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Background: Scrub typhus (ST) is a climate-sensitive infectious disease.

However, the nonlinear relationship between important meteorological

factors and ST incidence is not clear. The present study identified the

quantitative relationship between ST incidence and meteorological factors in

southern China.

Methods: The weekly number of ST cases and simultaneous meteorological

variables in central Guangdong Province from 2006 to 2018 were obtained

from the National Notifiable Infectious Disease Reporting Information System

and the Meteorological Data Sharing Service System, respectively. A quasi-

Poisson generalized additive model combined with a distributed lag nonlinear

model (DLNM) was constructed to analyze the lag-exposure-response

relationship between meteorological factors and the incidence of ST.

Results: A total of 18,415 ST cases were reported in the study area. The

estimated effects of meteorological factors on ST incidence were nonlinear

and exhibited obvious lag characteristics. A J-shaped nonlinear association was

identified between weekly mean temperature and ST incidence. A reversed

U-shaped nonlinear association was noted between weekly mean relative

humidity and ST incidence. The risk of ST incidence increased when the

temperature ranged from 24°C to 28°C, the relative humidity was between

78% and 82%, or the precipitation was between 50mm and 150 mm, using the

medians as references. For high temperatures (75th percentile of temperature),

the highest relative risk (RR) was 1.18 (95% CI: 1.10–1.27), with a lag effect that

lasted 5 weeks. High relative humidity (75th percentile of relative humidity) and

high precipitation (75th percentile of precipitation) could also increase the risk

of ST.

Conclusion: This study demonstrated the nonlinear relationship and the

significant positive lag effects of temperature, relative humidity, and

precipitation on the incidence of ST. Between particular thresholds,

temperature, humidity, and levels of precipitation increased the risk of ST.
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These findings suggest that relevant government departments should address

climate change and develop a meteorological conditions-depend strategy for

ST prevention and control.

KEYWORDS

scrub typhus, meteorological factors, distributed lag nonlinear model, guangdong
province, lagged effect

Introduction

Scrub typhus (ST) is caused byOrientia tsutsugamushi, and it

is an acute febrile vector-borne infectious disease (Elliott et al.,

2019). ST is transmitted by the bite of chigger mite larvae, and it

is a serious public health issue in the Asia-Pacific region that

threatens the health of more than one billion people in this area

(Kelly et al., 2009). The World Health Organization estimates

that one million cases occur annually (Kwak et al., 2015). The

distribution range of ST has expanded in recent years, and the

number of cases has increased (Weitzel et al., 2019; Roberts et al.,

2021). However, no vaccine effectively prevents the disease

(Musa et al., 2021).

China has a serious ST burden. Approximately 162 million

people in southern China are at risk of infection, and more than

20,000 cases were reported in 2016 (Zheng et al., 2019; Li et al.,

2020). There are two focal types of ST in China, the summer type

in South China and the autumn-winter type in North China.

Human infections in the summer-type foci typically occur

between March and November, with a peak occurrence

between June and August, and it is transmitted by the

Leptotrombidium deliense mite (Li et al., 2000). The rodent

hosts of this type include wild and commensal rats: Rattus

losea, R. tanezumi, and R. norvegicus. Because of the active

host areas, people living in urban and rural areas may be

infected, and field workers in farmlands and forest areas are

prone to infection. The autumn-winter type foci have different

hosts, vector species and seasonal dynamics of incidence of ST. Li

et al. (2020) reported the detailed demographic features of

reported cases in China from 2006 to 2016. Farmers (73%)

were the most affected group, with 86% of cases occurring in

rural areas. In Guangzhou, the metropolis of southern China,

54.01% (2590) of the total cases from 2006 to 2014 occurred in

farmers (Wei et al., 2017). These results suggested that farmers

are the most sensitive population to ST.

The summer-type focus of ST is the dominant focus in China,

and it is responsible for most ST cases in the country, especially in

Fujian, Guangdong, Guangxi, and Yunnan Provinces (Li et al.,

2019; Yue et al., 2019). Cases from these four provincial areas

accounted for 65.2% of the total cases reported from 2006 to

2017, and cases fromGuangdong accounted for 27.2% (Yue et al.,

2019). Approximately 50% of reported cases in Guangdong

province occurred in the central area (Zhaoqing, Qingyuan

and Guangzhou) (Figure 1). Due to the high incidence in the

summer-type foci in this region, it is necessary to identify the

related factors of high incidence and find the complex

mechanism to provide scientific evidence for ST prevention

and control.

Climate change has had a great influence on infectious

diseases, especially vector-borne infectious diseases (Shuman,

2010; Ogden, 2017; Booth, 2018). ST was also identified as a

climate-sensitive infectious disease in many studies from

different areas (Kim and Jang, 2010; Seto et al., 2017; Ranjan

and Prakash, 2018). The chigger mite is an ectothermic

FIGURE 1
The geographic location of the central study area (in red) of Guangdong Province in China and the climate monitoring stations.
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arthropod that is highly climate-dependent (Kwak et al., 2015).

In the past years, several studies (Kwak et al., 2015; Wu et al.,

2016; Yu et al., 2018) found that meteorological factors, such as

temperature, relative humidity, and precipitation, affected ST

incidence. For instance, Wu et al. (2016) found a positive

correlation between temperature, precipitation and the

incidence of ST in mainland China through Poisson

regression. Sun et al. (2017) used panel negative binomial

regression method to find that relative humidity is an

influential factor affecting the spatiotemporal distribution of

ST. However, these studies are all based on the assumption of

linear relationship, and the role of meteorological factors on

health outcomes often has nonlinear and lag effects (Gasparrini

et al., 2015; Dudney et al., 2021; Lowe et al., 2021). For example,

Sun et al. (2018) found a reversed U-shaped curve between

temperature and Severe fever with thrombocytopenia

syndrome, with a 24-week lag effect of lower temperature.

Limited studies (Wei et al., 2017; Bhopdhornangkul et al.,

2021) have paid attention to the nonlinear and lag effects of

meteorological factors on ST on the monthly time scale, and only

one on the weekly time scale (Lu et al., 2021). However, the

nonlinear and lag effect of ST were not clearly explained, nor was

the specific meteorological thresholds that increase the risk of ST.

The distributed lag nonlinear model (DLNM) is used for time

series data to show potentially nonlinear and delayed effects of

the associations between exposure and response, especially in

assessing the relationship between meteorological factors, air

pollution, and health outcomes (Gasparrini et al., 2010;

Gasparrini, 2011, 2014; Peng et al., 2017). Many researchers

used DLNMs to explore the nonlinear relationships between

meteorological factors and health outcomes, such as mortality

(Wu et al., 2013), occupational diseases (Neophytou et al., 2018),

and infectious diseases (Limper et al., 2016; Sun et al., 2018; Zhao

et al., 2018; Lowe et al., 2021). The results of these studies

improve our understanding of the epidemic mechanism of

these diseases and help us develop more scientific prevention

and control strategies.

The present study identified the nonlinear relationship

between ST incidence and meteorological factors while

accounting for lag time in central Guangdong Province in

South China using DLNMs on the weekly time scale, and

found the specific meteorological thresholds that increase the

risk of ST. This information helps us understand the ecology of

ST and provides scientific evidence for the establishment of an

early warning system and prevention strategies for ST.

Methods

Study area

Guangzhou, Qingyuan, and Zhaoqing (111°21’~114°3′E,
22°26’ ~25°11′N) cover an area of approximately

41,300 square kilometers in central Guangdong Province

(Figure 1), with a population of approximately 20.31 million

in 2010 and 26.83 million in 2020. This region has a subtropical

monsoon climate that is warm and humid throughout the year

with hot and rainy summers. The metropolis Guangzhou is

located in the delta area of the Pearl River in the southern

area of this region. The north and west areas are hilly areas.

Seventy percent of the population in this area lives in Guangzhou

and approximately 15% live in Qingyuan and Zhaoqing,

respectively.

Data collection

Weekly numbers of ST cases at the county level from 2006 to

2018 were obtained from the Chinese Center for Disease Control

and Prevention (China CDC) through the Chinese National

Notifiable Infectious Disease Reporting Information System

(CNNDS) (http://www.chinacdc.cn/). All cases, including

clinical and laboratory-confirmed cases, were diagnosed

according to the diagnostic criteria issued by the Chinese

Center for Disease Control and Prevention (http://www.

chinacdc.cn/tzgg/200901/t20090105_40316.html).

Daily meteorological data were downloaded from the China

Meteorological Data Sharing Service System (http://data.cma.gov.

cn/). Because temperature, humidity, and rainfall are critical

factors in the development, disease transmission, and survival

of chiggers (Kwak et al., 2015; Bhopdhornangkul et al., 2021), the

present study primarily focused on these three variables. Weekly

meteorological variables, including weekly mean temperature

(Tmean, °C), weekly mean relative humidity (RH, %), and

weekly cumulative precipitation (mm), were calculated based

on daily meteorological data according to time. There were

8 weather monitoring stations in the study area, and we

calculated averages for each meteorological variable to represent

the whole level (Figure 1). After the weekly onset number of ST

cases was merged with weekly meteorological data, we created the

serial ST weather database and used Excel to manage the database.

Statistical analysis

Descriptive analyses were performed to describe the

characteristics of ST cases and meteorological factors.

Spearman correlation analysis was performed on ST cases and

meteorological factors.

To determine whether there were nonlinear and lag effects of

meteorological factors on ST, the present study used DLNMs

combined with quasi-Poisson generalized regression to identify

the associations between ST incidence and meteorological

factors. Based on the application of cross-basis, a bi-

dimensional function expressed by the combination of two-

basis functions, DLNM simultaneously represents nonlinear
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exposure-response dependencies and lag effects (Gasparrini

et al., 2010).

The model is expressed as follows:

log[E(Yt)] � α + cb(Xt , l) + ns(weathert , df ) + Yeart

where t is the week of the observation, Yt is the observed weekly

count of ST cases in week t, α is the intercept, and cb(Xt, l) is the

matrix produced by DLNM to model nonlinear and lag effects of

the meteorological factors. The studied meteorological factors in

the present study were temperature, relative humidity, and

precipitation. Here, ns() is the natural cubic spline, and

weather represents other weather factors. Year is an indicator

variable controlling for long-term trends and seasonal effects.

The quasi-Akaike information criterion (QAIC) was used to

determine the degrees of freedom (DF) for meteorological factors

and lag. A lower QAIC value indicates an improvement in model fit

(Gasparrini, 2011). The following degrees of freedom for

meteorological factors and their corresponding lags were used in

the final model: 4 and 4, respectively, for temperature; 4 and 4,

respectively, for relative humidity; and 4 and 4, respectively, for

precipitation. Based on the length of the life cycle of chigger mites

(the entire cycle may take only 2–3 months and allow at least

2 generations per year) (Elliott et al., 2019), the maximum lag was

selected as 25 weeks. The median values of the studied

meteorological factors were used as the reference to estimate the

relative risks (RRs). The relative risks of ST incidence were estimated

using different meteorological factor structures relative to the

reference value. Extreme low temperature, low temperature, high

temperature, and extreme high temperature were defined as the 5th

percentile (P5), 25th percentile (P25), 75th percentile (P75), and

95th percentile (P95) of temperature, respectively. Relative humidity

and rainfall were also defined in the sameway. A two-sided p value<
0.05 was considered statistically significant. All statistical analyses

were performed in R software (version 3.6.2) with the ‘dlnm’ and

‘splines’ packages.

Sensitivity analysis

To assess the robustness of the model, we performed

sensitivity analysis by altering the degrees of freedom of

meteorological factors and the corresponding lag: Tmean

(df = 3–5, lag df = 3–5), RH (df = 3–5, lag df = 3–5), and

precipitation (df = 3–5, lag df = 3–5).

Ethical approval

The disease surveillance data used in this study were obtained

from the NDSS with approval from the Chinese Center for

Disease Control and Prevention. All patient-identifying

information was removed before data analyses. The Ethical

Review Committee (ERC) of the Institute for Environmental

Health and Related Product Safety, Chinese CDC approved this

study (NO. 201606).

Results

From 2006 to 2018, 18,415 ST cases were reported in the study

area, which accounted for 12.98% of reported cases in mainland

China and 47.85% of cases in Guangdong Province. The number of

reported cases increased greater than 10 times, from 294 cases in

2006 to 2955 cases in 2018. A summary of weekly ST cases and

meteorological variables is shown in Table 1. Figure 2 shows that ST

cases and meteorological factors exhibited obvious seasonal and

periodicity patterns. The disease occurs all year, primarily in the 20th

- 45th weeks. Therefore, ST cases have obvious seasonal distribution

characteristics, with a higher incidence in summer and autumn, and

the number of ST cases showed an increasing trend (Figure 3).

The 3D plots of separate effects of weekly meteorological

factors on ST incidence in each lag week and the corresponding

overall relative risk plots of the relationship between them are

shown in Figure 4.

The estimated effect of weekly mean temperature and ST

incidence was nonlinear, with a peak RR at the highest mean

temperature by lag 0 (Figure 4A). A J-shaped nonlinear association

was found between weekly mean temperature and ST incidence

(Figure 4B). The cumulative risk of ST increased with increasing

weekly mean temperature. When the temperature was between

24°C and 28°C, the RR and 95% CI values were greater than 1.

In contrast to the two other meteorological variables, a

reversed U-shaped nonlinear association was noted between

weekly mean relative humidity and ST incidence (Figures

4C,D). The risk of ST increased when the relative humidity

was between 78% and 82%, with a peak relative risk of

approximately 81%.

The nonlinear association and lag effects between weekly

cumulative precipitation and ST incidence are illustrated in

Figure 4E, and a peak RR at the highest mean precipitation by

lag 0 was noted. When the weekly cumulative precipitation was

between 50 mm and 150 mm, the cumulative risk increased and

then decreased, with a peak at approximately 100 mm (Figure 4F).

Relative risks by lag at specific meteorological factors were

estimated (Figure 5 and Supplementary Table S2) using the

median values as references. Extreme low temperature and

low temperature (P5, P25) decreased the risk of ST incidence,

and high temperatures (P75) increased the risk with lag effects

that lasted for 5 weeks. The RRs were 1.18 (95% CI: 1.10–1.27)

and 1.18 (95% CI: 1.06–1.32) in P75 and P95, respectively, with

the highest risk at lag 0 (Figure 5A). Lower relative humidity

mainly decreased the risk of disease (P5 and P25). High relative

humidity (P75) increased the RR, with a lag effect that lasted for

9 weeks, and the highest RR was 1.06 (95% CI: 1.04–1.08).

However, the lag effect of relative humidity at P95 was

insignificant (Figure 5B).
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Figure 5C shows that extreme low precipitation and lower

precipitation (P5, P25) decreased the risk of ST incidence, and

high precipitation (P75) increased the risk. In the curve of P95 of

precipitation, the highest RR was 1.32 (95% CI: 1.22–1.43), with a

lag effect that lasted for 8 weeks. The specific RR and 95% CI

values are shown in Supplementary Table S2.

The sensitivity analysis showed that the model was

relatively robust to changed degrees of freedom

(Supplementary Figure S1).

Discussion

China is an important epidemic area of ST. Most ST cases

were reported in South China, especially in Guangdong and

Yunnan Provinces (Li et al., 2019; Yue et al., 2019). By

constructing DLNMs, this study explored the nonlinear

relationship and quantitative associations between

meteorological factors and ST incidence in the central area of

Guangdong with weekly data. A J-shaped nonlinear association

was identified between weekly mean temperature and ST

incidence. While a reversed U-shaped nonlinear association

was noted between weekly mean relative humidity and ST

incidence. The risk of ST incidence increased when the

temperature ranged from 24°C to 28°C, the relative humidity

was between 78% and 82%, or the precipitation was between

50 mm and 150 mm. These results demonstrated more complex

relationships between meteorological factors and ST than

previous researches and can help us understand the

mechanism of ST epidemics.

TABLE 1 Summary of weekly ST cases and meteorological variables in Central Guangdong Province in China, 2006–2018.

Min P25 P50 Mean P75 Max

Number of ST cases 0 4 12 27 45 164

Mean temperature (°C) 5.23 16.57 23.19 21.72 27.44 30.97

Mean relative humidity (%) 44.52 71.30 77.83 76.59 83.18 93.02

Precipitation (mm) 0.00 3.38 19.74 36.84 53.38 288.50

FIGURE 2
Weekly time-series distributions of ST cases and meteorological variables in Central Guangdong Province in China, 2006–2018.
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The seasonal distribution of ST cases in this research

(Figure 3) indicated that the study area was a summer-type

focus. L. deliense is the main vector of ST in this type of focus,

and typically causes the ST epidemic in summer. One species

of wild rat, Rattus losea, and two species of commensal rat, R.

tanezumi and R. norvegicus, are important host animals of

ST in South China (Wu and Jiang, 2007). Therefore, people

contact chigger mites in farmland, bush areas, parks, and

backyards in residential areas and may be infected even in

urban areas (Wei et al., 2014; Wei et al., 2017).

Climate plays an important role in the transmission of

infectious disease and may affect health outcomes via various

mechanisms, e.g., the density of hosts and vectors and the spread

of pathogens (Patz et al., 2014). ST is a climate-sensitive

infectious disease, and previous studies indicated that

meteorological factors, especially temperature, precipitation

and relative humidity, had positive effects on ST (Li et al.,

2014; Wei et al., 2017; Zheng et al., 2019). However, human

incidence does not always fluctuate immediately and linearly in

response to a change in meteorological factors. This study

examined the nonlinear relationship and lag effects between

meteorological factors and ST incidence on a weekly time

scale, which is more accurate compared to the studies on a

monthly time scale (Yang et al., 2014; Sun et al., 2017; Wei et al.,

2017).

The present study found a positive effect of temperature

on ST incidence, which is consistent with the studies in

northern China (Yang et al., 2014), in southern China (Wei

et al., 2017) and in Korea (Kwak et al., 2015). Meanwhile, this

study showed that the risk of ST increased when the

temperature was between 24°C and 28°C, and the risk

decreased when the temperature was higher than 28°C

(Figure 4B). The nonlinear effect of temperature is

biologically plausible. High temperature is conducive to the

activity of chigger mites, such as spawning rates and the

abundance and distribution of rodents (Van Peenen et al.,

1976). Considering that temperature may also affect human

activities and their interactions with vectors via activities,

such as farming or hiking, which may also affect the

occurrence of ST. The activities of humans and host

animals are reduced at temperatures higher than 28°C, and

the risk of exposure to chigger mites is then decreased.

Besides, in this study, the results showed that low

temperature (P25) could reduce the risk of ST, while high

temperature (P75) increased the risk with a 5-week lag effect.

Different from Wei et al. (2017) which was conducted on a

monthly basis, the results of this study explained the effect of

high temperature on the risk of different lag weeks, and

considered that temperature is an important indicator of

the risk of ST.

Relative humidity also exhibited a significant relationship

with the occurrence and transmission of some vector-borne

diseases (Xiang et al., 2018). A reversed U-shaped nonlinear

association was noted between relative humidity and ST

incidence, meanwhile the range of 78% and 82% could

increase the risk of ST. This result is different from Yao et al.

(2019), which found that relative humidity below 63% in foci in

southern China is a risk factor for ST. The reason for the

difference may be that compared with this study area, the foci

in southern China are a large geographical area with diverse

climate types. The interpretation of the results of this study is as

follows, one possible reason is that high relative humidity

FIGURE 3
Heatmap of the weekly distribution of ST cases in Central Guangdong Province in China, 2006–2018.
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provides suitable life conditions for chiggers (Clopton and Gold,

1993). Rubio and Simonetti (2009) reported that chiggers

survived and thrived well at relative humidity greater than

50%, and their activity decreased when the relative humidity

was less than 50%. The results of the present study further

showed that the risk of the disease began to decline when the

FIGURE 4
Plots of the relationships between ST and meteorological factors in Central Guangdong Province. (A,C,E) the three-dimensional plots of
temperature, relative humidity, and precipitation, respectively; (B,D,F) the overall relative risk plots of temperature, relative humidity, and
precipitation, respectively.
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FIGURE 5
Plots of relative risk by lag for specific meteorological factors. (A) weekly mean temperature; (B) weekly mean relative humidity; (C) weekly
cumulative precipitation.
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relative humidity was greater than 82%. Because days with

greater than 82% humidity were mostly rainy days, people

living in hilly areas preferred to stay at home and had less

contact with chigger mites. What’s more, Wei et al. (2017)

found that the 10% increase in relative humidity could lead to

an increase in the risk of ST after a 4-month lag. And Sun et al.

(2017) found that relative humidity with lags of 1 or 2 months is

an influential factor affecting the spatiotemporal distribution of

ST. While this study showed that higher relative humidity (P75)

increased the RR with the lag effect lasting for 9 weeks. The

analysis of the lag effect in weeks of the present study can more

accurately reflect the effect of relative humidity on ST.

Precipitation is also an important factor that significantly

affects the incidence of ST and other rodent-borne diseases

(Li et al., 2014; Chang et al., 2019). The nonlinear

relationship between precipitation and ST incidence was

reported in some previous studies (Wei et al., 2017;

Wangrangsimakul et al., 2020). However, the results of

the present research were more complex than the studies

mentioned above. When the weekly cumulative precipitation

was between 30 mm and 150 mm, the cumulative risk

increased and then decreased, with a peak at

approximately 100 mm (Figure 4F). Several mechanisms

may explain this complex nonlinear association. First,

precipitation may increase the growth of vegetation,

which directly or indirectly makes survival and

reproduction easier for rodents and causes a high rodent

density (Ernest et al., 2000). Second, appropriate rainfall is

good for the activity and survival of chigger mites. A study

from Thailand showed that rainfall positively influenced the

activity of L. deliense, with more chiggers mites found on

sentinel rodents in the wetter season, and the infection rate

of O. tsutsugamushi was greater during the same season

(Frances et al., 1999).

When cumulative weekly rainfall ranged from 150 to

250 mm, the relative risk decreased (Figure 4F). This kind of

relationship was also reported by Lu et al. (2021), which analyzed

weekly data of Guangzhou using the DLNM. While Li et al.

(2014) and Wei et al. (2017) reported a simple positive

relationship between rainfall and the risk of ST in Guangzhou

with monthly data. Because Wei et al. (2017) also used DLNM in

the data analysis, it suggested that the different relationship

between precipitation and ST risk may be related to the

partitioning method of data, the setting of parameters or

other reasons. The reason for this result may be that when

the rainfall exceeds a certain level, people’s outdoor activities

such as field work and park exercise will be reduced, and the

chigger mite contact with people will be greatly reduced, and the

risk of disease will be reduced.

A scientific understanding of the nonlinear relationship

between meteorological factors and the incidence of ST will

help us accurately evaluate the impact of climate change on

ST. Combined with the results of this study, it can be

concluded that meteorological factors are important

influences on the ST epidemic, and the effects are

complex. These results suggest that relevant government

authorities should strengthen the prevention and control

of ST according to the meteorological conditions and the

trend of climate change. These findings also suggest that

rodent and mite breeding sites should be controlled during

warm and humid seasons. In addition, public health

education about the relationship between meteorological

factors and ST, and some response measures should be

enhanced for sensitive groups of ST. Due to the lag effect

of high temperature, the response measures should last for at

least 5 weeks. Furthermore, some studies reported that

economic development and land-use change also affected

ST epidemics (Wardrop et al., 2013; Ranjan and Prakash,

2018; Shah et al., 2019). Therefore, more research on the

influencing factors of ST should be performed to elucidate

the complex epidemic mechanism of ST and develop

scientific intervention and prevention strategies.

Several limitations should be mentioned. First, the ST data

were downloaded from the CNNDS, which is a passive disease

surveillance system. Underreporting is inevitable due to

problematic access to medical resources, mild symptoms,

and a lack of help from the hospital. Second, ST incidence

may be affected by complex interactions between humans,

vector and host density, other meteorological factors,

socioeconomic factors, and urbanization level, which were

not considered in the model construction. Our results may

not be appropriate for other regions with different climate

zones.

Conclusion

The present study demonstrated the nonlinear

relationship and significant lag effects of temperature,

relative humidity, and precipitation on the incidence of ST

in the central area of Guangdong Province. Between particular

thresholds, temperature, relative humidity, and precipitation

were positively related to the risk of ST. However, the

relationships were negative outside of the thresholds. These

results improve our understanding of the mechanisms of the

ST epidemic under the influence of meteorological

factors. Therefore, accurate intervention and

prevention strategies and protocols may be developed

accordingly.
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