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As the two largest developing countries globally, China and India have become the top 1
and 3 carbon emitters, respectively. Quantitating their CO2 emissions in terms of the
characteristics and driving factors is highly significant to mitigating global climate change.
This study compiled the CO2 emission inventories from 1990 to 2017 in China and India.
The Tapio model and index decomposition analysis were used to analyze the impact of
socio-economic factors on CO2 emissions. We found that 1) CO2 emissions of China and
India reached 9526 and 2242Mt, respectively, in 2017. CO2 emissions increased during
1990–2017 with an average annual growth rate of 5% in both countries. 2) In China, the
economic development has remained weakly decoupling from emissions since 2012,
reaching a strong decoupling (-0.2) in 2017. In contrast, the contribution of India’s
economy to emissions continued to increase, and the decoupling status showed
continuous fluctuations. 3) Economic development and population explosion were the
dominant factors driving CO2 emissions in the countries. The effect of energy intensity
inhibited India’s emissions growth after 2008 with an impact degree lower than China.
Overall, our findings on the impact of the economy and emission development may provide
references for other developing countries at different stages to achieve low-carbon
development.
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INTRODUCTION

As anthropogenic emissions increase from economic growth (Fu et al., 2021), developing countries
may largely determine the future of global emissions in this century (Boyd and Green, 2015). China
and India are the top two largest developing nations in the world. China became the biggest CO2

emitter in 2006 (European Commission, 2016), accounting for 28% of global CO2 emissions from
anthropogenic sources in 2019 (Friedlingstein et al., 2020); whereas, India became the third-largest
emitter in 2009 (behind China and the United States), contributing 7% of global fossil CO2 emissions
in 2019 (Friedlingstein et al., 2020). Moreover, China and India rank second and sixth in the world
economy, respectively; they accounted for 20.5% of the world’s total gross domestic product (GDP)
(The World Bank, 2020) in 2019. To seek low-carbon economic development and mitigate global
climate change, China has pledged to decrease carbon emissions per unit of GDP (i.e., emission
intensity) by more than 65% compared with 2005 by 2030, toward achieving carbon neutrality by
2060 (The Chinese Government, 2020). On the other hand, India has designed Nationally
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Determined Contributions (NDCs) to reduce the emission
intensity by 33%–35% (compared to the 2005 values) by 2030
(The Carbon Brief, 2020). In this context, accurate accounting of
carbon emissions and quantitatively analyzing the driving effects
of socio-economic factors influencing the emissions can provide a
scientific basis to formulate energy conservation and emission
reduction policies, and promote low-carbon actions in China and
India. It can also provide an essential reference for developing
countries to achieve low-carbon development, significant for
mitigating global climate change.

With the adequate accounting of CO2 emissions, some studies
have explored CO2 emission characteristics at a national scale for
China and India. For example, in 2015 Liu et al. (2015b) used
localized emission factors to calculate China’s CO2 emissions and
establish China Emission Accounts and Datasets (CEADs), a
published emission inventories of China from 2000 to 2018. From
production and consumption perspectives, Wang et al. (2020)
analyzed the temporal evolution and the key driving factors of
India’s emissions. Elsewhere, Lee et al. (2021) calculated
household carbon footprints in India and explained their
variation between districts by socio-economic factors. Some
studies also estimated and compared the CO2 emissions of
various countries. Raghutla and Chittedi’s study focused on
BRICS countries (Raghutla and Chittedi, 2020) while Hu et al.
(2020) studied other Belt and Road countries. However, only a
few studies have reported detailed comparisons on emission
characteristics and evolution in China and India, the top two
developing countries in economic development and human
population.

VonWeizsacker used “decoupling” in 1989 to describe the
relationship between economic growth and environmental
impact (Weizsacker, 1989). In 2005, Tapio developed the
“Tapio Decoupling Model” to subdivide the decoupling status
into eight types (Tapio, 2005). Since then, the Tapio model has
been widely used to analyze the dependence of energy
consumption or CO2 emissions on economic development.
Wu et al. (2018) used the Tapio model to analyze the
decoupling trend of CO2 emissions from economic
development in various countries from 1965 to 2015. They
found that the decoupling trend of developing countries was
generally weaker than that of developed countries, with China’s
decoupling state superior to that of India. Chen et al. (2022)
applied the decoupling analysis to the sector level, examining the
robustness of the carbon Kuznets curve in China’s building
sector. Elsewhere, Wang et al. (2019) analyzed the decoupling
relationship between economic growth and energy consumption
in China and India. They reported that China has initially
achieved the decoupling of economy and energy consumption,
while India’s decoupling status evinced irregular fluctuations.
Accompanying the rapid industrialization and urbanization in
China and India are various environmental problems. By
comparing emission trends and characteristics between the
two countries, decoupling analysis between CO2 emissions and
economic development help to achieve stable economic growth
while reducing environmental emissions.

Moreover, decomposition analysis has been widely used to
analyze factors driving CO2 emissions. Likewise, the logarithmic

mean Divisia index (LMDI), based on the Kaya identity, has been
widely used to evaluate the impact of various factors on changes
in CO2 emissions (Kaya, 1990) due to the index’s simplicity and
lack of residual error. Many previous studies applied the LMDI at
different scales, such as national scale (Li and Qin, 2019), and city
scale (Kang et al., 2014). Also, it has been applied to various
sectors, such as building sectors (Li et al., 2022) in China, while
others analyzed the drivers of CO2 emissions in individual or
multiple countries, such as Xu et al. (2016). In a survey of China
and India, Wang et al. (2018) analyzed the driving factors of
decoupling the relationship between economic growth and CO2

emissions during 1980–2014. Therein, an input-output model
and structural decomposition analysis method analyzed the
factors driving CO2 emissions in China and India during
2000–2014 (Wang and Zhou, 2020). However, few studies
compared the emission driving factors in China and India in a
long-time series using the LMDI method. By comparing the two
largest developing countries globally, we can identify the
common factors driving the CO2 emissions and propose the
direction of efforts to realize the emission pledges.

In summary, few studies have adopted localized emission
factors and updated data for emission accounting. Although
many studies have established CO2 emission inventories in
China, there are relatively few studies on India’s long-term
CO2 emissions. Comparative studies between China and
India regarding the characteristics and driving factors of CO2

emissions are even scarcer. To this end, this study compiled CO2

emission inventory of fossil fuel consumption and industrial
process in China and India from 1990 to 2017 based on the
Intergovernmental Panel on Climate Change (IPCC) emission
accounting approach (Institute for Global Environmental
Strategies, 2006) and nation-level emission factors. Then, we
used the Tapio decoupling model with the socio-economic data
from theWorld Bank to characterize the economic development
and CO2 emissions, comparing the decoupling status in China
and India from 1990 to 2017. We decomposed the driving
factors of CO2 emissions into population effect, economy
effect, energy intensity effect, and emission intensity effect to
analyze the contributions of the driving factors for each period.
This study aims to identify problems from the commonalities
and learn from the differences by comparing the similarities and
differences of the driving forces of the two countries’ socio-
economic factors on CO2 emissions. The findings are valuable
for achieving emission reduction targets during the current,
rapid economic development. It also provides references for
developing countries at different stages to formulate and
effectively execute carbon emission reduction policies.

MATERIALS AND METHODS

Estimation of CO2 Emissions
China’s CO2 Emissions
According to the Guidelines for Preparing Provincial Greenhouse
Gas Inventory and our previous study (Liu et al., 2013), we
developed China’s provincial CO2 emission inventories for 31
provinces from 2000 to 2017 based on a sectoral approach,
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including fossil fuel consumption sectors and industrial process
sectors. Energy consumption emissions were calculated by
multiplying activity data of sub-sectors with emission factors,
including three sub-sectors of industrial energy consumption,
transportation energy consumption, and other energy
consumption (primary industrial, commercial and residential,
etc.) sectors. The CO2 emissions from industrial energy
consumption can be calculated as follows:

CI � ∑
i,j
(Ei,j × EFj)

where CI is the CO2 emissions from industrial energy
consumption, t-CO2; i represents the subsectors in the
industrial sector; j is the various types of energy consumed; E
is the energy consumption, the units correspond to various
energy type, e.g., tons for coal, m3 for the natural gas; EF is
the emission factors, t-CO2/unit energy consumption. Summing
up the emissions of industrial sub-sectors obtains the CO2

emissions from industrial energy consumption. To avoid
double counting, the energy consumption caused by the
energy processing and conversion (such as washing coal,
coking, etc.) were eliminated.

The energy-related CO2 emissions from the transportation
sector based on the motor vehicle population can be estimated as
follows:

CT � ∑
i
(VPi × VMTi × FEi × EFg/d)

where CT is CO2 emissions from transportation energy
consumption, t-CO2; i represents the different types of
vehicles (e.g., passenger cars, heavy duty trucks, buses, etc.);
VP is the motor vehicle population; VMT is the vehicle miles
traveled, km/vehicle; FE is fuel economy referring to the fuel
consumption per unit mileage, L/km; EF is the CO2 emission
factors, t-CO2/L; g represents gasoline; d represents diesel.
Summing up the emissions of various vehicular type obtains
the CO2 emissions from transportation energy consumption.
We adopted the above method to calculate CO2 emissions from
the transportation sector while eliminating the energy
consumption of the transportation sub-sector from the
industrial sectors to avoid double accounting.

The accounting method of other energy consumption sectors
is similar to that of the industrial sectors, including primary
industry, commercial sectors, and residential sectors, using the
following equation:

CO � ∑
i,j
(Ei,j × EFj)

where CO is the CO2 emissions from other energy consumption
sectors, t-CO2; i represents different sectors; j is the various types
of energy consumed; E is the energy consumption; EF is the CO2

emission factors, t-CO2/unit energy consumption. Adding up the
emissions of various sectors results in the CO2 emissions from
other energy consumption sectors.

The CO2 emissions from industrial process sectors (i.e., non-
energy consumption emissions) refer to emissions during non-
combustion industrial processes. Here, only the cement

production process, which accounts for more than 75% of
China’s industrial process emissions, was considered as follows:

Cc � (M × R − I + E) × EF

where CC is the CO2 emissions emitted from the cement
production process, t-CO2; M is the weight of the cement
production, tons; R is the clinker ratio; I is the clinker import
volume, tons; E is the clinker export volume, tons; EF is the CO2

emission factor, t-CO2/tons.

India’s CO2 Emissions
Compared with China’s highly uniform statistical data, India’s
energy data are sometimes contradictory at different statistical
levels. Therefore, we obtained unified energy consumption data
from International Energy Agency (IEA) and adopted the IPCC
apparent energy consumption approach (Liu et al., 2015), i.e., a
top-down accounting approach to calculate CO2 emissions from
the combustion of fossil fuels:

C � ∑
i
Ei × EFi

where C is the CO2 emissions from fossil fuels consumption; i
represents different fuel types; E is the consumption of energy; EF
is the emission factors.

Based on the apparent energy approach, primary and
secondary energy consumptions were calculated from a
production perspective as follows:

Epe � EP + EE − EI − EIB − ESC − EN

Ese � EE − EI − EIB − ESC − EN

where Epe is primary energy consumption; EP is energy
production; EE is energy exports; EI is energy imports; EIB is
international fuel bunker; ESC is stock change; EN is non-energy
use; Ese is secondary energy consumption.

Then, we used a similar approach with China to calculate
India’s CO2 emissions from cement production:

Cc � M × R × EF

where Cc is the CO2 emissions of the cement production process,
t-CO2; M is the weight of the cement production, tons; R is the
clinker ratio; EF is the CO2 emission factor, t-CO2/tons.

Uncertainty of Emissions
In this study, we quantified the uncertainties of CO2 emissions in
China and India by using the method recommended in
Guidelines for Preparing Provincial Greenhouse Gas Inventory
(Liu et al., 2013). By comparing the results of this study with other
global CO2 emission databases, we calculated the sample mean,
�X, and standard deviation, S, at a 95% confidential level to
estimate the uncertainty range. The uncertainty range was
expressed as the mean value ± percentage interval, given in
the following equations:

�X � 1
n
∑n
k�1

Xk
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S �
���������������
1

n − 1
∑n
k�1

(Xk − �X)2√√
[ �X − Sp t�

n
√ ; �X + Sp t�

n
√ ]

where �X is the sample mean, referring to the average of the
results of this study and other emission databases; n is the
number of samples, referring to the number of the results of
this study and other emission databases; k represents
different emission databases; X is the sample values,
referring to the results of this study and other emission
databases; S is the standard deviation; and t represents
t-test statistic value.

Tapio Decoupling Index
In general, there are two main methods of decoupling analysis:
OECD decoupling factor model and Tapio decoupling model.
The Tapio model effectively alleviates the high sensitivity of
the OECD decoupling factor to the value at the beginning and
end of the period. It further improves the objectivity and
accuracy of the measurement of the decoupling relationship.
In this study, we used the Tapio decoupling model to quantify
the relationship between CO2 emissions and economic
development, as expressed in the following equation:

DI � %ΔC
%ΔG � ΔC/C0

ΔG/G0
� (Ct − C0)/C0

(Gt − G0)/G0

where DI refers to the decoupling index; %ΔC refers to the rate
of the change in CO2 emissions from the baseline year to the
target year; %ΔG refers to the rate of the change in GDP from
the baseline year to the target year; ΔC and ΔG represent the
changes in CO2 emissions and GDP from the baseline year to
the target year, respectively; C0 and G0 refer to the CO2

emissions and GDP in the baseline year, respectively; Ct and
Gt refer to the CO2 emissions and GDP in the target year,
respectively.

As the GDP of China and India maintained year-on-year
growth (ΔG > 0) from 1990 to 2017, four decoupling types were
defined based on the decoupling index: DI < 0 is strong
decoupling, indicating that the country’s economy is growing
while CO2 emissions are decreasing; 0 < DI < 0.8 is weak
decoupling, indicating that the growth rate of emissions is
lower than the economic growth rate; 0.8 < DI < 1.2 is
expansive coupling, indicating that the emissions are growing
at roughly the same rate as the economy; DI > 1.2 is negative
decoupling, indicating that the emissions are growing at a higher
rate than the economy.

LMDI Decomposition Analysis
Based on the Kaya identity, we decomposed CO2 emissions (C)
into the following driving factors: population (P), GDP per capita
(g), energy intensity (energy consumption per unit of GDP, e),
and emission intensity (CO2 emissions per unit energy
consumption, f). Their relationship is expressed as follows:

CO2 � population ×
GDP

population
×
energy consumption

GDP

×
CO2 emission

energy consumption

C � P × g × e × f

As already mentioned, changes in CO2 emissions can be
decomposed into the contribution of each driving factor, and
the changes (ΔC) in CO2 emissions from the base year to year t
can be expressed as follows:

ΔC � Ct − C0 � Ptgtetft − P0g0e0f0 � ΔCp + ΔCg + ΔCe + ΔCf

where Ct and C0 are CO2 emissions at time t and 0;
ΔCp,ΔCg,ΔCe and ΔCf represent the population effect,
economy effect, energy intensity effect, and emission
intensity effect, respectively. Then, we used LMDI method
to estimate the contributions of the various effects to CO2

emissions, as follows:

ΔCP � Ct − C0

ln(Ct) − ln(C0) ln(Pt

P0
)

ΔCg � Ct − C0

ln(Ct) − ln(C0) ln(gt

g0
)

ΔCe � Ct − C0

ln(Ct) − ln(C0) ln(ete0)
ΔCf � Ct − C0

ln(Ct) − ln(C0) ln(ft

f0
)

Data Source
We obtained China’s activity data from the national or
subnational statistics department (National Bureau of
Statistics, 2019), and used the emission factors in the
Guidelines for Preparing Provincial Greenhouse Gas
Inventory (Liu et al., 2013) to account for the CO2

emissions of provinces from 2000 to 2017. Also, China’s
1990–1999 CO2 emissions were supplied by the Global
Carbon Project (GCP) (The Global Carbon Projevt, 2020)
to maintain the same time scale of data for China and India.
India’s primary energy and secondary energy consumption
data were derived from the IEA’s energy balance sheet for
1990–2017 (IEA, 2019), and the emission factors were
measured by The Ministry of Environment and Forests of
India (2010). Due to the lack of data from Indian statistics
department in earlier years, India’s cement production and
clinker ratio data were based on GCP for 1990–2017. And the
clinker emission factors were based on the data from the
Indian Cement Association (Cement Corporation of India
Limited, 2017). For the analysis of socio-economic
development and the decoupling status from CO2

emissions, population and GDP (the purchasing power
parity in 2010) data of China and India were obtained
from the World Bank (2020).
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RESULTS

Emission Accounting for China and India
China’s CO2 emissions from fossil fuel consumption and cement
production were 2,420Mt in 1990. It rapidly increased to 9,526Mt
in 2017, with an average annual growth rate of 5.2%. Similarly,
India’s CO2 emissions from fossil fuel consumption and cement
production also grew significantly from 588Mt in 1990 to 2,242Mt
in 2017, at a similar average annual growth rate of 5.1%. In terms of
total emissions, India’s CO2 emissions are consistently lower than
China’s. The total emissions in 2017 were about 23.5% of China’s
values over the same period, approximately equivalent to China’s
1990 emission level. As for emission trends both countries have
experienced rapid growth. Since 2012, China’s CO2 emissions have
remained relatively stable or with some slight decline, having an
average annual growth rate of only 0.1% in 2017. However, India’s
CO2 emissions still maintain an average annual growth rate of 3.4%,
much higher than China’s.

The energy consumption of industries was consistently the
primary source of CO2 emissions in China (Figure 1A). With the
accession to theWorld Trade Organization after the 21st century,

China’s heavy industry developed significantly that the CO2

emissions increased by 117% from 200 to 2008, with an average
annual growth rate of >10.0%. Simultaneously, the industries’
energy consumption became a larger contributor than other
sectors by accounting for >70% of total emissions in China. In
2007, the State Council of China promulgated the Comprehensive
Work Plan for Energy Conservation and Emission Reduction, which
controlled the rapid growth of high energy consumption. This
initiative increased efforts to shut down outdated production
facilities in power, steel, and other industries, resulting in a
significant reduction in emissions from industrial energy
consumption, thus slowing down the rate of CO2 emissions.
Thus, from 2008 to 2012, the average annual growth rate of
China’s CO2 emissions slowed to 7.0%, and the contribution of
industrial energy consumption decreased yearly.

On the other hand, as China’s economy developed, residents’
living standards have also improved. After 2012 transportation
energy consumption replaced industry energy consumption as
the sector with the fastest growth in CO2 emissions in China.
From 2000 to 2017, the motor vehicle population increased from
16.08 million to 217 million, and the CO2 emissions from
transportation energy consumption increased from 328 to
1,466 Mt, with an average annual growth rate of 9.2%. In
addition, CO2 emissions from other energy consumption
(primary industrial, commercial, and residential sectors)
increased at an average annual growth rate of 4.3% to reach
655 Mt CO2 by 2017. As a major cement producer, China’s CO2

emissions from cement production are growing; in 2017, this part
of CO2 emissions was 809 Mt, 3.4 times the value in 2000. In
2017, CO2 emissions from industry energy consumption,
transportation energy consumption, other energy
consumption, and industrial process sectors were 69.2%,
15.4%, 6.9%, and 8.5%, respectively.

Although India’s CO2 emissions are not as large as China’s, the
former exhibits an overall upward trend, with a growth rate that
exceeds China’s (Figure 1B). From 2000 to 2004, India’s average
annual growth rate of CO2 emissions was 4.4%, compared with
China’s rate (10.0%). Since 2004, the Indian manufacturing sector
has steadily improved the nation’s economy. Meanwhile, the CO2

emissions increased proportionately, with an average annual
growth rate of 6.8% during 2004–2008, albeit lower than
China’s level (10.4%). From 2008 to 2012, India’s total CO2

emissions maintained a rapid growth of >6%, basically at par
with China’s 7.0%. After, the overall growth rate of India’s CO2

emissions decreased, recording 3.8% from 2012 to 2017.
However, due to the significant decline in China’s CO2

emissions growth, India’s rose higher than China’s level
(0.1%). During our study period, the contribution of the
various sources to India’s CO2 emissions changed slightly: coal
was usually the primary source of CO2 emissions that accounted
for 70%, followed by oil (20%), natural gas (5%), and cement
production (5%). The growth rate of emissions from natural gas
consumption was 6.6%, higher than those from coal and oil (both
5.0%), probably because natural gas in India had the dual
advantages of cleanliness and cheapness over liquid fuels (such
as diesel and furnace fuel oil). Thus, the production and
importation of natural gas increased substantially.

FIGURE 1 | Emission trends and structure. (A) CO2 emissions of China,
(B) CO2 emissions of India.
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Furthermore, due to the considerable increase in India’s cement
production, CO2 was produced in large quantities from cement
production, averaging an annual growth rate of 5.5%.

We compared the CO2 emissions in China and India with
other databases (Shan et al., 2018, Shan et al., 2020) to quantify
the uncertainty. During our study, the uncertainties of China’s
CO2 emissions were within ±10%, and the uncertainties of India’s
estimation was generally higher than that of China, within ±15%
(see more details in Supplementary Materials).

Emission Characteristics for China and
India
We compared the socio-economic status (population, GDP, and
industrial structure) and emissions per unit (per capita CO2

emissions and per GDP CO2 emissions) of China and India

(Figure 2). In 1990, China’s population exceeded a billion and
increased by 22.1% to 1.39 billion in 2017. In the same period, India’s
population had grown from 0.87 to 1.34 billion at a rate more than
twice China’s (Figure 2A). In the early 1990s, the GDP gross of
China and India were both below US$1 trillion (i.e., the purchasing
power parity (PPP) in 2010), as shown in Figure 2B. From 1990 to
2017, China’s GDP increased to US$10.2 trillion (2010 PPP) at an
average annual growth rate of 9.7%, while India’s GDP increased to
US$2.7 trillion (2010 PPP) at a growth rate of 6.3%, ≈26.3% of
China’s GDP in 2017 and equivalent to China’s GDP 2002 level.

Figure 2C depicts that India’s per capita CO2 emission in 2017
was 21.4% lower than China’s per capita CO2 emissions in 1990.
Since 1990, the CO2 emission intensity declined with fluctuation
in both nations (Figure 2D). During 1990–2017, China’s CO2

emission intensity fell at an average annual rate of 4.1%,
indicating that the economy had gradually entered a stage of

FIGURE 2 | Emission and socio-economic characteristics of China and India. (A) Population, (B) gross domestic product (GDP), (C) per capita CO2 emissions, (D)
CO2 emission intensity, (E) proportion of Chinese GDP, (F) proportion of India GDP. The red line represents China in (A–D), and the blue line represents India. The colors
from dark to light represent the proportion of primary, industrial, and tertiary industry added value to GDP, respectively in (E,F).
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high-quality development. India’s CO2 emission intensity
reduced at an annual rate of 1.2%, much below China’s rate of
decline over the same period. Figure 2D informs that China’s
CO2 emission intensity has always been higher than India’s.
However, compared to 2.5 times in 1990, it has reduced to
only 8.7% difference in 2017, attributed to the changes in the
industrial structure in the two countries (Figures 2E,F). As the
proportion of industrial sectors declined with fluctuation, and the
tertiary industry steadily increased after 2012, the tertiary
industry became a new driving force for economic growth,
contributing more to China’s GDP than the secondary
industry. Although the proportion of the tertiary industry in
India was higher than China’s, the rate of development of India’s
industry and service industry were lower, as the economic
structure changed more slowly than in China. Therefore,
China’s CO2 emission intensity declined faster, resulting in the
convergence of the two countries’ levels in 2017.

Decoupling of CO2 Emissions From
Economic Development
To further quantify the relationship between CO2 emissions and
economic development, we used the Tapio decoupling model to
analyze the decoupling status of CO2 emissions from economic
development viewpoint between China and India (Figure 3).
During our study, China’s CO2 emissions developed from a
steadily weak decoupling (0 < DI < 0.8) to a negative
decoupling (DI > 1.2), and then to a strong decoupling (DI <
0) from national economic growth. From 1991 to 1999, China’s
decoupling index was between 0 and 0.8, in a weak decoupling
state. In 1998, it reached a strong decoupling state (−0.56),
indicating that China’s CO2 emissions grew roughly in line
with the economy, and the decoupling state was ideal. After
2000, China’s decoupling index continued to rise, reaching 1.5 in
2005, and declined slightly but still between weak decoupling and
negative decoupling from 2006 to 2011. After the 12th Five-Year
Plan, China’s decoupling index declined and fluctuated with
strong decoupling in 2016–2017. This scenario suggested that
China’s economic development was, gradually, no longer
attributed to high energy consumption and high CO2 emissions.

Until 2017, India has not shown strong decoupling, and in more
years shown weak decoupling and negative decoupling alternately.
During 1990–1999, India’s decoupling status was weak (0.8 < DI <
1.2) and negative. From 2000 to 2009, India’s decoupling state did
not change much, mainly weak decoupling and negative decoupling.
For example, in 2008, when its decoupling index was as high as 3.4
due to the impact of the international financial crisis, the growth rate
of CO2 emissions (10.4%) was much higher than its economic
growth rate (3.1%). Then until 2017, India’s decoupling was mostly
weak and occasionally negative. In the same period, China’s
decoupling of CO2 emissions from economic development has
been stably weak and shown a trend of strong decoupling.

Factors Driving CO2 Emissions
We segmented our study (1990–2017) into six periods. Then we
quantified the impact of four driving factors (population, GDP
per capita, energy intensity, and emission intensity) on the CO2

emissions in China and India. As shown in Figures 4A,B, the
economic effects in the countries are the major factor that
promoted CO2 emissions, with different changes in impact.

From 1990 to 1995, the growth in GDP per capita contributed
to a 1463 Mt increase in China’s CO2 emissions, evincing as the
most significant driver of the total CO2 emissions. During this
period, China was in a critical transition to a socialist market
economy, with per capita GDP rapidly increasing by 68.0%. India’s
GDP per capita change also caused the highest CO2 emissions in

FIGURE 3 | Decoupling index of China and India, 1991–2017.

FIGURE 4 | Impact of four driving factors. (A) CO2 emissions of China,
(B) CO2 emissions of India.

Frontiers in Environmental Science | www.frontiersin.org April 2022 | Volume 10 | Article 8470627

Jiao et al. China and India’s Carbon Emissions

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


the same period. Moreover, population growth was the second-
largest driver of emissions in both countries, contributing 168.1
and 65.1Mt of CO2 emissions in China and India, respectively. The
difference was that energy intensity and emission intensity
predetermined China’s and India’s inhibition effects, respectively.

From 1995 to 2000, China’s and India’s emissions increased by
2.0% and 25.9%, respectively. During this period, economic and
population growth were still the driving factors for the China’s CO2

emissions, while energy intensity and emission intensity showed
significant inhibition, causing 947.5 and 352.2 Mt negative CO2

emissions in China and India, respectively. At the same time,
India’s energy intensity reduced CO2 emissions, while the emission
intensity during this period reduced.

From 2000 to 2004, China’s CO2 emission growth rate
accelerated significantly, and the economy was the most
crucial factor in the growth of emissions. Emission intensity
became the only factor that reduced China’s CO2 emissions.
During this period, the growth rate of India’s emissions decreased
slightly, with the economy remaining the main driving. The
impact of energy intensity was similar to that of the previous
period. Compared with China, India’s energy intensity and
emission intensity exhibited contrasting impacts related to the
difference in industrial structure in the two countries. China’s
industrial sectors have been thriving since 2000, while India has
shown rapid growth of the service industry and slow development
of the industrial sector (Figures 2E,F).

Overall, China’s CO2 emissions increased by 48.3% from 2004 to
2008. The economic effect was still themain driving factor, seconded
by the emission intensity. The increase of emission intensity was due
to the rapid development in China’s heavy industry (e.g., the added
value of China’s industrial GDP in 2008 reached 2.3 times that in
2004), resulting in the massive demand for coal leading to higher
emission intensity. Meanwhile, India’s emissions proliferated, with
an overall growth rate of 30.3%. During this period, the four driving
factors all positively influenced India’s CO2 emissions growth, in
order of economy effect, population effect, energy intensity effect
and emission intensity effect. However, China’s energy intensity
effect has shown an inhibition effect in this period, implying the lag
in India’s upgrading of industrial technology.

From 2008 to 2012, China’s CO2 emissions growth began to
depreciate, with an overall increase of 30.9%, while the
contribution of economic effect dropped. On the other hand,
the growth of India’s emissions did not change significantly, with
a 29.3% increase between 2008 and 2012. The inhibition effect of
energy intensity in China was more prominent. Such observation
indicated that with economic structure optimization and
technological improvement, China’s energy consumption per
unit of economic output decreased more rapidly than India’s.

From 2012 to 2017, China’s CO2 emissions remained stable,
with an overall increase of only 0.6%. Both the energy intensity
and the emission intensity had begun to inhibit emission growth.
During this period, India’s emissions began to grow faster than
China’s, with 20.7% overall increase. Energy intensity and
emission intensity also became the negative driving factors in
India. But unlike China, the contribution of economy effect on
India’s emissions gradually increased with time, while it started to
show a decreasing effect in China.

In summary, from 1990 to 2017, the economic effect was the
main driving factor behind the growth of CO2 emissions in China
and India. In addition, the energy intensity was the main driving
factor for restraining the growth of CO2 emissions, and the
restrain was more impactful in China because of different
industrial structures between the nations. As the second major
factor promoting the emissions, the population effect had
gradually decreased in China while remaining stable in India.
In addition, both the positive and negative effects of emission
intensity on India’s emissions were relatively small.

DISCUSSION

China and India have experienced some increase in CO2

emissions, with similar annual growth rates. From
investigating the role of driving factors, we inferred that
economic development, represented by per capita GDP, is the
main driver of emission growth in both countries. This deduction
is similar to the results of the structural decomposition analysis by
Wang et al. (2020). But as China’s economy gradually entered the
New Normal after 2012, China got rid of extensive and
expansionary economic development. The growth rate of CO2

emissions in China has also slowed down significantly. And
macroscopically, it has shown a strong decoupling from
economic development. This occurrence also reflects a further
decline in the economic contribution to emissions, which can be
offset by the inhibition effect of emissions efficiency. On the one
hand, the improvement of the industrial structure promotes the
reduction of energy intensity. The added value of the secondary
industry, i.e., relatively energy-intensive, has steadily decreased in
its share of the nation’s GDP, enabling a low growth rate of energy
consumption to support medium-high speed economic
development. This deduction was also confirmed in the study
of energy and economic decoupling by Li et al. (2021). Moreover,
China’s energy consumption has become cleaner. Since 2012, the
proportion of clean energy generation (such as wind energy,
hydro energy, nuclear energy, and photovoltaic power) has been
increasing. And under the guidance of carbon peaking and
carbon neutrality goals, the industrial structure and energy
structure will be further optimized, and the inhibition effect
on emissions is expected to improve.

Likewise, economic growth has inevitably come at the expense
of rising CO2 emissions for India. Because the decoupling state is
fluctuating, it has not yet shown a strong decoupling trend.
Besides, India’s population growth has always been a stronger
driver of CO2 emissions than in China. Household consumption
is also confirmed to be the largest contributor to emissions in
Indian states in the analysis of consumption-based emissions in
India (Huang et al., 2021). In view of the further growth of the
Indian population, a low-carbon lifestyle is sacrosanct. India’s
energy and emission intensities have also played an essential role
in curbing the growth of CO2 emissions. But on current trends,
to offset the pressure on CO2 emissions from future population
and economic growth, India needs to intensify efforts to
improve emission efficiency. Also, it should be
acknowledged that, although India is also an emerging
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developing country, India cannot repeat China’s past CO2

emission path. With the urgent goal of 1.5°C global
mitigation, India needs to explore a developmental path
that balances economic growth with CO2 emissions. While
the nation improves the energy use and emission efficiency, it
may bypass carbon-intensive growth in emerging areas
through sustainable planning and construction, rather than
reproducing the process of linking and then decoupling
between the economy and emissions.

CONCLUSION AND POLICY
IMPLICATIONS

In the study, we first calculated CO2 emissions from fossil fuel
consumption and cement production in China and India from 1990
to 2017. Then, we analyzed the characteristics of the emissions
during this period and the decoupling of economic development and
CO2 emissions between the two countries. Finally, the contribution
of four driving factors viz. population, economy, energy intensity,
and emission intensity, to CO2 emissions was quantitatively
analyzed. The main conclusions are as follows:

1. As the most dominant developing countries and CO2 emitters
in the world, the CO2 emissions in China and India increased
with an average annual growth rate slightly higher than 5% from
1990 to 2017. It was observed that a convergence existed in the
emission intensity between the two countries, due to the more
significant decline in China’s emission intensity in recent years.

2. From the perspective of the decoupling status of CO2 emissions
from economic development, by 2017, China had shown a strong
decoupling, mainly due to a gradual slowdown and even negative
in the growth of emissions; whereas, India’s decoupling status has
been fluctuating continuously. And since 2012, it has
predominantly shown weak decoupling, indicating that India’s
emissions growth is slightly slower than its economic growth.

3. During our study period, the economy effect was always the
main driving factor for increasing the growth of CO2

emissions in China and India, while the energy intensity
was the main driving factor for restraining CO2 emissions.
The difference is that the economy effect on China’s emissions
has gradually decreased, while it contributed an increasing
influence to India’s emissions. Meanwhile, the inhibition of
energy intensity on India’s emissions was not as obvious as
that of China. As the secondmajor factor driving the growth of
CO2 emissions, the population effect has gradually reduced its
role in promoting emissions in China, but remained stable at
around 7.0% in India. Emission intensity began restraining
emissions in China and India after 2012.

Since energy intensity has always been the most prominent
factor restraining the growth of CO2 emissions in China and India,
the improvement of energy efficiency should be taken as a
continuous policy in both countries. China should improve the
energy utilization efficiency of key energy-consuming industries
(such as electric power and steel) to reach the world’s advanced
level. And India, based on solving the energy shortage problem,

should further establish a comprehensive and complete energy-
saving policy system. China and India are both large energy-
consuming countries and have maintained a coal-based energy
consumption structure since 1990. It is necessary to reduce coal
consumption, promote high-quality energy, such as natural gas, and
develop new renewable energy (such as wind energy and biomass
energy) to build a low-carbon energy system.

We found that the growth of China’s CO2 emissions from fossil
fuel consumption and cement production began to slow down,
gradually reducing the contribution of economy effects to the total
emissions. Such is reflected as China’s optimization of the industrial
structure in the new phase of economic development. In the future,
China should promote sustainable economic growth while
vigorously developing low-carbon and environmental protection
industries to look for novel methods to improve their economy
and avoid the growth of CO2 emissions in emerging industries. In
contrast, India’s CO2 emissions growth has always been linearly
related to economic growth, and the driving role of the economy on
emissions is still strengthening. If India imitates China’s economic
growth pattern in the past 35 years, India’s energy consumption will
increase substantially by 2050. Consequently, to meet domestic
energy demand, India can develop renewable energy in the
future, especially leveraging its geographical advantages to
promote wind and solar forms of energy.
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