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Soil moisture (SM) is an important variable in mediating the land-atmosphere interactions.
Earth System Models (ESMs) are the key tools for predicting the response of SM to future
climate change. Many ESMs provide outputs for SM; however, the estimated SM accuracy
from different ESMs varies geographically as each ESM has its advantages and limitations.
This study aimed to develop a merged SM product with improved accuracy and spatial
resolution in China for 2015-2100 through data fusion of 25 ESMs with a deep-learning
(DL) method. A DL model that can simultaneously perform data fusion and spatial
downscaling was used to analyze SM’s future trend in China. Through the model,
monthly SM data in four future scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5)
from 2015 to 2100, with a high resolution at 0.25°, was obtained. The evaluation metrics
include mean absolute error (MAE), root mean square difference (RMSD), unbiased root
mean square difference (ubRMSD), and coefficient of correlation (r). The evaluation results
showed that our merged SM product is significantly better than each of the ESMs and the
ensemble mean of all ESMs in terms of accuracy and spatial distribution. In the temporal
dimension, the merged product is equivalent to the original data after deviation correction
and equivalent to reconstructing the fluctuation of the whole series in a high error area. By
further analyzing the spatiotemporal patterns of SM with the merged product in China, we
found that northeast China will become wetter whereas South China will become drier.
Northwest China and the Qinghai-Tibet Plateau would change from wetting to drying
under a medium emission scenario. From the temporal scale of the results, the rate of SM
variations is accelerated with time in the future under different scenarios. This study
demonstrates the feasibility and effectiveness of the proposed procedure for simultaneous
data fusion and spatial downscaling to generate improved SM data. Themerged data have
great practical and scientific implications.
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1 INTRODUCTION

The land surface hydrological cycle is an important part of the
climate system. As an important comprehensive variable in the land-
atmosphere interactions, SM has a critical impact on plant growth
(Chen et al., 2014) and hydrological processes (Western et al., 2004;
Seneviratne et al., 2010). SM affects the climate by changing the
surface partitioning of radiation and evapotranspiration (Albergel
et al., 2013; Fan et al., 2019). Climate changes also cause an increase
in extreme weather events, which make soil moisture (SM)
variability increase (Green et al., 2019). According to the Sixth
Assessment Report (AR6) working group I of the
Intergovernmental Panel on Climate Change (IPCC), the global
surface temperature has increased by 1.39°C compared to that before
the Industrial Revolution (the average of 1850-1900) (Masson-
Delmotte et al., 2021). Global warming could worsen drought
conditions in many regions worldwide (Orlowsky and
Seneviratne 2013; Wanders et al., 2015; Naumann et al., 2018).
Foreseeing the drought in advance and making positive solutions is
beneficial to any country. Owing to considerable SMmemory (Song
et al., 2019), the residence times of SM can be used to predict extreme
events (including droughts, heat waves, etc.). The variability of the
surface-layer soil moisture (SSM) drops below that of deep-layer soil
moisture in dry conditions (Hirschi et al., 2014). SSM is well
correlative with deep-layer soil moisture in many cases, and only
analyzing SSM lacks little information of deep-layer SM (Qiu et al.,
2016). Furthermore, the high-frequency characteristic changes of
surface soil moisture are significantly affected by atmospheric
changes. Therefore, it is significant to accurately obtain the future
change of the temporal and spatial distribution and trend
information of SSM.

In recent years, ESMs that considered dynamic, physical,
chemical, and biological processes are the key tools for
predicting the response of SSM to future climate change. The
simulated data by the ESMs provides a research basis for the
earth’s response to radiative forcing change (Almazroui et al.,
2021). For the aim of solving an ever-expanding range of present
scientific questions in the climate change field, the latest Phase Six
of the coupled model inter-comparison project (CMIP6) has been
launched by the Working Group on Coupled Modelling
(WGCM) (Eyring et al., 2016). Compared with Representative
Concentration Pathways (RCPs) scenarios in Phase5, CMIP6 is
designed with the combination of new emission scenarios driven
by Shared Socioeconomic Pathways (SSPs) (van Vuuren et al.,
2014) and RCPs, which includes the meaning of future socio-
economic development. It is a great development that four SSPs
(SSP1-2.6, SSP2-4.5, SSP4-6.0, SSP5-8.5) (Riahi et al., 2017;
Fricko et al., 2017; Fujimori et al., 2017; Kriegler et al., 2017)
replace respectively the four RCPs (RCP2.6, RCP4.5, RCP6.0,
RCP8.5) which are used in CMIP5 and adding another four SSPs
(SSP1-1.9, SSP4-3.4, SSP5-3.4OS, SSP3-7.0).

However, the different CMIP6 model products have different
uncertainties and sensitivities in each variable which are affected by
the future emission scenarios, the algorithms of model physics (Li
et al., 2012), and the internal variability of the climate system
(Deser et al., 2012; van Pelt et al., 2015; Zhuan et al., 2019). The
processes in the earth system are difficult to understand mainly

because of their complexity (Zhang and Chen 2021). An extensive
assessment of CMIP6 models is presented, and the result shows
that no single model performs best in all evaluation methods (Sun
and Archibald 2021). So, we need to consider scientifically fusing
ESMs products. The traditional fusion method is the ensemble
mean, considered a simple and effective data merging technique
(Weigel et al., 2008). But this method is easily affected by extreme
values which obscure the differences in data so that the simulation
advantages of somemodels in various regions are erased (Bai et al.,
2021; Sang et al., 2021). With the development of computer
technology, new theories and methods about fusion appear
successively. But the application in satellite imageries fusion and
remotely sensed products are far more than in ESMs products.
Another important issue is that the spatial resolutions of ESMs
products are generally low and un-matched. Bilinear interpolation
is a commonly used traditional method for solving the first
problem. Its calculation process is simple (Crow et al., 2012;
Yuan and Quiring, 2017), but the high-frequency signals of the
zoomed image are lost. CDF-t (probabilistic downscaling) was used
in France and provided good results (Michelangeli et al., 2009).
Two statistical downscaling methods, Smooth Support Vector
Machine, and Statistical Downscaling Model have a good
performance in the upper Hanjiang basin in China (Chen et al.,
2012). Systematic mean correction is applied on sea-surface
temperature to reduce large biases (Narapusetty et al., 2014). A
study over the Tianshan Mountains in China used universal
kriging interpolation with stepwise and geographically weighted
regression to downscale and correct precipitation data (Lu X. et al.,
2019). The methods mentioned above are all processing of a single
model and do not make full use of the advantages of each model.
Fusion and deviation correction is processed separately and only
have good results in a small area.

Advanced algorithms from computer vision can be used to
process climate data. Super-Resolution Convolutional Neural
Network (Dong et al., 2016), the pioneering work of image
super-resolution reconstruction, draws attention to the
convolutional neural network of deep-learning (DL), which
outperforms the traditional Super-Resolution (SR). Subsequent
research (Zhang et al., 2020) also used deep learning methods to
achieve SR work for hyperspectral image (HSI). More and more
ESMs SSM datasets of different scenarios and history from
CMIP6 are available now. SSM data is sufficient to train a DL
model for SSM dataset generation. If we regard the climate data of
one model as a single-channel image, the color channels of the
HSI are equivalent to the multiple different ESMs products. With
the idea of HSI SR, we can input the SSM data, which is output by
many low-resolution ESMs, and get high-resolution SSM data.

The novelty of this study is that our final output data is
downscaled data with the high resolution 0.25° × 0.25°, and
merged data that retains the advantages of different ESMs. We
have implemented the two functions mentioned above in one
model. Therefore, this study uses historical CMIP6 SSM data to
train a DL model with fusion and downscaling functions and
obtains high-resolution SSM merged data (CMIP6DL). Then, we
verify it with the testing data and compare it with the ensemble
mean of CMIP6. Finally, we analyze the trend of SSM changes
over China in the future based on CMIP6DL.
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2 DATA AND METHODS

2.1 Study Area
Our study area is China, located in eastern Asia and on the
western bank of the Pacific Ocean. We select China since it is
a great country in agriculture with a long history and
extensive cultivated land area, which contributes
significantly to the global agricultural development. China
has a land area of 9.6 million square kilometers, ranking third
in the world in terms of land area. The land cover in China
consists primarily of woodland (29.61%), grassland (27.56%),
and agricultural area (13.32%); some less dominant land
cover types are residential area (3.36%) and water bodies
(3.7%) (http://www.mnr.gov.cn/dt/ywbb/202108/
t20210826_2678340.html). Owing to its sheer size, there
are complicated geographical conditions and special
climate characteristics, especially the continental monsoon
climate, which determine that China is a country where
droughts frequently occur. The study period ranges from
2015 to 2100, in which we define March-April-May
(MAM) as spring, Jun-July-August (JJA) as summer,
September-October-November as autumn, and December-
January-February as winter with the annual mean and the
four seasons.

2.2 Earth System Models Data
This study collects monthly mean simulated SSM from 25 ESMs
of CMIP6. This data is openly accessible from https://esgf-node.
llnl.gov/projects/cmip6/. All selected SSM is the water mass in the
top 10 cm layer (kg/m2). Meanwhile, these are available both in

the historical period (1850-2014) and future period (2015-2100)
in four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). The
brief descriptions of the models we used are shown in Table 1.
The raw spatial resolutions of 25 models are different, ranging
from 0.7031° to 2.8125°, but mostly close to 2° × 2°. In order to
reduce the loss of raw data information, all ESMs data are re-
gridded to a uniform resolution of 2° × 2° using bilinear
interpolation.

2.3 ERA5-Land Data
Due to improved computing performance in recent years, the
European Centre for Medium-Range Weather Forecasts
(ECMWF) has produced more detailed global datasets than
ever before. The most advanced dataset is the ERA5-Land
dataset (Muñoz-Sabater et al., 2021), and the ERA5-Land
performed strongly in a SM intercomparison of 18 products
with many (826) in situ stations (Beck et al., 2021). Based on the
ERA5 reanalysis dataset, the ERA5-Land data is a global
numerical reanalysis description of climate data that is
generated through multiple data sources into the land surface
driving model. Compared to ERA5 and the older ERA-Interim,
ERA5-Land is extended back to 1950. This study uses a monthly
SSM dataset with a high horizontal resolution of 0.1° × 0.1° from
1950 to 2014. We access it from https://www.ecmwf.int/en/era5-
land. The SSM is the water mass in the top 7 cm layer (m3/m3). It
has been demonstrated that ERA5-Land has high credibility
(Muñoz-Sabater et al., 2021). We select this data to be the
reference data to train the model. The greater the factor of
downscaling, the greater the error; thus, we chose 8 as a
downscaling factor, which made the CMIP6DL retain the

TABLE 1 | Details of the 25 CMIP6 models used in this study.

Institution (country) Model Name Resolution
(Lon × lat)

Used Member

CSIRO(Australia) ACCESS-CM2 1.875o × 1.25o r1i1p1f1
ACCESS-ESM1-5 1.875° × 1.25° r1i1p1f1

BCC(China) BCC-CSM2-MR 1.125° × 1.125° r1i1p1f1
CAS(China) CAS-ESM2-0 1.4062° × 1.4062° r1i1p1f1
NCAR(United States) CESM2 1.25° × 0.9424° r1i1p1f1

CESM2-WACCM 1.25° × 0.9424° r1i1p1f1
CMCC(Italy) CMCC-CM2-SR5 1.25° × 0.9424° r1i1p1f1

CMCC-ESM2 1.25° × 0.9424° r1i1p1f1
CCCMA (Canada) CanESM5-CanOE 2.8125° × 2.8125° r1i1p2f1

CanESM5 r1i1p1f1
EC-Earth-Consortium (EU) EC-Earth3-Veg-LR 0.7031° × 0.7031° r1i1p1f1

EC-Earth3-Veg r1i1p1f1
CAS(China) FGOALS-f3-L 1.25° × 0.9424° r1i1p1f1

FGOALS-g3 2° × 2.25° r1i1p1f1
NOAA-GFDL (United States) GFDL-ESM4 1.25° × 1° r1i1p1f1
NASA (United States) GISS-E2-1-G 2.5° × 2° r1i1p1f2
IPSL (France) IPSL-CM6A-LR 2.5° × 1.2676° r1i1p1f1
NIMS-KMA (Korea) KACE-1-0-G 1.875o × 1.25o r1i1p1f1
MIROC(Japan) MIROC-ES2L 2.8125° × 2.8125° r1i1p1f2

MIROC6 1.4062° × 2.8125° r1i1p1f1
MPI-M(Germany) MPI-ESM1-2-HR 0.9375° × 0.9375° r1i1p1f1

MPI-ESM1-2-LR 1.875° × 1.875° r1i1p1f1
MRI (Japan) MRI-ESM2-0 1.125° × 1.125° r1i1p1f1
NCC(Norway) NorESM2-LM 2.5° × 1.895° r1i1p1f1
MOHC (United Kingdom) UKESM1-0-LL 1.875° × 1.25° r1i1p1f2
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characteristic information of the original models and learn the
characteristic information of ERA5-Land. Therefore, we resample
ERA5-Land data to 0.25° × 0.25° resolution by bilinear
interpolation.

2.4 Methods
2.4.1 Deep-Learning Methods
A neural network called Ynet (Liu, Ganguly, and Dy 2020), which
combines image super-resolution techniques and data fusion, is
used in this study. We use this DL model to build a relationship
between the historical ERA5-Land SSM data and the historical
CMIP6 ESMs data. By applying this relationship in the future
period, a merged SSM product, which conforms to the
characteristics of the ERA5-Land dataset distribution, is
developed with improved accuracy and spatial resolution in
China for 2015-2100 through data fusion of 25 ESMs.

The model architecture is shown in Figure 1. This architecture
includes three parts: the first one is a quasisymmetric structure
with skip connections. The input is low-resolution XESM. Like
RED-Net, this structure tackles the gradient vanishing problem
and is regarded as the feature extractor, which captures the
abstraction of noisy low-resolution images and outputs the
cleaner image. This part consists of 30 convolutional layers
and 15 deconvolutional layers. However, the deconvolutional
layer may introduce the “checkerboard artifacts” which will
reduce the output quality (Odena et al., 2016). The purpose of
adding a convolutional layer after each deconvolutional layer is to
reduce the checkerboard problem. The second part is the
upsampling part, which includes an upsampling layer and two
convolutional layers with the same feature depth as the input
channel. Similar to the first part, adding the latter two layers is to
eliminate the checkerboard effect. Downscaling is the main
function of this part. The third part is for fusion. The input of
this part contains three datasets: the upsampling part output,
auxiliary data and unsampled XESM. The auxiliary data is used to
help improve the results. It remains the same for different months
in the whole training and test period. Concatenating the three

datasets calculated by two convolutional layers, the high-
resolution merged data is produced. The loss function is
calculated as follow:

L(θ) � 1
N

∑N
i�1

∣∣∣∣∣∣∣∣f(Xi, θ) − Yi

∣∣∣∣∣∣∣∣2 (1)

where θ is the network parameters to be optimized.f(Xi, θ) is the
learnt function. N is the total number of the training dataset
samples. Xi is the input and Yi is the target at location i.

Since the units of the ESMs data and ERA5-Land data are
different and need to be unified, we use the following formula to
convert the unit of the ESMs data (kg/m2) into volumetric water
content (m3/m3) (Zhu and Shi, 2014).

kg

m2

m3

1000kg
1000mm

1m
1

thickness of the soil layer (mm)
� volumetric water content(m3/m3)

2.4.2 Evaluation Method
To objectively estimate the performance of CMIP6DL and know
whether it captures the ERA5-Land data distribution
characteristics, we use mean absolute error (MAE), root mean
square difference (RMSD), unbiased root mean square difference
(ubRMSD), and coefficient of correlation (r). The computation
formulas are shown as follows:

MAE � 1
n
∑n

i�1|Si − Ei| (2)

RMSD �
�����������
1
n
∑n
i�1
(Ei − Si)2

√
(3)

ubRMSD �
���������������������
1
n
∑n
i�1
[(Ei − �E) − (Si − �S)]2√

(4)

FIGURE 1 | Model architecture (Liu et al., 2020).
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r � ∑n
i�1[(Ei − �E)(Si − �S)]�����������∑n

i�1(Ei − �E)2√ �����������∑n
i�1(Si − �S)2√ (5)

In Eqs. 2–5 n is the total number of samples. Si is the SSM of
CMIP6DL and Ei is the ERA5-Land reanalysis data at location i. �E,
�S represents the average value of CMIP6DL data and reanalysis
data respectively.

2.4.3 Analysis Method
Unlike other climate variables, SSM has a relatively long memory,
which refers to the time required for rainfall to dissipate
(Seneviratne et al., 2006; McColl et al., 2017). Therefore, the
change of SSM can directly reflect the drought situation.
However, due to the complexity of the causes of drought and
the investigators’ consideration of various factors in the study
area, there is no unified mathematical definition of drought
(Lloyd-Hughes 2014). Considering the small range of SSM
change, it is difficult to see the future change trend directly
using the real value of SSM. Therefore, we use a standardized
soil index to study the trend of SSM changes in four scenarios.
The standardized SM index (SSMI) (Zhou et al., 2019) is
calculated as follow:

SSMI � SM − SM

σ
(6)

where in, SM refers to the value of SSM on a certain temporal
scale (monthly), SM is the mean value of SSM for many years
(2015-2100) on this time scale, σ is the standard deviation of SSM
for many years on this time scale. SSMI less than 0 means that the
SM is less than the normal value, showing a state of SSM deficit.
Conversely, the SSM is greater than the normal value, showing a
state of SSM surplus. The value of SSMI indicates the degree of
deviation from the normal value.

To calculate the SSMI trend, we use the non-parametric Theil-
Sen slope (TS) (Sen 1968; Theil 1992) method in this study. It has
been widely used in climate studies (Ahmed 2014; Kumar,
Tischbein, and Beg 2019). Compared to the traditional
method, such as linear regression, this method has high

computational efficiency and is insensitive to data outliers
(Ohlson and Kim 2015). The formula is as follows:

TS � mean(xj − xi

j − i
),∀j> i (7)

where in,mean is the function, xj and xi are the data at time j and
at the time i in the time series. TS > 0 indicates an upward trend,
while TS < 0 indicates a downward trend.

3 RESULTS AND DISCUSSION

3.1 Implementation of Deep-Learning
Method
We use the re-gridded 25 ESMs data as input XESM; thus, the
input has 25 channels for SSM data. The original historical ESMs
data covers the whole earth, with every month from January 1950
to December 2100— a total of 1812 months. We focus on China
and extract the data within latitude 18°N to 54°N and longitude
71°E to 137°E. There are 18 latitude points and 33 longitude
points. The reference target is ERA5-Land data with 18°–53.75°N
latitude grid by 0.25°, and 71° to 136.75°E longitude grid by 0.25°.
Therefore, the target has a size of 144 × 264 with 1 channel. We
divide all historical data into three datasets: the training dataset
(1950-1999), the validation dataset (2000-2007) and the testing
dataset (2008-2014). The ratio is approximately 8:1:1.

In training the model, we add a land-ocean mask to focus only
on the land SSM. We match the 25 ESMs SSM data and the
reference data simultaneously as a group and put the groups into
the model for training. We apply 100 epochs in the training
phase. Because of the limitation of GPU memory constraints, the
initial learning rate is 1 × 10−4, and an epoch iterates one group
(that is, the batch-size is set to 1) in the training dataset once. We
use the Dropout method (Hinton et al., 2012) during training.
Dropout removes certain neurons from the DL model at each
training step, which limits the complexity of the network and
avoids overfitting. Figure 2 depicts the loss function curves of the
training and validation datasets for each epoch. As seen, the loss
drops sharply at the beginning of the training process.
Subsequently, the loss curves show a fluctuation. The results
are as expected with the declining loss. There is convergence after
40 epochs, indicating model stability.

The four evaluation indicators of the model on the testing
set are shown in Table 2, where r is the coefficient of spatial
correlation. A common fusion method of ESMs data is to
compute the ensemble mean of all used ESMs data. Through
the evaluation indicators, it can be distinguished which
dataset can better capture the characteristics of SSM data

FIGURE 2 | Training loss and validation loss curves.

TABLE 2 | MAE, RMSD, ubRMSD, and r (Spatial correlation coefficient) of
CMIP6DL and ensemble mean.

MAE RMSD ubRMSD r

CMIP6DL 0.0325 0.0461 0.0452 0.9515
Ensemble mean 0.0868 0.1042 0.0982 0.7943
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distribution. To compare the CMIP6DL with the ensemble
mean of 25 ESMs SSM data under the principle of fairness, we
resample 25 ESMs to 0.25° × 0.25° and then calculate the mean
of each grid. CMIP6DL has a better performance than the
ensemble mean as shown in Table 2. There is significant
improvement by the DL model. We choose spatial correlation
as our evaluation method for subsequent spatial change
analysis. The SSM spatial distribution is related, but it is

fragmented in the dataset generated by the traditional
method.

3.2 Evaluation of Fusion Soil Moisture Data
To accurately understand the spatial error distribution, we
plot the spatial distribution of MAE, as shown in Figure 3.
Figure 3A is the MAE of the testing set of CMIP6DL and
ERA5-Land. The MAE in 70.14% of the study area is less than

FIGURE 3 |MAE discrepancies of monthly mean SSM in the testing dataset (the period of 2008–2014) between (A) CMIP6DL and ERA5-Land, and (B) ensemble
mean and ERA5-Land.

FIGURE 4 | Time series of the SSM; each grid is selected from different climatic zoning from 2008 to 2014 for CMIP6DL. The coordinates of the four grids are (A)
84.5°E, 44.75°N (arid zone) (B) 113.75°E, 39°N (semiarid-subhumid zone) (C) 94°E, 30.25°N (Tibetan-Plateau) (D) 102.25°E, 29.75°N (humid zone).
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0.04, while a few regions of the Qinghai-Tibet Plateau have a
large error above 0.06. The Qinghai-Tibetan Plateau is one of
the polar regions, and its hydrological cycle is complex (Ullah
et al., 2018). The output of the DL model is not satisfactory in
eastern Inner Mongolia and Henan-Hebei, with an error of
0.04–0.06. Figure 3B is the MAE of the ensemble mean
calculated from traditional approaches and the reference
data. MAE is greater than 0.1 in most areas of western and
southern China. The error is beyond the acceptable range, so
the study’s uncertainty based on the ensemble mean
increases. In contrast, the dataset produced by CMIP6DL is
highly reliable.

We divide China into four climatic regions: arid zone,
semiarid-subhumid zone, humid zone, and Tibetan-Plateau.
We select pixels in each region to evaluate the performance in
the temporal dimension, as shown in Figure 4. As a whole, we
found that the fluctuations of CMIP6DL and ERA5-Land in
the time series are consistent. Observing Figures 4A,B,D, we
find that the SSM of the ensemble mean is in phase than the
other two datasets but with systematic errors. The minimum
values of these three temporal sequences in Figure 4A almost
coincide, but the maximum values are not at the same time.
The maximum value of CMIP6DL is between ERA5-Land and
ensemble mean but closer to ERA5-Land. It indicates that
CMIP6DL data is equivalent to the original data after
deviation correction and expands the range of periodic
changes in SSM. Figures 4B,D also illustrate this
viewpoint and prove the reliability of the CMIP6DL data

on the temporal scale. The reference data has an SSM
anomaly, but the DL model can’t accurately learn this
mutation. The original data is limited, so it can be said
that the merged data has a “smoothing” effect. Compared
with the ensemble mean, the SSM changes of CMIP6DL in the
Qinghai-Tibetan Plateau are tremendous. The main feature
of Figure 4C is that the merged data is also equivalent to
reconstructing the fluctuation of the whole series in a high
error area, which makes the SSM change periodically. The
results suggest that the merged data will have good results
without anomaly or the data without significant fluctuation.
On the contrary, if the mutation of the reference data is
irregular, which brings difficulties to the DL model learning,
the output data will not perform well.

We use the Normalized Taylor diagram to further
evaluate the CMIP6DL dataset, ESMs datasets, and the
reference dataset. Figure 5 shows the distribution of the
correlation, ubRMSD, and ratios of standard deviation
(STD) for about 28 datasets (including ERA5-Land,
CMIP6DL, the ensemble mean, and 25 ESMs) during
2008–2014. STD is computed as:

STD �
����������
1
n
∑n
i�1
(ci − �c)2

√
(7)

wherein n is the number of all pixels in each dataset; ci is the
specific value of each pixel, and �c is the average of all pixel values
in the current dataset.

FIGURE 5 | Normalized Taylor diagram presenting a comparison of CMIP6DL dataset with ERA5-Land, the ensemble mean, and 25 models from CMIP6 in
2008–2014. The diagram shows the correlation, ubRMSD, and ratio of the standard deviation.
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The overall performance of the CMIP6DL data, as shown by
the selected performance indicators, is better than any other
dataset. The products of 25 ESMs show a scattered state with r less
than 0.8 and ubRMSD higher than 0.6. There are obvious
differences between individual ESMs datasets. Comparing the r
and ubRMSD values, the ensemble mean achieves good results
following the merged data. Considering the ratio of STD, there is
a clear gap between the performance of ensemble mean and
merged data, inferring that the amplitude of the ensemble mean is
larger than the individual models.

3.3 Future Surface-Layer Soil Moisture
Changes Based on CMIP6DL
3.3.1 Spatial Patterns of Future Surface-Layer Soil
Moisture
Based on the 25 ESMs data, we used the trained DL model to
fuse the future SSM dataset of the four scenarios (SSP1-2.6,
SSP2-4.5, SSP3-7.0, SSP5-8.5). From Figure 6, we can see the
spatial distributions of annual change of SSMI under four
scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) from
2015 to 2100. From the results, the spatial patterns of SSM
trends in the four scenarios are similar; the south is drying while
the north is wetting. Under global warming, the arid regions will
expand (Huang et al., 2016). Our conclusion confirms the

findings of Lu J. et al. (2019) that the average annual SSM
shows a large scale drying-wetting trend in China.

The future SSM changes will vary from north to south in
China. With 100°E as a dividing line, northwest China and the
Qinghai-Tibetan Plateau turn from a wetting trend to a drying
trend as the intensity of radiative forcing increases (SSP5-8.5 >
SSP3-7.0 > SSP2-4.5 > SSP1-2.6). Under SSP5-8.5, drying
becomes more obvious, showing that the environment of this
arid region is the vulnerable area affected by continued climate
change, which is consistent with Dai (Dai 2013). In Xinjiang,
Qinghai and Gansu, under SSP1-2.6, most areas have a palpable
wetting trend, and the SSM volumetric water content increases by
more than 0.04 (per decade) in southern Xinjiang. However,
under SSP5-8.5, the SSM decreases by more than 0.04 (per
decade) in nearly half of Xinjiang.

In the east of 100°E, the SSM maintains the drying (wetting)
condition in the south (north), but the rate is different under
different scenarios. It has become irrefutable that SSM is
gradually wetting north of 35°N. The wetting trend is
unusually significant and has a wide range, no matter the
scenario. Especially under SSP1-2.6 and SSP3-7.0, the wetting
trend is greater than 0.05 (per decade). The uneven SSM trend in
the northeast is related to historical SSM data because our model
is data-driven (Solomatine, See, and Abrahart 2008). In addition
to the topographical factors (Chen et al., 2016), local agriculture
also affects historical data, such as the rapid reproduction of

FIGURE 6 | Spatial distributions of the annual mean SSMI trend on four future scenarios in the period of 2015–2100 for CMIP6DL in China. The dots indicate the
trend passing the 5% significance test.
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water-expensive crops and excessive fertilization use (Liu et al.,
2015). In southern China, areas with significant drying tendencies
have changed. With the increase in radiative forcing, the severe
drying trend around 33°N shifts and disperses from north to
south to around 30°N. It can be said significant drying trends
mainly appear in the Yangtze River basins.

China has a vast land with most of the mainland located in
the middle latitudes, which belongs to the northern temperate
zone with four distinct seasons. Therefore, it is necessary to
analyze the changes of SSM in the future seasons. As shown in
Figure 7, the seasonal and annual change trends are spatially
different. In general, the SSM in northwest and northeast
China is drying or wetting, which is consistent with the
average annual SSM (Figure 6), regardless of the season or
scenario. In spring, with the low to a high scenario, the area of
desiccation increases in China excluding the Qinghai-Tibetan
Plateau. Particularly under SSP5-8.5 (Figure 7M), China has
the largest drying area, reaching 62.4%. However, unlike

Figure 6D, there is a significant wetting trend in the
northern Qinghai-Tibetan Plateau. In China, summer is
the most significant season of humidification (Du et al.,
2020), related to the monsoon climate. Only summer has
the largest range of wetting trends in the four scenarios, and
the average wetting trend is greater than 0.028 (per decade).
With the increase of radiative forcing, the drying rate of
northwest China, Qinghai-Tibetan Plateau, Sichuan and
Yunnan is rising. In a few areas, SSM decreased by 0.075
per decade. First, the trend of wetting and drying has slowed
down slightly. From SSP1-2.6 and SSP2-4.5, we can see that
the wetting rate in autumn is much lower than in summer.
Under SSP3-7.0 and SSP5-8.5 scenarios, the drying rate of the
west of 100°E declines greatly, reaching -0.03. The second
change is the acceleration of the wetting area moving
westward. Specifically, under SSP3-7.0 and SSP5-8.5, the
most wetting areas moved from Heilongjiang, Liaoning,
and other places to central Inner Mongolia and Shanxi.

FIGURE 7 | Spatial distributions of the annual mean SSMI trend on four future scenarios and seasonal, temporal scale in 2015–2100 for CMIP6DL in China. The dots
indicate the trend passing the 5% significance test.
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Winter is the most significant season of drying out of the four
seasons. In the four scenarios, southern China will be drying
in winter. The drying trend under SSP5-8.5 is the most severe,
with 47.91% of the southern region decreasing by 0.05 every
decade. The trend in northwest China is the same as in spring
but more pronounced.

In summary, SSMwill increase in northeast and central China;
meanwhile, it will become dry in the south. The SSM trend is
affected by radiative forcing in the Qinghai-Tibetan Plateau and
northwest China. The wetting and drying trends in different
seasons behave differently, but most seasons are projected to dry.
In the background of global warming, arid regions will expand in
China. The drying rate will become faster in arid regions from
lower to higher emission scenarios.

3.3.2 Temporal Change of Future Surface-Layer Soil
Moisture
Due to the extended period of the CMIP6DL data projections,
we divide the future period from 2021 into three periods:
2021-2040 (early 21st century), 2041-2070 (middle 21st

century), and 2071-2100 (later 21st century). This is
convenient for us to analyze the SSM change rate of China
on different temporal scales in different periods under four
scenarios relative to historical periods, as shown in Figure 8.
Because of the differences in SSM between north and south
China, they will cancel each other out if they are considered
together. Therefore, according to the characteristics of
Figure 6, we divide China into north and south regions
with 35°N as the boundary and consider them separately.
Focusing on changes in SSM, we do not consider the arid
regions of the northwest and the Qinghai-Tibetan Plateau; we
only investigate the area east of 100°E. Note that since the
north has a greater rate of change than the south, the color
bars of the two regions are different.

From Figure 8, the SSM change rate under each scenario
increases with time on the annual scale, regardless of whether it is
in the south or north. On the seasonal scale, the north-south
differentiation is obvious. The SSM in the north has the highest
rate of change in spring and summer, and the rate of change in
autumn and winter remains low. Compared with the present, the

FIGURE 8 | The portrait diagram of the SSM change rate of two region in China (A) north of 35°N (B) south of 35°N, in different time scales and future periods relative
to the historical period (1995-2014)
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SSM will increase significantly in summer, and the SSM will be
severely dried in spring. This result is not surprising. Spring
drought is a common disaster in northern China (Zhang et al.,
2018). In recent years, the intensity of summer rainfall has
increased, and floods have been frequent in northern China
(Sun et al., 2018). Because there is no transition month, this
will increase the disparity of SSM surplus and deficit between
these two seasons to increase the possibility of disasters (Yu et al.,
2021). Therefore, more attention must be paid to quantifying and
predicting such environmental changes.

The SSM in the south has the highest rate of change in
summer and winter, and there is almost no change in spring and
autumn. In winter and summer, the change rate of SSM under
each scenario gradually increases, reaching a peak in the later
21st century. Spring and autumn are transitional seasons in the
south. SSM in autumn changes from wetting to drying, and the
change in spring is from drying to wetting. The SSM change rate
varies greatly on a monthly scale. The negative change rate in
the northern region reached -14.85% in May, and the change
rate in August was as high as 22.36%. The rate of change in the
south is generally not as large as in the north. However, there are
more months (June, July, August) with a higher rate of change
than in the north. Unlike the north, the months with a lower rate
of change than in the historical period are December and
January, especially in the mid and later 21st century under
SSP1-2.6.

In general, under different scenarios, the SSM change rate
increases with time in three periods; the seasonal SSM change rate
is different between the south and the north. SSM varies greatly
fromMay to August in the north, but SSM varies from December
to January and June to August in the south. There are transition
months between the positive and negative rate of change in the
south, but not in the north.

3.4 Limitations
There are also limitations in this study. First, we did not make
full use of the 0.1° × 0.1° high resolution of the ERA5-Land data
but used the interpolated 0.25° data. Again, the regional
differences of the original data are significant. For example,
there is poor model performance in the eastern part of the Inner
Mongolia Plain. Regional training may solve this problem (Fan
et al., 2021). Finally, because the DL model focuses more on
spatial features, temporal information is not fully utilized.
Additionally, no separate module can capture this model’s
time characteristics. When more ESMs data becomes
available, adding these datasets can help reduce errors in
future studies.

4 CONCLUSION

This study used a DL method to produce a high-resolution SSM
dataset in China based on CMIP6 ESMs. This method can
perform data fusion and data downscaling concurrently. Our
merged data significantly improves compared with the individual
ESM and ensemble mean data, regardless of the spatial or
temporal dimensions. From the evaluation index, the
performance of CMIP6DL exceeds other data in all aspects.
The error has been maintained at a low level in mainland China.

We input the ESMs datasets to the model to obtain the SSM
dataset under four future scenarios. From the spatiotemporal
patterns of the results, the trend of future SSM in China is
roughly presented: the northeastern river basins of China
become wet, while the Yangtze River basins become dry. With
the low to a high scenario, in the east of 100°E, the drying and
wetting trends become apparent. In the west of 100°E, the change in
the northwest arid region is not just a simple trend enhancement
but a change from a wetting trend to a drying trend. From the
temporal scale of the results, under different scenarios, the SSM
change rate increased with time in the three selected periods. In
northern China, the SSM wetting rate will increase significantly in
summer and autumn, and the SSM drying rate will increase in
spring. Whereas in southern parts of China, the drying trend in
winter will increase, and the wetting trend will increase in summer.
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