3 4.17 37.63 0.988*
C4 4.24 34.21 0.961*
C275

a,b,c 4.14 52.84 0.945*
C286

c 4.19 52.36 0.939*
C301

b,c 4.41 43.24 0.934*
C327

a,c 4.63 28.73 0.946*
C383

a,b,c − − −

C409
c − − −

C433
c 4.81 28.05 0.928*

C463
c − − −

*Correlation is significant at p = 0.01 level (2-tailed).
aThese peaks can be identified by the 2D-SFS-COS maps.
bThese peaks can be identified by the 1/9-th power transformation.
cThese peaks can be detected by SFS “−” not modeled.
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biotoxicity of HMs. Through the methods of fluorescence EEM
and PARAFAC model, the following conclusions are drawn: (1)
A fulvic acid-like component and three protein-like components
were identified from the herbal extract residues. This leaching
poses a potential contamination risk to the aquatic environment
and soil, especially due to the presence of major protein-like
components. (2) The use of FTIR and SFS combined with 2D-
COS can help explore the information of the binding site, which
can shed light on the underlying mechanism of the complexation
between DOM and HM. These binding sites are mainly derived
from protein-like substances, such as the N-H of amine groups.
(3) By the PARAFAC model and 2D-COS analysis, the
fluorescence intensity of protein fluorophores decreased with
the increase in the Cu(II) ion content. Protein-based materials
showed a better quenching effect in DOM-Cu(II). In summary,
this work can provide a scientific evaluation for the
environmental impact of residual DOM in traditional Chinese
medicine extracts, indicating that management and governance
are extremely important and worthy of attention.
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