
Chaotic Modeling of Stream Nitrate
Concentration and Transportation via
IFPA-ESN and Turning Point Analyses
Yandong Tang1, Jiahao Deng2*, Cuiping Zang1 and Qihong Wu3

1Sichuan Engineering Technical College, Deyang, China, 2College of Computing and Digital Media, DePaul University, Chicago,
IL, United States, 3School of Architecture and Civil Engineering, Chengdu University, Chengdu, China

Increased concentrations of nitrogenous compounds in stream networks are detrimental
to the health of both humans and ecosystems. Monitoring, modeling, and forecasting
nitrate concentration in the temporal domain are essential for an in-depth understanding of
nitrate dynamics and transformation within stream networks. In this study, an advanced
chaotic modeling and forecasting approach integrated with turning point analysis is
proposed. First, the time-series daily nitrate concentrations in the form of nitrate-nitrite
were reconstructed based on the chaotic characteristics and then input into the
forecasting models. Second, an echo state network (ESN) was developed for one-
day-ahead nitrate concentration forecasting, and the hyperparameters were optimized
through an improved flower pollination algorithm (IFPA) to achieve a high efficiency.
Furthermore, turning point analysis was performed to quantify the relationship between
discharge and peak nitrate concentration. The Ricker function was fitted, and the
parameters were estimated for turning points using the forecasted nitrate
concentration and measured discharge. Field data, including daily stream nitrate
concentration and information on discharge collected from eight different monitoring
sites in the southern Sichuan Basin, China, were utilized for case studies. A
comparative analysis was performed under three modeling scenarios, viz. conventional
time-series modeling, temporal signal decomposition, and data reconstruction and
embedding with chaotic characteristics. Four benchmark time-series forecasting
algorithms were compared against the proposed IFPA-ESN in the above-mentioned
scenarios. For each site, parameters of the Ricker functions were estimated, and
turning points were computed based on the forecasted nitrate concentration and
discharge. Computational results validated the superiority of the proposed approach in
improving the accuracy of stream nitrate concentration prediction. The limitations to the
supply and transportation of nitrogenous compounds were quantified, which would be
valuable for pollution mitigation in the future.
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INTRODUCTION

In view of recent environmental challenges, river pollution is one
of the most widespread problems due to industrial, economic,
and agricultural growth (Domangue and Mortazavi 2018).
Inorganic nitrogen, which is usually in the form of nitrate-
nitrite (NOx-N), is one of the major pollutants in stream
networks. According to recent monitoring data, surface water
systems are increasingly being polluted by nitrogen, with an
increase in nitrogen concentration annually (Sajedi-Hosseini
et al., 2018). Furthermore, the high concentrations of NOx-N
in drinking water pose increased risks of various diseases (e.g.,
cancer) to humans. However, water treatment to reduce nitrogen
compounds is challenging owing to the high dynamics of both
pollutant emissions and stream discharge impacted by
precipitation and groundwater in the temporal domain (Zhang
et al., 2018; Shi et al., 2019). Therefore, the most practical and
effective approach to prevent and control river nitrogen pollution
is to forecast daily variation and investigate its transportation
mechanism quantitatively.

Nitrate normally exists in nature and is the end product of the
aerobic decomposition of organic nitrogenous matter and
microorganisms. In stream networks with clean surface water,
most water samples contain less than 1 mg L−1 of NOx-N;
according to Stamenković et al. (2020), it is seldom observed
to surpass 5 mg L−1. However, in some areas, several agricultural
landscapes are artificially saturated with excessive nitrogen
compounds to maximize crop yield (Blesh and Drinkwater,
2013). This inevitably results in the accumulation of immense
amounts of this nutrient in the soil (Jones et al., 2017).
Subsequently, artificial drainage or excessive precipitation
transports the soluble NOx-N into the aquifers, lakes, and
streams near agricultural landscapes. As a result, the river
systems encounter a nearly unlimited supply of NOx-N, and
the concentration is largely driven by stream discharge (Villarini
et al., 2016).

The challenge is evident in the recent and ongoing rise in the
nitrate pollution problem, i.e., how to estimate NOx-N
concentration in the stream and quantify the relationship
between discharge and concentration. Improved forecasts
could aid in: 1) accurate estimation of nitrate concentration in
real time on a daily basis and 2) adequate quantitative modeling
of the nonlinear relationship between stream discharge and
concentration.

Two major types of methods for modeling and forecasting of
nitrate pollution in stream networks are conventional water
quality modeling methods and statistical methods. In the last
few decades, water quality modeling has served as the foundation
for estimating the water nitrate concentration. David et al. (1997)
discovered that high soil mineralization rates, fertilization, and
tile drainage contribute notably to nitrate transport to rivers.
Belitz et al. (2015) studied the transportation mechanism of
nitrate pollutants in underground water systems using water
quality models. Keupers and Willems (2017) developed
advection-dispersion models to investigate the transportation
of nitrate pollutants in stream systems with respect to stream
discharge, water height, and velocity. All these authors used

mathematical relations to model the nitrate concentrations in
surface waters, which constitute the basis for both forecasting and
inference.

In the literature, machine-learning models developed on the
basis of statistical methods have gained more attention in recent
studies. Nolan et al. (2014) constructed random forest models to
predict log nitrate for domestic and public supply wells in
California. Ransom et al. (2017) further improved the
prediction accuracy by developing a boosting regression tree
algorithm to predict nitrate concentration in the Central
Valley aquifer, California, United States. Ostad-Ali-Askari
et al. (2017) developed artificial neural networks to model
nitrate concentrations in groundwater in the temporal domain.
Stamenković et al. (2020) constructed a multilayer perceptron
and predicted nitrate concentrations using 26 water quality
parameters as inputs. In summary, the highly nonlinear
relationships between the inputs and nitrate concentrations
were “learned” and “trained” with field data using the
machine-learning models. All machine-learning approaches
have greatly improved the accuracy of nitrate concentration
forecasts in streams and offer insights into data patterns in the
spatial and temporal domains.

Deep learning approaches have become a more promising
approach for forecasting tasks in the temporal domain. Basic deep
learning algorithms include deep belief networks (Ouyang et al.,
2019a), convolutional neural network (LeCun and Bengio 1995),
deep neural network (DNN) (Hu et al., 2016), long short-term
memory recurrent neural network (LSTM-RNN) (Kong et al.,
2017), and stacked extreme learning machine (Huang et al.,
2011). The applications of deep learning approaches in
forecasting tasks include deterministic forecasting methods,
deep-learned feature extraction, error post-processing, and
network structure optimization (He et al., 2017a; Li et al.,
2018; Li et al., 2022; Ouyang et al., 2018; Ouyang et al., 2019b;
Xu et al., 2019; Ahmad et al., 2021; Hrnjica et al., 2021; Tang et al.,
2021). The main challenge in using deep learning techniques is to
construct the most fitting prediction model for a particular
dataset, such as the nitrate concentration in this study.

With an increase in nitrate pollution in stream networks,
nitrate concentrations in stream networks have become a
complicated system. Forecasting with high precision is the key
factor in both the long and short term, and the computational
cost is also important. Conventional short-term forecasting tasks
in the temporal domain can be classified into two approaches,
namely time-series modeling, and data decomposition. The time-
series approaches use an auto-correction function and seasonality
analysis to determine the temporal dependency patterns in the
dataset and construct forecasting models. On the other hand,
decomposition approaches decompose the time-series data into
several basis signals and build sub-models one-by-one to perform
forecasting. Then, the final prediction is made by combining the
forecasting results from the sub-models.

In this study, in addition to the two major types of
conventional approaches, we proposed a novel framework
using a chaotic modeling approach to forecast the nitrate
concentrations in stream networks. First, we considered that
the daily nitrate concentration is generated from a chaotic
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system, and we can compute the chaotic characteristics. The
reconstructed data based on chaotic characteristics can contain
both numerical features and structural information from the
original physical systems. Second, we proposed forecasting
models using an echo state network (ESN), wherein the
hyperparameters were optimized using an improved flower
pollination algorithm (IFPA). Furthermore, a comparative
analysis was performed against conventional forecasting
approaches and other benchmarking deep learning forecasting
algorithms. Third, to quantify the relationship between daily
nitrate concentrations and stream discharge, we performed a
turning point analysis. The parametric Ricker function was
constructed to depict the nonlinear relationship, and the
parameters were estimated using the delta method. Finally,
based on the computed turning points, we estimated the
transportation limitations of nitrate pollutants in streams.

The main contributions of this study are as follows:

• This study proposes a deep learning approach, integrated
with chaotic models, to forecast short-term nitrate
concentrations in stream networks. Onsite data were
collected from a closed source at eight monitoring
locations spread across three different regions.

• The ESN was first applied for the prediction of nitrate
concentration, and its hyperparameters were optimized
using the IFPA algorithm.

• The forecasting accuracy was compared with other
forecasting approaches and other benchmarking deep
learning algorithms.

• Turning point analysis was performed to quantify the
relationship between stream discharge and nitrate
concentration. The transportation limit of nitrate
pollutants was also investigated.

The remainder of this paper is organized as follows. Section 2
describes the details of the dataset and the case study area. Section
3 introduces the chaotic modeling approach for forecasting
nitrate concentration in stream networks. The forecasting
algorithm ESN optimized with IFPA, as well as other
benchmarking deep learning algorithms, are discussed. Section
4 presents the detailed procedures of turning point analysis and
the investigation of transportation limits. Experimental results
are provided and discussed in Section 5. Finally, the conclusions
are presented in Section 6.

DATA COLLECTION AND
PRE-PROCESSING

Data Collection and Description
The daily nitrate concentration data and discharge data has been
collected from our case study area located in south Sichuan Basin,
southwestern China. It is one of the most heavily populated and
intensely industrialized areas in China which faces serious
environmental pollution problems (Cui et al., 2021; Zhou
et al., 2021). This area contains approximately about 10% of
the national population and many big cities including Chengdu,

Leshan, Yibin, Luzhou, Jiangjin, and Chongqing are located in
this area. Two big rivers namely Minjiang River and Yangtze
Rivers flow across this region and many stream networks are
affiliated with the two rivers which connects the cities.

The emission of nitrogen compounds especially like NOx-N
nitrates is mainly from the agricultural activities, residents, and
industry. The deposition of NOx-N degrades the quality of both
groundwater and surface water in regional stream networks. In
order to measure the pollutant, the nitrate concentrations in 8
monitoring points in the streams locate in the suburbs of major
cities along the Yangtze River are measured on daily basis during
the year of 2020. The locations of major cities and the monitoring
points which are in the suburbs of these cities are displayed in
Figure 1 below.

The dataset collected for this study includes daily contrite
concentrations from 8 monitoring points. Meanwhile, the
daily discharge volume from surrounding area is also
provided. The summary of the dataset has been presented
in Table 1. It summarizes the basic statistics including the
mean, median, maximum value, minimum value, and standard
deviation of the daily nitrate concentrations as well as stream
discharge. The unit for the measured nitrate concentration is
milligrams per liter (mg L−1) and the unit for the discharge is
millimeter (mm) which is mainly from precipitation or
groundwater supply.

According to Table 1, daily concentrations of nitrate
concentration (NOX-N) ranged from 7.05 to 35.00 mg L−1.
Concentrations that exceeded the drinking water standards of
10 mg L−1 for most of the time for almost all monitoring points.
This may be exaggerated by the fact that the records in many
summer flood seasons are not included for the safety issues
during the data collection process. Meanwhile, for 8
monitoring sites, the average daily discharge on days when
NOX-N was measured ranged between 1.32 and 1.51 mm
during the period of the study. These data also exclude the
flood seasons as the observations may be inaccurate and
meaningless. Each year, the nitrate concentration varied with
discharge during the period of study. Each year, concentrations
tend to increase with discharge in a nonlinear fashion.

Abnormal Data Detection
In general, data abnormality is a rarely observed phenomena
when some human or systematic errors occur during the
measuring process (Gao et al., 2020; Gao et al., 2021). To
increase the reliability of the models in our study, we
proposed to use “six-sigma” criterion from statistical analysis
in our data pre-processing part to detect data abnormality. For a
daily nitrate concentration time-series, assumed as {xn}, the mean
and standard deviation can be defined as �x and σ respectively.
Then, we can use the “six-sigma” to detect whether a new coming
data sample x(t) locates in the abnormal region or not. In detail,
the “six-sigma” criterion can be expressed in Eq. 1 as follows:

�x(t − 1) − kσ(t − 1)<x(t)< �x(t − 1) + kσ(t − 1) (1)
where �x(t − 1) denotes the mean of all former measured nitrate
concentration or discharge; σ(t − 1) is the standard deviation of
the historic data; k is the parameter for the scale of the criterion

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 8556943

Tang et al. Stream Nitrate Concentration and Transportation

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


which is usually set as 3. If the new measured data is falling
outside of the range defined in Eq. 1, we can simply delete it and
replaced with revised values.

CHAOTIC MODELING OF STREAM
NITRATE CONCENTRATION

Dataset Reconstruction
Time-series data representing the daily nitrate concentration
usually include dynamic information of the original system.
With a certain level of dynamics, the original system is
considered as a chaotic system. If the time-series nitrate data
are embedded into a higher space, its intrinsic data structure can
be reproduced (Ouyang et al., 2020). Hence, reconstruction of the
phase space is a valuable solution for modeling chaotic nitrate
concentration time series. In general, given the original nitrate
concentration time series {xn} for phase space reconstruction, the
data in the new higher space can be expressed by Eq. 2 as follows:

xn � (xn, xn+τ , . . . , xn+(m−1)τ) ∈ Rm, n � 1, 2, . . . , N0

� N − (m − 1)τ (2)

where xn denotes the reconstructed nitrate concentration time series
in the higher space Rm;N denotes the number of total data points in
the original nitrate concentration time series;N0 denotes the number
of data points in the reconstructed time-series in the higher space, and
τ and m are two reconstruction parameters that represent the time
delay and embedded dimension, respectively (Rosenstein et al., 1994).
As explained by Ouyang et al. (2016) in the embedding theory, the
data features in both the original and reconstructed space will be
equally dynamic and diffeomorphic.

Temporal Dependency
The time delay τ, described in Section 3.1, represents the
temporal dependency between the current time series and
historic lagged ones. An appropriate time delay parameter
value is essential for unfolding and organizing the time series
in the phase reconstruction process. In this study, mutual
information was introduced and applied to compute the
temporal dependency of the current nitrate concentration time
series and historic data.

With two discrete nitrate concentration time series defined as
x(t) and x(t + τ), the temporal dependency between them can be
computed using Eq. 3 as follows:

FIGURE 1 | Locations of the monitoring sites and major cities along the Yangtze River.

TABLE 1 | Summary of the dataset including daily nitrate concentration and discharge.

Location n (days) NOX-N (mg L−1) Discharge (mm)

Mean Median Max Min Std Mean Median Max Min Std

Yibin-1 320 16.81 15.86 35.00 4.00 6.25 1.52 1.51 3.35 0.03 0.42
Yibin-2 297 7.05 6.38 21.00 0.01 4.57 1.36 1.34 3.36 0.02 0.46
Luzhou-1 274 18.76 17.56 35.00 4.00 7.67 1.41 1.32 3.33 0.05 0.32
Luzhou-2 298 13.58 12.60 25.00 2.00 6.05 1.39 1.33 3.35 0.01 0.37
Luzhou-3 301 12.57 11.76 22.00 3.00 5.00 1.32 1.37 3.34 0.04 0.33
Jiangjin-1 303 15.92 14.91 35.00 4.00 6.95 1.38 1.39 3.23 0.03 0.15
Jiangjin-2 311 12.99 12.29 27.00 4.00 5.23 1.50 1.65 3.36 0.02 0.53
Jiangjin-3 299 8.42 7.85 20.00 1.00 4.32 1.51 1.57 3.36 0.04 0.42
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I(x(t), x(t + τ)) � H(x(t)) +H(x(t + τ)) −H(x(t), x(t + τ))
(3)

where I(x(t), x(t + τ)) denotes the mutual information entropy
between the two series, where a larger value indicates a strong
temporal correlation and vice versa, and the function H(p)
computes the information entropy, which can be expressed by
Eq. 4 as follows:

H(X) � −∑P(X)log(P(X)) (4)
where P(X) denotes the probability of the variable X, and H(X)
is the information entropy. Hence, for convenience, the mutual
information entropy between the time series x(t) and x(t + τ)
can be expressed by Eq. 5 as follows:

I(x(t), x(t + τ)) � −∑P(x(t))log(P(x(t)))
−∑P(x(t + τ))log(P(x(t + τ)))
+∑P(x(t), x(t + τ))log(P(x(t), x(t + τ))
× )

(5)
where P(x(t), x(t + τ)) denotes the joint probability distribution
of the two nitrate concentration series.

Embedded Dimension
In addition to the time delay, the embedded dimension is another
factor affecting the size of the reconstructed phase space. An
unsuitable embedded dimension would cause the track of the
time series to fold or intersect in the reconstructed phase space.
This reflects the number of independent factors that govern the
dynamics of the underlying physics system. Only a suitable
embedded dimension can ensure that the reconstructed system
contains all the independent factors needed to unfold the original
system.

In this study, the false nearest neighbors (FNN) method
(Bazine & Mabrouki 2019) was adopted to search for the
optimal setting for the number of embedded dimensions. It
detects the number of neighboring points for different settings
of the embedded dimensions repeatedly. If there is no sharp
increase with an increase in the number of false neighbors, the
embedded dimension increases from m to m+1. Intuitively, the
calculations describe variances among false neighbors.

Given two sets of nearest points xn(i) and x’n(i), the
computation of false nearest neighbors can be achieved
following the three steps given below:

Step 1: Compute the distance between the two nearest points
using Eq. (6)

Rm(i) � xn(i) − xn’n(i) (6)
where Rm(i) is the distance between two points in the
m-dimensional phase space. Here, we use the Euclidean
distance, which is calculated using the L2-norm.

Step 2: Increase the dimension from m to m+1, and the new
distance in the new space can be expressed by Eq. 7 as
follows:

Rm+1(i) �
���������������������������
R2
m(i) + xn(i +mτ) − x’n(i +mτ)22

√
(7)

Step 3: If the distance between the two nearest points in the new
space xn(i +mτ) − x’n(i +mτ)2 increases significantly, the two
points will be classified as false nearest neighbors and will be
separated in a higher dimension space. The classification follows
the criterion in Eq. 8, as follows:

a(i, m) � xn(i +mτ) − x’n(i +mτ)
Rm(i) p100% (8)

where a(i, m) is the criterion for judging the false nearest
neighbors. The two given samples are classified as false nearest
neighbors if a(i, m)> ath. Here, ath is the threshold that is usually
selected in the range of 0.1 and 0.5.

Lyapunov Exponent
It is seen that the reconstructed data in the new phase space not
only retains the original information but also provides more
details such as data structures. Hence, studying the chaotic
characteristics of the nitrate concentration before data
reconstruction is essential.

The Lyapunov exponent is a widely used metric to test
whether a system is chaotic or not. It represents the average
exponential rates of divergence (expansion) or convergence
(contraction) of nearest points in the embedded phase space
(Jiang et al., 2021). In general, positive Lyapunov exponent
value indicates the presence of chaos and the data structure is
unfolded in the reconstructed phase space. If it equals to zero,
the system is considered to have bifurcation points or
seasonality patterns. Negative values refer to the data points
are from stable physics system. Therefore, a positive value of
the Lyapunov exponent is needed to demonstrate a phase space
is suitable and the reconstructed data is effective to study the
original system.

The computation of the Lyapunov exponent can be achieved
by applying the approach proposed by Wolf et al. (1985). The
process is presented as follows. First, given a start point xn(i) and
its nearest neighbor point x’n(i), the distance between the two
points can be computed as Li � xn(i) − x’n(i). Next, with the
evolution of a given time T, two new points xn(j) and x’n(j) as
nearest neighbors can be obtained and the new distance can be
computed as Lj � xn(j) − x’n(j). Hence, after compute it
repeatedly for k-steps, the value of the Lyapunov exponent can
be obtained in Eq. 9 as follows:

λ � 1
kT

∑k
i�1
ln

Li

Li−1
(9)

In most scenarios, the value of Li is very small. The Lyapunov
exponent can be regarded as the slope coefficient of the linear
function between T and ln Li (He and Kusiak 2018).
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Echo State Network
Using the reconstructed data in the new embedded dimension,
the day-ahead nitrate concentrations in stream networks were
forecasted in this study. Here, the ESN (Chouikhi et al., 2017),
which is a deep recurrent neural network, was selected for
forecasting. An ESN comprises three layers, namely the input
layer, dynamic reservoir, and output payer. Compared with
other conventional deep neural networks (DNNs), the ESN
contains a dynamic reservoir consisting of several sparsely
connected neurons instead of interconnected hidden layers.
This structure enables the ESN to have an improved
information-processing ability. The architecture of the ESN
is shown in Figure 2. Since 2001, ESN has been successfully
applied in various fields, including time-series forecasting and
classification.

As illustrated in Figure 2, the ESN contains n units in the
input layer u, N neurons in the reservoir that form the internal
states, and n units in the output layer y. Since this study focuses on
day-ahead forecasting of nitrate concentration, the number of
units in the output layer y is 1. Assume at time step i, the input
state matrix is defined as u(i) � [u1(i), u2(i), u3(i), . . . , un(i)]T .
The reservoir state matrix can be defined as h(i) �
[h1(i), h2(i), h3(i), . . . , hn(i)]T while the output matrix can be
defined as y(i) � [y1(i), y2(i), y3(i), . . . , yn(i)]T. Then, during
iteration, we can formulate the updating rules in Eq. 10 and 11 as
follows:

h(i + 1) � f(Winpu(i + 1) +Wresph(i) +Wbackpy(i)) (10)
y(i + 1) � g(Woutph(i + 1)) (11)

where i denotes the number of iterations;Win is the weight matrix
that connects the input layer and dynamic reservoir in the size of
N × n; Wout is the weight matrix that connects the dynamic
reservoir and output layer in the size of 1 × N; theWout ofN × 1
connects the output state and internal reservoir and Wres in the
size ofN × N enables interconnection of reservoir internal states;
f() and g() are activation functions which can be linear or
nonlinear. In most scenarios, the linear activation function is
selected and so it is in this research.

Improved Flower Pollination Algorithm
The setting of hyperparameters of ESN such as reserve layer
nodes, reserve layer connection rate, learning rate, and spectral
radius all impact the forecasting performance. The improved
flower pollination algorithm (IFPA) (Lei et al., 2018), which is
based on the principle of biological pollination, has attracted
considerable amount of attention in optimizing hyperparameters
of deep learning algorithms.

The IFPA algorithm is a swarm intelligence optimization
algorithm which contains three major components: cross-
pollination, abiotic-pollination and cross-conversion (Li et al.,
2021a; Li et al., 2021b). The cross-pollination is a global search
strategy which simulates the insects and birds flying under the
Levy distribution as in Eq. 12 and 13:

L(λ) ~ λΓ(λ) sin(πλ/2)
π

p
1

S1+λ
(12)

s � U

|V|1/λ (13)

where U obeys the Gaussian distributionN(0, σ2), and V follows
the standard normal distribution N(0, 1). The σ is calculated in
Eq. 14 as follows:

σ2 � {Γ(1 + λ)
λΓ[1+λ2 ] p

sin(πλ/2)
2(λ−1)/2

}1/λ
(14)

Hence, the updating rules in cross-pollination can be
expressed in Eq. 15 as:

ziter+1i � ziteri + γL(ziteri − zbexti ) (15)
Furthermore, the abiotic-pollination is a local searching

process and the updating rules is expressed in Eq. 16 as follows:

ziter+1i � ziteri + ε(ziterj − ziterk ) (16)
where ziterj and ziterk denote different pollens (local solutions)
other than ziteri ; and ε is a constant that obeys the uniform
distribution of (0,1).

FIGURE 2 | Architecture of the echo state network.
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Third, a conversion probability P is introduced to mimic
the principle of biological pollination. It controls the
conversion of pollen between global pollination and local
pollination pollen within iterations. In each iteration, the
probability of having global pollination is P and thus the
probability of having local pollination is 1-P (Lei et al., 2018;
Tang and Zhang, 2019).

Conventional Approaches and
Benchmarking Algorithms
To demonstrate the accuracy and effectiveness of the proposed
chaotic modeling approach integrated with IFPA-ESN, the
comparative analysis is performed in this research against
other conventional modeling approach as well as the other
benchmarking deep-learning algorithms.

The conventional time-series forecasting approach is based on
the autoregression and dependency between residual error and
lagged observations. The computation of autocorrelation
function (ACF) and PACF (PACF) (Li et al., 2021c) forms the
foundations of constructing time-series forecasting approach.
The ACF calculates the degree of interaction between current
observation and historic lagged observations. PACF helps to
determine with its preceding values the correctness degree of
current variables while retaining certain constant values. The
temporal dependencies as well as the seasonal patterns can be
effectively extracted from the dataset. The inputs of the
forecasting algorithm can be determined via the computed
ACFs and PACFs.

Besides, the temporal signal decomposition gains more
popularity in recent publications in short-term forecasting
tasks. The main idea is to use temporal signal
decomposition algorithms to “break down” a complicated
time-series data into simpler and similar series rapidly and
efficiently. Then, individual forecasting models can be
constructed on each sub-series with improved forecasting
accuracy. The Empirical Mode Decomposition (EMD)
(Rilling et al., 2003), the Hilbert Vibration Decomposition
(HVD) (Sharma and Sharma 2015), and the Variational Mode
Decomposition (VMD) (Dragomiretskiy and Zosso 2013) are
deemed to be the most representative signal decomposition
algorithms used in short-term time-series forecasting tasks. In
this research, the VMD is selected for the comparative analysis
and it decomposed the complicated nitrate concentration
time-series into a finite number of simplified intrinsic mode
functions (IMFs). Then the forecasting algorithms are
developed based in these IMFs to forecast the short-term
values. In the final step, the forecasting results are
aggregated to provide the final prediction outcome.

For the benchmarking deep-learning algorithms, the deep
neural network (DNN) (Ryu et al., 2017), deep belief network
(DBN) (Li et al., 2020), and long short-term memory recurrent
neural network (LSTM-RNN) (Kong et al., 2017) are selected
to perform the short-term nitrate concentration forecasting
tasks with the three modeling approaches as the comparative
analysis against the proposed IFPA-ESN. The DNN uses a
cascade of multiple layers with nonlinear processing units. It is

a fully connected and feedforward network that allows
computational models to be composed of multiple
processing layers to learn the deep temporal representations
in the time-series data. The DBN is consisted of multiple
unsupervised restricted Boltzmann machines (RBMs) and a
supervised regression layer stacked on the top. Each RBM has a
layer of input neurons and a single hidden layer with hidden-
to-all-visible connections. Layer-wise training is implemented
across multiple RMBs to ensure promising forecasting
accuracy. The LSTM-RNN servers as the most widely used
state-of-art time-series forecasting algorithms. It is a special
type of RNN that is capable to learn long-term and short-term
temporal dependencies. Besides, its LSTM blocks contains
three gates namely forget gate, input gate, and output gate.
These gates make the LSTM blocks smarter than classical
neurons and enable them to memorize recent sequences. All
selected benchmarking algorithms have demonstrated
superior performance in short-term forecasting tasks (He
et al., 2017b).

Measurement Metrices
Four measurement metrices are selected to evaluate the
performance of the chaotic modeling approach using the
IFPA-ESN algorithm including mean absolute error (MAE),
mean absolute percentage error (MAPE), root mean square
error (RMSE), and hit rate (HR). The definition of the
matrices as well as the formulas to compute them are
illustrated in Table 2 respectively.

TURNING POINT ANALYSIS

Parametric Ricker Function
Besides the pollutant concentration forecasting, we also aim to
quantify how the discharge regime in the agricultural watershed
reflected catchment hydrology and the delivery pathway of nitrate
pollutant. The transportation and supply limitations of the nitrogen
compounds varies by different locations also (Gao and Meguid
2021). Hence, the turning point analysis is performed in this research
to quantify the relation between predicted daily nitrate concentration
and stream discharge. In addition, the turning point will be utilized
to determine the supply and transport limitations for the case study
locations respectively.

Here, the parametric Ricker function (Kirchner et al., 2004) is
utilized to model the relationship between daily discharge and
predicted nitrate concentration. The Ricker function can be
expressed as :

f(x; a, b, c) � axbecx (17)
where a>0, b > 0, and c < 0 in most of the cases. It is commonly
used to model the hump-shaped data that are skewed to the right
such as the discharge-concentration relationship. Since there are
measurement errors and the fitted values can vary by measuring
time and location, we can further revise the form as Eq. 18 to
incorporate our study as follows:

Yi � aXb
i e

cXi + εi (18)
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where Xi is the discharge at time i; Yi is the predicted nitrate
concentration at time i; a, b, and c are unknown model
parameters; and εi denotes the random error at measurement
which has mean zero.

Delta Method
In many practical applications, fitting the mean structure of
the parametric curve is insufficient. First, in the long-term, the
mean structure may vary which brings challenge using only
one single parametric function. Second, a slight shift of data
points caused by measurement error or extremely high/low
discharge would significantly impact the fitted mean structure
of the fitted curve. Last, the random errors during the data
collection process is inevitable which may complicate the
statistical analysis (Toyoda and Wu, 2019; Wu et al., 2020).
Hence, in this research, the quantile regression is adopted and
the standard errors are also estimated for the parameters as
well as the turning points.

The delta method (Jones et al., 2017; Le et al., 2021) is selected
to derive the standard errors for the estimated parameters and
turning points. First, the natural log is taken on both sides of the
Ricker function and it can be expressed in:

lny � ln a + b lnx + cx (19)
Then, the actual discharge data x and predicted nitrate

concentration y both can be input into Eq. 19 to derive the
estimates of a, b, and c. Then, the turning point is defined to be
the x-value for which zf(x;θ)

zθ � 0 where θ � (a, b, c)T. By trivial
derivation, the turning point for the Ricker function is -b/c. Next, we
suppose the estimated parameters θ̂ ~ N(θ0,Ω) and the turning
point has the expression as h(θ). By delta’s method, we can derive
that the turning points has the standard error following Eq. 20 as:

h(θ̂n) ~ N(h(θ0),Δ) (20)

where, Δ can be computed following Eq. 21 as follows:

Δ � zh(θ)
zθT

∣∣∣∣∣∣∣∣θ̂n(
Ω
n)zh(θ)

zθ

∣∣∣∣∣∣∣∣θ̂n (21)

In this study, we can derive that for turning point h(θ) � −b/c and
zh(θ)
zθ � (0,−1

c,
b
c2)T respectively.

EXPERIMENTAL RESULTS AND
DISCUSSION

Data Reconstruction and Modeling
Considering the data homogeneity of nitrate concentration in
streams, the daily measured concentrations in 2020 at the eight
monitoring points were used for training, validation, and testing.
As described in section 3, data reconstruction is helpful for
modeling. The mutual information entropy and FNN were
applied simultaneously to obtain the optimal parameter
settings for data reconstruction. Finally, the Lyapunov
exponents, as described in Section 3.4, were utilized to
examine whether the reconstructed data using the parameter
setting represent a chaotic system.

First, the mutual information entropy values were computed
for each monitoring point; for example, one of the monitoring
points, namely “Yibin-1,” has been illustrated in Figure 3 with
respect to the computation of mutual information entropy. The
curve depicts the mutual information entropy with respect to
time delay in days. It shows an exponentially decaying pattern,
which indicates that the relevance of the two series weakens with
an increase in the delay times. For convenience, the optimal time

TABLE 2 | Measurement metrices.

Name Definition Equation

MAE Mean absolute error ∑N

i�1 |ŷi−yi |
N

MAPE Mean absolute percentage error ∑N

i�1 |̂
yi−yi
yi

|
N

RMSE Root-mean square error
�������∑N

i�1 |ŷi−yi |
√

N

Hit Rate Percentages of predicted values fall within the 5% intervals of the actual value

1
N∑N

i�1 I(i)I(i) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if

∣∣∣∣∣∣∣∣∣∣∣
ŷi − yi
yi

∣∣∣∣∣∣∣∣∣∣∣≤0.05

0 if

∣∣∣∣∣∣∣∣∣∣∣
ŷi − yi
yi

∣∣∣∣∣∣∣∣∣∣∣>0.05

FIGURE 3 | Computation of the mutual information entropy.
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delay is usually selected when the value of the mutual information
reaches its first local minimum value. Hence, in the example
shown in Figure 3, the delay time of the nitrate concentration is
set as 9. The time delay τ values for all monitoring points are
computed and summarized in Table 3.

Meanwhile, the minimum embedded dimensions m for the
monitoring points were computed using the FNN method while
taking the computed time delay τ values as a prerequisite. Here,
we set the value of the threshold to ath = 0.15. When the
percentage of false nearest neighbors is close to 0%, it implies
that the structure of the system is completely unfolded in the
phase space with dimension m. The computed minimum
dimension m values for all the eight monitoring points are
listed in Table 3.

In addition, the Lyapunov exponents were computed to
determine whether the reconstructed time-series system is
chaotic. As shown in Figure 4, the reconstructed nitrate
concentration data in “Yibing-1” location was measured for the
Lyapunov exponent λ. It was calculated using the slope coefficient
between ln L and T. If λ is positive (i.e., λ > 0 in Figure 4), the system
is chaotic, and the reconstructed time series is unfolded, as described
in Sections 3.3 and 3.4. The computed λ values for all the eight
monitoring points are summarized in Table 3.

Prediction Based on Chaotic Modeling
Furthermore, a comparative analysis was performed against the
traditional time-series forecasting approach and the temporal

signal decomposition forecasting approach. In each approach, the
proposed IFPA-ESN algorithm was compared with the other
benchmarking deep learning algorithms listed in Section
3.7 above.

First, the IFPA optimization algorithm was used to optimize
the hyperparameters of the ESN network. The reserve layer
nodes, reserved layer connection rate, learning rate, and
spectral radius were optimized simultaneously. Four
benchmark functions, namely sphere, Rastrigin, Ackley, and
Schaffer, were selected and compared. The benchmarking
functions are all “landscape generator” class, and the
differences among the functions relate to the number of
minima within the search space, general convergence rate to
the global optimal, and additional harmonic potential outside the
search space to force the solution to stay within the boundaries.
For each function, we performed a maximum of 2000 iterations
for each experiment, and a total of 20 experiments were
conducted. The performances of the four functions are
summarized in Table 4.

As shown in Table 4, MIN, MAX, and Average denote the
minimum, maximum, and average MAPEs, respectively, per
iteration for the 20 experiments performed. CR refers to the
convergence rate, which is the overall probability that the
algorithm can converge to the default minimum value using
benchmark functions. From Table 4, it can be inferred that the
Schaffer function has the smallest mean iterations of convergence
compared with the others. In addition, the convergence rate of the
Schaffer function is the highest, which implies the largest
probability of reaching the default minimum value of the loss
function. Hence, the Schaffer function was selected as the default
function for the IFPA algorithm. Using the Schaffer function, the
meanMAPEs and the upper/lower bounds of the 95% confidence
interval were computed in each iteration. The convergence
measured using the MAPE for each monitoring point is
illustrated in Figure 5.

Next, to demonstrate the performance of the proposed chaotic
modeling approach using IFPA-ESN, two other modeling
approaches, conventional time-series forecasting and temporal
signal decomposition, were applied and compared. The time-

FIGURE 4 | Computation Lyapunov exponent.

TABLE 3 | Summary of the data reconstruction.

Location

Metric Yibin-1 Yibin-2 Luzhou-1 Luzhou-2 Luzhou-3 Jiangjin-1 Jiangjin-2 Jiangjin-3

τ 6 7 7 4 8 5 7 5
m 7 5 8 6 6 5 9 7
λ 0.0083 0.0025 0.0061 0.0089 0.0059 0.0096 0.0061 0.0043

TABLE 4 | Summary of the global performance measures of four benchmark
functions.

Sphere Rastrigin Ackley Schaffer

MIN 230 MIN 560 MIN 423 MIN 656
MAX 2000 MAX 1980 MAX 1,675 MAX 1778
Average 1,251 Average 1,423 Average 1,137 Average 1,052
CR 68.8% CR 76.2% CR 72.5% CR 83.3%
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series forecasting approach was based on computation of the ACF
and PACF values for each monitoring point. The temporal
dependencies and seasonality were considered in the modeling
approach. In the signal decomposition approach, the time-series
nitrate concentrations were decomposed into nine simplified
intrinsic mode functions (IMFs). For each IMF, a short-term
forecasting sub-model was constructed. The final forecasting

results were the aggregation of all forecasting outcomes
produced by the nine sub-models.

Table 5 summarizes the forecasting performance over the
testing dataset of all the deep learning algorithms tested, as
described in Section 3.7. Using a conventional time-series
forecasting approach, the proposed IFPA-ESN outperformed
all the other benchmarking algorithms tested. The forecasting

FIGURE 5 | Convergence of MAPE by iterations using IFPA algorithm.

TABLE 5 | Nitrate concentration prediction with conventional time-series modeling.

Location Matric DNN DBN LSTM IFPA-ESN Location Matric DNN DBN LSTM IFPA-ESN

Yibin-1 MAE 2.86 2.29 2.26 1.84 Yibin-2 MAE 2.86 2.23 2.20 1.60
MAPE 0.19 0.16 0.14 0.12 MAPE 0.20 0.16 0.16 0.11
RMSE 3.99 3.31 3.09 2.29 RMSE 4.50 3.86 3.75 2.51
HR 0.63 0.66 0.68 0.73 HR 0.67 0.72 0.71 0.77

Luzhou-1 MAE 3.49 2.51 2.42 1.93 Luzhou-2 MAE 2.56 1.84 1.75 1.41
MAPE 0.17 0.12 0.11 0.09 MAPE 0.18 0.12 0.10 0.09
RMSE 3.87 3.49 3.27 2.44 RMSE 2.72 2.44 2.30 1.72
HR 0.71 0.76 0.77 0.80 HR 0.72 0.75 0.77 0.80

Luzhou-3 MAE 2.38 1.87 1.80 1.23 Jiangjin-1 MAE 2.33 1.82 1.73 1.54
MAPE 0.18 0.12 0.11 0.08 MAPE 0.13 0.11 0.10 0.08
RMSE 3.34 2.41 2.33 1.48 RMSE 3.56 2.69 2.61 2.25
HR 0.69 0.77 0.76 0.82 HR 0.74 0.79 0.79 0.82

Jiangjin-2 MAE 2.65 2.19 2.12 1.31 Jiangjin-3 MAE 2.06 1.92 1.76 1.15
MAPE 0.17 0.11 0.11 0.09 MAPE 0.16 0.11 0.11 0.09
RMSE 3.10 2.25 2.17 1.52 RMSE 3.30 2.11 2.02 1.49
HR 0.73 0.77 0.77 0.81 HR 0.72 0.77 0.77 0.79
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performances of all the algorithms tested using the signal
decomposition approach are presented in Table 6. The
proposed IFPA-ESN provided the smallest MAE, MAPE, and
RMSE values. Meanwhile, it provided the highest values of HR,
which demonstrates its superior power in short-term nitrate
concentration forecasting.

The global performance of short-term nitrate concentrations
obtained using the chaotic modeling approach is summarized in
Table 7. IFPA-ESN still outperformed all the algorithms tested in
this scenario. In addition, for all the tested algorithms, the chaotic
modeling approach had fewer forecasting errors, which validated
its superior power in discovering the real data structure. The
forecasting outcomes of the testing dataset and the observed
actual nitrate concentrations are shown in Figure 6.

Discussion of the Turning Points
The forecasted nitrate concentration in the testing dataset (100
days) integrated with the measured stream discharge during the
same period was utilized for turning point analysis. Here, the

forecasted daily concentration versus discharge data at the same
monitoring location is provided. An examination of the turning
point analysis, as described in Section 4, was performed, and the
results are summarized and illustrated in Table 8 and Figure 7.

Table 8 presents results of the fitted Ricker function using the
quantile regression. The turning points were also computed with
the standard errors provided. As shown in Table 8, the turning
points varied from 0.79 to 2.27 mm depending on the measured
stream location, which is impacted by drought. The standard
errors were computed using the Delta’s method, and the values
varied between 0.05 and 0.14 mm. Considering the estimated
turning points, the standard errors were within a small range,
which indicated the reliability of the estimation.

The fitted Ricker function is plotted in Figure 7. It depicts
the nonlinear relationship between the forecasted nitrate
concentrations and the stream discharges. The turning
points are labeled in red in Figure 7, and the fitted Ricker
function is plotted as a blue curve. At each monitoring point,
the nitrate concentration started to decline as the discharge

TABLE 6 | Nitrate concentration prediction with decomposition approach.

Location Matric DNN DBN LSTM IFPA-ESN Location Matric DNN DBN LSTM IFPA-ESN

Yibin-1 MAE 2.70 2.18 2.13 1.74 Yibin-2 MAE 2.73 2.12 2.09 1.51
MAPE 0.18 0.15 0.14 0.12 MAPE 0.19 0.15 0.15 0.11
RMSE 3.78 3.12 2.94 2.17 RMSE 4.33 3.65 3.54 2.37
HR 0.68 0.72 0.73 0.79 HR 0.71 0.75 0.74 0.81

Luzhou-1 MAE 3.32 2.37 2.28 1.83 Luzhou-2 MAE 2.45 1.76 1.66 1.34
MAPE 0.16 0.12 0.11 0.08 MAPE 0.17 0.12 0.10 0.09
RMSE 3.66 3.29 3.09 2.30 RMSE 2.62 2.34 2.20 1.63
HR 0.77 0.82 0.83 0.87 HR 0.76 0.79 0.81 0.85

Luzhou-3 MAE 2.25 1.77 1.71 1.16 Jiangjin-1 MAE 2.23 1.73 1.63 1.46
MAPE 0.17 0.12 0.11 0.07 MAPE 0.13 0.11 0.10 0.07
RMSE 3.15 2.29 2.21 1.40 RMSE 3.30 2.51 2.41 2.10
HR 0.74 0.83 0.83 0.88 HR 0.78 0.84 0.83 0.86

Jiangjin-2 MAE 2.51 2.08 2.01 1.24 Jiangjin-3 MAE 1.96 1.84 1.67 1.10
MAPE 0.16 0.11 0.11 0.08 MAPE 0.15 0.11 0.11 0.08
RMSE 2.94 2.12 2.04 1.44 RMSE 3.15 2.00 1.95 1.42
HR 0.79 0.83 0.84 0.88 HR 0.77 0.81 0.82 0.84

TABLE 7 | Nitrate concentration prediction with chaotic modeling approach.

Location Matric DNN DBN LSTM IFPA-ESN Location Matric DNN DBN LSTM IFPA-ESN

Yibin-1 MAE 2.56 2.06 2.03 1.65 Yibin-2 MAE 2.58 2.00 1.98 1.43
MAPE 0.17 0.14 0.13 0.11 MAPE 0.18 0.14 0.14 0.10
RMSE 3.59 2.96 2.78 2.05 RMSE 3.92 3.33 3.23 2.16
HR 0.71 0.75 0.77 0.83 HR 0.75 0.80 0.79 0.86

Luzhou-1 MAE 3.14 2.25 2.16 1.73 Luzhou-2 MAE 2.31 1.65 1.57 1.27
MAPE 0.15 0.11 0.10 0.08 MAPE 0.16 0.11 0.09 0.06
RMSE 3.48 3.12 2.93 2.18 RMSE 2.46 2.20 2.07 1.54
HR 0.81 0.86 0.87 0.91 HR 0.80 0.84 0.86 0.90

Luzhou-3 MAE 2.14 1.68 1.62 1.10 Jiangjin-1 MAE 2.09 1.63 1.55 1.38
MAPE 0.16 0.11 0.10 0.07 MAPE 0.12 0.10 0.09 0.07
RMSE 2.99 2.17 2.09 1.33 RMSE 2.79 2.12 2.05 1.78
HR 0.78 0.87 0.87 0.92 HR 0.83 0.88 0.88 0.91

Jiangjin-2 MAE 2.26 1.86 1.81 1.12 Jiangjin-3 MAE 1.85 1.74 1.58 1.03
MAPE 0.15 0.10 0.10 0.09 MAPE 0.14 0.10 0.10 0.08
RMSE 2.92 2.12 2.04 1.44 RMSE 2.98 1.90 1.82 1.34
HR 0.83 0.87 0.88 0.92 HR 0.81 0.86 0.86 0.88
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exceeded the turning point. This supports the idea that
drought impacts stream nitrate concentrations in the
temporal domain.

Table 9 summarizes the delineation between transport- and
supply-limited days. Based on the percentages of loads before
the turning point, the locations such as Yibin-1, Yibin-2,
Luzhou-1, Luzhou-2, Luzhou-3, and Jiangjin-1 are transport
limited. Only two locations, namely Jiangjin-2 and Jiangjin-3,
are supply limited. The proportion of loads before the turning
points varied between 53 and 81% under the transport-limited
condition. It is noteworthy that the proportion of loads before
the turning points was between 41 and 42% under supply-
limited conditions. These conditions indicate that supply

considerations are likely to control the flux of NOx-N in
stream networks.

CONCLUSION

In this study, insights are provided for experts, academicians, and
officers of local environment protection agencies via chaotic
modeling of stream nitrate concentrations using IFPA-ESN.
This study also provides a turning point analysis to quantify
nitrate concentration-discharge relations. In addition, the
limitations of pollutant transport and supply patterns were
estimated in all case studies.

FIGURE 6 | Predicted daily nitrate concentration versus actual observed concentration.

TABLE 8 | Fitting of turning point.

Location a se(a) b se(b) c se(c) TP (mm) se (TP, mm)

Yibin-1 25.57 3.06 0.58 0.05 -0.27 0.06 2.18 0.14
Yibin-2 24.69 1.89 0.71 0.03 -0.34 0.06 2.06 0.12
Luzhou-1 36.72 0.69 0.49 0.05 -0.32 0.07 1.52 0.12
Luzhou-2 43.37 4.06 0.30 0.05 -0.20 0.07 1.49 0.08
Luzhou-3 25.53 2.67 0.17 0.01 -0.21 0.05 0.79 0.13
Jiangjin-1 37.13 1.11 0.62 0.05 -0.33 0.08 1.86 0.05
Jiangjin-2 27.14 4.92 0.29 0.04 -0.21 0.07 1.41 0.13
Jiangjin-3 31.36 1.45 0.67 0.04 -0.29 0.08 2.27 0.06
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The computational results revealed that IFPA-ESN
integrated with a chaotic modeling strategy achieved a
satisfactory level of accuracy for forecasting the daily nitrate
concentration in stream networks using historical time-series
data. Compared with other time-series modeling scenarios, the
chaotic modeling strategy demonstrated superior performance
in terms of forecasting accuracy. Meanwhile, the
hyperparameters of the ESN were carefully tuned or searched
to reach the optimal setting using the IFPA algorithm. The

IFPA-ESN provided peak forecasting performances comparable
to those of other benchmarking machine-learning and deep
learning algorithms in our eight case study locations. On the
other hand, the turning point analysis using parametric Ricker
functions accurately fitted the trend of nonlinear relations
between nitrate concentration and discharge in eight case
study locations. Furthermore, the delineation between
transport and supply limitations was discussed to gain
insights into nitrate pollution in stream systems.

FIGURE 7 | Scatterplots of nitrate concentration versus discharge and turning points.

TABLE 9 | Limitation analysis of transport and supply.

Location Load before turning point (%) Load after turning point (%) Limitation

Yibin-1 53 47 Transport
Yibin-2 81 19 Transport
Luzhou-1 60 40 Transport
Luzhou-2 69 31 Transport
Luzhou-3 70 30 Transport
Jiangjin-1 64 36 Transport
Jiangjin-2 41 59 Supply
Jiangjin-3 42 58 Supply
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Future recommendations include incorporating various climate-
related external factors into the decision-making process in the light
of further reduction in forecasting volatility; these external factors
include precipitation, ambient temperature, wind speed, air humidity,
and soil-water relationships. Moreover, future studies should aim to
develop federated learning systems to incorporate the deep learning-
based chaotic modeling strategy to forecast nitrate pollution
simultaneously for multiple locations while protecting data privacy.
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