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Mercury pollution in the surface ocean hasmore than doubled over the past century.Within
oceanic food webs, sea turtles have life history characteristics that make them especially
vulnerable to mercury (Hg) accumulation. In this study we investigated Hg concentrations
in the skin and carapace of nesting flatback turtles (Natator depressus) from two rookeries
in Western Australia. A total of 50 skin samples and 52 carapace samples were collected
from nesting turtles at Thevenard Island, and 23 skin and 28 carapace samples from
nesting turtles at Eighty Mile Beach. We tested the influence of turtle size on Hg
concentrations, hypothesising that larger and likely older adult turtles would exhibit
higher concentrations due to more prolonged exposure to Hg. We compared the
rookeries, hypothesising that the turtles from the southern rookery (Thevenard Island)
were more likely to forage and reside in the Pilbara region closer to industrial mining activity
and loading ports (potential exposure to higher environmental Hg concentrations) with
turtles from the northern rookery (Eighty Mile Beach) more likely to reside and feed in the
remote Kimberley. Turtles from the EightyMile Beach rookery had significantly higher skin Hg
concentrations (x�= 19.4 ± 4.8 ng/g) than turtles from Thevenard Island (x�= 15.2 ± 5.8 ng/g).
There was no significant difference in carapace Hg concentrations in turtles between Eighty
Mile Beach (x�= 48.4 ± 21.8 ng/g) and Thevenard Island (x�= 41.3 ± 16.5 ng/g). Turtle size did
not explain Hg concentrations in skin samples from Eighty Mile Beach and Thevenard Island,
but turtle size explained 43.1% of Hg concentrations in the carapace of turtles from Eighty
Mile Beach and 44.2% from Thevenard Island. Mercury concentrations in the flatback turtles
sampled in this study are relatively low compared to other sea turtlesworldwide, likely a result
of the generally low concentrations of Hg in the Australian environment. Although we
predicted that mining activities would influence flatback turtle Hg bioaccumulations, our data
did not support this effect. This may be a result of foraging ground overlap between the two
rookeries, or the predominant wind direction carrying atmospheric Hg inland rather than
seaward. This is the first Hg study in skin and carapace of flatback turtles and represents a
baseline to compare Hg contamination in Australia’s surrounding oceans.
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INTRODUCTION

Mercury (Hg) pollution has a long legacy in the environment.
Once emitted to the atmosphere, it can cycle between ecosystems
for years or decades before ending up deep in the oceans or
deposited on land (Obrist et al., 2018). As a result, 83% of the Hg
concentrations in the surface ocean are from anthropogenic
enrichment, half of which have occurred since 1950 (Amos
et al., 2013). Mercury concentrations in the ocean therefore
represent a substantial fraction of the global Hg reservoir
(Soerensen et al., 2010) and explain the ever-increasing levels
of Hg contamination observed in marine organisms (Alava et al.,
2018, 2017).

Once Hg enters the ocean, bacterial activities favour the
production of methylmercury (MeHg), allowing subsequent
Hg uptake by biota (Paranjape and Hall, 2017). This is of
particular concern as, among all the chemical forms of Hg,
MeHg is the most efficiently up taken by aquatic organisms.
Upon bioaccumulation, it can be distributed into many organs of
the body (including the brain), biomagnified through food chains
(Lavoie et al., 2013; Finley et al., 2016) and pose a health risk to
aquatic organisms, including turtles (Scheuhammer et al., 2015).

Sea turtles are prominent members of the oceanic food web
and have life history characteristics that make them vulnerable to
Hg accumulation – such as their long life span, high trophic level
in the food web, and their aquatic habitat (Sakai et al., 2000;
Storelli and Marcotrigiano, 2003; Day et al., 2007; Bezerra et al.,
2013; Schneider et al., 2013). The major pathway of Hg exposure
and accumulation in marine animals is through diet (Kehrig et al.,
2009), which accounts for approximately 80–90% of total Hg
bioaccumulation, with the remainder being absorbed from water
(Hrenchuk et al., 2012). In addition, turtles can transfer Hg from
stored lipids to their offspring via egg production (Perrault et al.,
2011; Hopkins et al., 2013; Landler et al., 2017; Sinaei and
Bolouki, 2017), increasing the bioaccumulation of Hg in
food webs.

The flatback turtle (Natator depressus), endemic to Australia,
is the least studied species among all sea turtles in terms of toxic
metal bioaccumulation, with only one study available on heavy
metals in blood and eggs (Ikonomopoulou et al., 2011) from
turtles nesting on Curtis Island, Queensland (QLD). Mercury,
however, had concentrations below the detection limit of 0.1 mg/
L in blood and 0.05 mg/kg in eggs. The flatback turtle is listed as
data deficient by the IUCN Red List of Threatened Species due to
a lack of data for population modelling (IUCN, 1996).

Methylmercury biomagnifies through food webs and,
consequently, top predatory animals are at greatest risk for
increased dietary MeHg exposure and potential Hg-related health
effects (Schneider et al., 2013; Scheuhammer et al., 2015). Limited
data available on the diet of flatback turtles suggest this species is
carnivorous, feeding on soft-bodied invertebrates including soft
corals, sea cucumbers, jellyfish, and sea pens (Limpus, 2007).
Given its trophic level within the food web, this species could be
particularly vulnerable to Hg bioaccumulation and its health effects.

InWestern Australia (WA), Thevenard Island and EightyMile
Beach are important nesting rookeries (nesting sites) for flatback
turtles (Fossette et al., 2021). In the last decade, the mining sector
has committed to an ongoing structured program of exploration
and production activity in parts of WA (Keesing et al., 2018),
including the Pilbara region, where Thevenard island is located.
Mining activities in this region release Hg via atmospheric
particles (Roche and Mudd, 2014), while gas extraction
activities emits Hg to the atmosphere during steam cleaning
and venting through flares (Young, 2019). Flatback turtles in
this region may therefore be exposed to higher-than-background
levels of Hg that may pose a health risk to them.

In the present study we sought to determine Hg
concentrations in nesting turtles of two flatback turtle
rookeries in WA: Thevenard Island and Eighty Mile Beach.
We assessed the influence of body size on Hg concentrations
in both skin and carapace (keratin layer) of flatback turtles. This is
the first study to analyse Hg in skin and carapace of flatback
turtles, providing baseline information of Hg bioaccumulation in
this endangered species, and key data on the potential for adverse
effects on turtle.We compared differences between rookeries over
700 km apart, hypothesising that the turtles from the southern
rookery (Thevenard Island) were more likely to forage and reside
in the Pilbara region closer to industrial mining activity and
loading ports (potential exposure to higher environmental Hg
concentrations) with turtles from the northern rookery (Eighty
Mile Beach) more likely to reside and feed in the remote
Kimberley.

MATERIAL AND METHODS

The flatback turtle is unique among the seven species of sea
turtles worldwide in that it does not have a pan-oceanic
distribution and is reported to be endemic to the Australian
continental shelf (Cogger and Lindner, 1969; Limpus et al.,
1988). Flatback turtles nest on tropical beaches across
northern Australia and use foraging grounds on the
Australian continental shelf, southern Papua, Papua New
Guinea and coastal waters of Irian Jaya (Limpus, 2007;
Roarty, 2010). As adults, flatbacks appear to stay associated
with distinct foraging areas that comprise individuals from
multiple genetics stocks (distinct rookeries). At breeding
season, adults migrate from the resident foraging areas up
to 1,300 km to distinct rookeries to breed. Thus the breeding
rookery can comprise individuals from both near and far
foraging areas (Limpus, 2007). The sampled flatback turtle
rockeries are from two genetic was stocks (FitzSimmons et al.,
2020)

Western Australia is an important area for both nesting and
foraging flatback turtle populations grounds (Fossette et al., 2021.
Peel et al. in prep; Tucker et al., 2021). To be representative,
samples were collected from a northern and southern rookery
with different proximities to industrial development. Collection
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and sampling of flatback turtles was therefore undertaken at both
locations.

Site Description
Turtle samples were collected in the northern part of WA
(Figure 1). The mining and petroleum industry in WA has
been expanded significantly in the last decade, accounting for
92% of the state’s income (Australian Bureau of Statistics,
2017). Much of this expansion has occurred in the Pilbara
region in the northern part of WA (Figure 1), a mineral rich
region that has seen a significant development of mines, solar
salt production, natural gas extraction and liquefaction, and
the export of these commodities during the past 5 decades
(Brocx, 2008). The Pilbara coast is arid (Semeniuk, 2013),
making this region particularly prone to dust transport from
mining activities.

Thevenard Island
This island is offshore the Pilbara region and known for its
large petroleum, natural gas and mineral deposits (Brueckner
et al., 2013). Oil extraction began in 1985 with the discovery of
the Saladin oil field just off Thevenard Island. Further
discoveries in the coastal area of WA led to the
development of the North West Shelf Project on the Burrup
Peninsula, the Gorgon Project on Barrow Island and the
Wheatstone Project on the mainland in Onslow. In 2015,
mining activities on Thevenard Island were
decommissioned (Wilkinson, 2016), but the North West

Shelf Project and Gorgon Project are ongoing. Higher order
marine animals could be exposed to higher Hg through
particles settling in the surface waters and consumed
through seawater or incorporated into the food chain and
consumed as food.

Flatback turtles nest on Thevenard Island from November
to February. The island represents a medium-size nesting site
for flatback turtles (Whittock et al., 2016; Fossette et al., 2021)
and has been declared a Nature Reserve. The Department of
Biodiversity, Conservation and Attractions (DBCA) in WA
started the North West Shelf Flatback Turtle Conservation
Program in 2011, which implements population studies
through track counts and mark-recapture. Monitoring
started in 2016 on Thevenard Island. Monitoring of tracks
on nest beaches is required to establish a baseline of turtle
numbers and to detect any future changes.

Eighty Mile Beach
Eighty Mile Beach is a 220 km stretch of uninterrupted sandy
coastline in the Kimberley region of WA (Figure 1). It is a
Ramsar-listed wetlands site, with the most inland occurring
mangroves in WA (Secretariat, 1998). It was declared a Marine
Park in 2013, in part due to its importance as a flatback turtle
rookery, as well as the significant foraging grounds for flatback
turtles (Young et al., 2014). It is approximately 600 km north-
east of Thevenard Island and its closest industrial area is Port
Hedland, the largest iron ore loading port in Australia 200 km
south of Eighty Mile Beach (Figure 1). This is an important

FIGURE 1 | Flatback monitoring sites in Thevenard Island and Eighty Mile Beach; orange circles represent operational mines in Western Australia as of September
2020; the Pilbara region is highlighted. Data obtained as shapefile from MINEDEX (DMIRS-001) database (Department of Mines Industry Regulation and Safety, 2020).
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nesting site for flatbacks between October and February
(Tucker et al., 2021). Although there are exploration
permits further offshore Eighty Mile Beach, no current
mining activities occur within 100 km of the
shoreline (Department of Mines Industry Regulation and
Safety, 2020).

Flatback turtle monitoring has been occurring sporadically at
Eighty Mile Beach since 2005 (Young et al., 2014). A more
regimented monitoring program was introduced in 2012,
when the DBCA took responsibility for the Eighty Mile Beach
Turtle Monitoring Program.

Sample Collection
Carapace and skin samples of the same individual turtles were
collected in November and December 2017, during the peak
summer nesting season in WA. Sample collection was performed
on randomly encountered turtles that were found nesting on the
beach. These turtles were approached after oviposition was
completed. Standard flipper tagging (Stockbrands titanium
tags) was undertaken and morphometrics were taken with a
fibreglass measuring tape for standard curved carapace length
(CCL). Approximately 1 g of carapace and 1 g of skin samples
were collected using a biopsy punch (Kai Medical, diameter:
5 mm). Skin samples were obtained from the trailing edge of the
rear flipper, while carapace samples were obtained from the
lateral margins of the shell. Only the keratin layer of the
carapace was collected, following the protocols of Schneider
et al. (2011). Samples were stored in individual plastic bags
and frozen immediately at -5°C for transport to the
Palaeoworks Lab at the Australian National University for
analysis.

Laboratory Processing and Analyses
Carapace samples were ultrasonicated for 5 minutes in individual
beakers holding Milli-Q water to remove any debris. All samples
were placed individually in a clean glass vial, covered with
parafilm and placed in a FreeZone Plus six freeze-drier
(Labconco, Kansas City, MO) and lyophilized at −50°C for 48 h.

Total Hg concentrationwas determined by thermal decomposition,
amalgamation, and atomic absorption spectrometry using a Milestone
DirectMercuryAnalyser (DMA-80Tri-cell;Milestone, Bergamo, Italy)
using the USEPA method 7,473 (USEPA, 1998). Two blanks and two
Standard Reference Materials (SRMs) were analysed for every 36
samples. A replicate sample was run for every 10 samples, with
recovery within 10% of the original sample and reported as the
mean between the replicates. Dogfish muscle CRM Dorm-3
(National Research Council of Canada) was analysed, and results
were in agreement with the certified reference material reports.

Statistics
Data was analysed using R 3.5.1 (R Development Core Team,
2008) with p < 0.05 as the level of statistical significance. The
assumption of normality was checked using the Shapiro-Wilk test
and the equality of variances checked using the Bartlett test. As
data did not meet the assumptions of normality and
homoscedasticity, data were log(x)-transformed to normal

FIGURE 2 |Boxplot showing CCL (mm) of turtles from Eighty Mile Beach
(control site) and Thevenard Island (impact site), WA. Bar whiskers show the
10th and 90th percentiles, box shows the 25th and 75th percentiles and the
solid line in the box shows themedian metal concentrations for each site.
The asterisks indicate values that exceed the 1.5 interquartile range.

TABLE 1 | Curved carapace length (CCL, mm), Hg concentrations (ng/g) in skin and carapace of nesting flatback turtles in rookeries from Thevenard Island and Eighty Mile
Beach, WA.

Thevenard Island Eighty Mile beach

CCL (mm) Hg skin
(ng/g)

Hg carapace
(ng/g)

CCL (mm) Hg skin
(ng/g)

Hg carapace
(ng/g)

Sample size (N) 52 50 52 28 23 28
Average 902 15.2 41.3 898 19.4 48.4
Min 813 7.2 19.1 825 9.4 13.7
Max 984 39.5 106.9 990 33.6 107.7
SD (±) 30.5 5.8 16.5 34.6 4.8 21.8
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distribution in order to use parametric tests, which are typically
more powerful than non-parametric tests.

As bioaccumulation of Hg in turtles is known to be
influenced by age (Schneider et al., 2013; Schneider and
Vogt, 2018), the effects of carapace length (measured as CCL
and used as a proxy for age) on Hg concentrations of turtles
between the two rookeries was examined using an
independent-sample two-tailed t-test. Mercury
concentration was used as the dependent variable, and CCL
as the independent variable. The same test was used to
compare Hg concentrations in carapace and skin samples
between the two populations, with Hg concentrations as
dependent variable and carapace and/or skin as
independent variables. A linear regression model was used
to determine the relationship between CCL and Hg
concentrations in skin and carapace of each turtle group.

RESULTS

A total of 50 skin and 52 carapace samples (n = 52 individuals)
were collected from nesting turtles at Thevenard Island, and 23
skin and 28 carapace samples (n = 28 individuals) from nesting
turtles at Eighty Mile Beach. For turtles already departing the
beach when encountered, only carapace samples could be
collected. The results for turtle size (CCL), skin Hg
concentrations and carapace Hg concentrations for both
rookeries are reported in Table 1. Turtle size (CCL) ranged
from 813 to 990 mm (x� = 900 mm) (Figure 2). Mercury
concentrations at Thevenard Island ranged from 7.2 to
39.5 ng/g (x�= 15.2 ng/g) in skin samples; and 19.1 to 106.9 ng/
g (x�= 41.3 ng/g) in carapace samples (Figure 3A). In the Eighty
Mile Beach samples, Hg concentrations ranged from 9.4 to 33.6 ng/
g (x�= 19.4 ng/g) in the skin; and 13.7–107.7 ng/g (x�= 48.4 ng/g) in
the carapace.

Turtle Size (CCL) of Thevenard Island Vs
Eighty Mile Beach
There was no significant difference in the CCL between turtles
nesting at Thevenard Island (x�= 902 ± 30.5 mm), and turtles
nesting at Eighty Mile Beach (x�= 898 ± 34.6 mm) ((t-test results: t
(78) = -0.519, p > 0.05) (Figure 2).

Mercury Concentrations in Skin of Turtles
From Thevenard Island Vs Eighty Mile
Beach
Turtles from the Eighty Mile Beach rookery had significantly higher
mean skin Hg concentrations (x�= 19.4 ± 4.8 ng/g) than turtles from
Thevenard Island (x�=15.2 ± 5.8 ng/g), t-test: t (72) =−3.8055, p< 0.001
(Figure 3A).

Mercury Concentrations in Carapace of
Turtles From Thevenard Island Vs Eighty
Mile Beach
The results of the t-test show no significant difference in
mean Hg concentrations in the carapaces of turtles from
Eighty Mile Beach (x� = 48.4 ± 21.8 ng/g) and Thevenard
Island (x�= 41.3 ± 16.5 ng/g), t-test: t (77) = −1.27, p > 0.05
(Figure 3B).

Relationship Between Hg Concentrations
and Turtle Size
A regression analysis tested if the turtle length (measured CCL)
significantly predicted Hg concentrations in turtle skin. The results
of the regression indicated that turtle CCL size alone cannot explain
Hg concentrations in skin of turtles from either the Eighty Mile
Beach rookery (R2 = 0.012, F(1,23) = 1.27, p > 0.05) or the Thevenard

FIGURE 3 | Boxplot showing natural log(Ln) of Hg concentrations (ng/g) in (A) skin of turtles and (B) carapace of turtles, from Eighty Mile Beach and Thevenard
Island, WA.
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Island rookery (R2 = 0.019, F(1,48) = 12.44, p > 0.05) (Figure 4A),
although CCL explained 43.1% of the variance in Hg concentrations
in the carapace of turtles from EightyMile Beach (R2 = 0.431, F (1,25)
= 20.7, p < 0.001) and 44.2% from Thevenard Island R2 = 0.442, F
(1,50) = 41.35, p < 0.001) (Figure 4B).

DISCUSSION

Turtle Size
The results of this study showed that flatback nesting females at
Thevenard Island (x� = 902 mm) and Eighty Mile Beach (x� =
898 mm) were of similar mean sizes (CCL) (Table 1). This is
an ideal scenario for comparing Hg concentrations between the

two nesting sites as there is no effect of size on the sampled
populations from different rookeries. The turtle sizes recorded in
this studywere similar to those previously reported for flatback turtle
populations in WA: (x�= 887mm (Limpus, 2007), (x�= 900mm,
(Pendoley et al., 2014), from the Northern Territory: x�= 869 mm,
and slightly smaller than populations from Queensland: x�= 937mm
(Limpus, 2007; Pendoley et al., 2014).

Mercury Concentrations Vs Turtle Size
In this study, we found a positive relationship between turtle size
and Hg concentrations in the carapace of flatback turtles’
carapace, but not between turtle size and Hg concentrations in
skin. It follows that carapace Hg concentration is a better
predictor of exposure to Hg than Hg concentrations in skin
tissue of flatbacks. This is in agreement with previous Hg studies
on reptiles, which demonstrated the ability of keratin from both
turtle carapace and caiman (Melanosuchus niger and Caiman
crocodilus) skin to bioaccumulate Hg (Bezerra et al., 2013; Day
et al., 2005; Innis et al., 2008; Komoroske et al., 2011; Schneider
et al., 2015, 2009). This is because beta-keratins from caiman and
turtle epidermis contain large amounts of amino acids (Alibardi,
2003; Toni et al., 2007) to which Hg is bound in relatively stable
Hg complexes (Schneider et al., 2015). Consequently, a positive
correlation between Hg concentration and turtle size can be
obtained by analysing the keratin layer of carapace.

This is one of the few studies to measure Hg concentrations of
a softshell turtle, along with Perrault et al. (2013) and Green et al.
(2010), and the first study to measure Hg concentrations in the
carapace and skin of the flatback turtle. Softshell turtles (Alibardi,
2002; Alibardi and Toni, 2006) have a soft and deformable
carapace epidermis, not forming the hard and inflexible shell
found in the loggerhead turtle (Caretta caretta) and the green
turtle (Chelonia mydas). This is the first study to find a good
correlation between Hg concentrations and body size in a turtle
with reduced keratinization of the epidermal carapace,
demonstrating that, despite the different keratin arrangement,
carapace samples from the outermost keratin layer of soft-shelled
turtles can be a good indicator of Hg in soft-shelled turtles
(Schneider et al., 2015).

Mercury Concentrations Vs Diet
Flatback turtles have lower Hg concentrations compared to the
carnivorous loggerhead turtle (Caretta caretta) (Tomas et al., 2006)
and the omnivorous Kemp’s ridley Lepidochelys kempii (Schmid and
Tucker, 2018), and similar concentrations to the green turtle
(Chelonia mydas), which is omnivorous as a juvenile and
predominantly herbivorous as an adult (Jimenez Heredia et al.,
2017) (Figure 5).

In comparison with other sea turtles (Table 2; Figure 5), a
higher Hg concentration was expected for the carnivorous
flatback turtles as Hg biomagnifies up food chains (Godley
et al., 1999; Schneider et al., 2010). There are two possible
reasons why Hg concentrations in flatback turtles in this study
are relatively low compared to other turtles worldwide: firstly, the
few available studies on the diet of this species may not fully
capture its entire diet and may have missed potential herbivory or
omnivory. The current literature on diet of flatback turtles is

FIGURE 4 | Scatter plots and linear regression lines of flatback CCL
versus Hg concentrations in (A) skin and (B) carapace of turtles from Eighty
Mile Beach (pink) and Thevenard Island (blue).
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FIGURE 5 | Average Mercury (Hg) concentration (ng/g) in muscle/skin and carapace of sea turtle species worldwide (based on Table 2).

TABLE 2 | Total mean Hg concentration (ng/g) in muscle/skin and carapace of sea turtle species worldwide and in flatbacks from this study.

Species Diet Hg (muscle) Hg (carapace) Sample collection
coastal sites

Reference

(ng/g) dry
weight

(ng/g)

Chelonia mydas Omnivore/herbivore — 70 Brazil Barraza et al., 2019
156a 32 Brazil Bezerra et al. (2013)
— 48 United States Komoroske et al. (2011)

117a — Australia Van de Merwe et al. (2010)

Caretta Carnivore 702a — Italy Canzanella et al. (2021)
676 — Spain Gómez-Ramírez et al. (2020)
<89 — Italy Esposito et al. (2020)
343a — Spain Febrer Serra et al. (2020)
100 — Brazil Di Beneditto et al. (2019)
_ 590 United States Perrault et al. (2013)

156a — Spain Novillo et al. (2017)
195a — Portugal Nicolau et al. (2017)
702 — Italy Storelli et al., 2005
400 — Italy Maffucci et al. (2005)
604a 941 United States Day et al. (2005)

890 Italy Storelli et al. (1998a)
819a — Italy Storelli et al. (1998b)

Lepidochelys kempii Omnivore — 389 United States Innis et al. (2008)

Dermochelys coriacea Carnivore 120 — United Kingdon Davenport et al. (1990)

Natator depressus Likely carnivore 17b 45 Australia This study

aMercury concentrations reported in wet weight were converted to dry weight by multiplying by a factor of 3.9 (the wet/dry mass ratio calculated by Eggins et al. (2015).
bHg measured in skin.

Frontiers in Environmental Science | www.frontiersin.org March 2022 | Volume 10 | Article 8438557

Schneider et al. Mercury in Flatback Turtles

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


mostly limited to the turtle populations from northern
Australia (Limpus et al., 1988; Zangerl et al., 1988; Limpus,
2007). Limpus (2007) reported a carnivorous diet in this
species, consisting of benthic and pelagic invertebrates.
Another study provided evidence of both omnivorous and
carnivorous behaviours from stomach samples of stranded
individuals (Bjorndal, 1997). Secondly, the lower Hg
concentrations found in the flatback turtles might be a
result of the naturally low Hg concentrations from the
Australian continent (McQueen, 2011), as already
hypothesised by Maher et al. (2020). To put this in
perspective, for soils to be considered Hg enriched, they
have to be >100 ng/g (Connor and Schaklette, 1975; Gustin
et al., 2006). Across Australia, Hg concentrations in most soils
and sediments are below 50 ng/g (Lintern et al., 2020;
Schneider et al., 2021), demonstrating the naturally low Hg
concentrations in the Australian environment and therefore
low potential for Hg uptake by aquatic organisms.

It is not possible to draw conclusions about the diet of the
flatback turtle from our Hg concentrations. Mercury
measurements of the entire local food web would be necessary
to better establish the trophic level and diet of this species. More
studies on the diet of flatback turtles, and analyses of δ13C and
δ15N and stomach contents also would reveal the diet of this
species to allow a valid conclusion about its tropic level.

Mercury in Flatback Turtles of Thevenard
Island Vs Eighty Mile Beach
In this study, there were no significant differences in Hg
concentrations between two sampled turtle rookeries. Despite
significant mining activity in the Pilbara region (where turtles
nesting on Thevenard island mainly forage), no significant
difference in Hg concentrations in carapace was found between
turtles nesting at Thevenard Island and Eighty Mile Beach. In
contrast, turtles from Eighty Mile Beach had significantly higher
Hg concentrations in skin. A plausible explanation for the lack of
effect of location on Hg concentrations in carapace could be due
individuals from both rookery overlapping in the resident foraging
areas. Although these populations have distinct nesting sites, shared
foraging areas would inhibit differentiation between rookeries given
that likely uptake pathways are through diet and drinking seawater.
Foraging grounds that support turtles from multiple rookeries and
multiple stocks (including Thevenard Island and EightyMile Beach)
have been identified from a detailed study of satellite tracking data
(Peel et al. in preparation). Other studies have shown that flatbacks
from rookeries in the Pilbara share foraging areas (Pendoley et al.,
2014; Thums et al., 2017; Waayers et al., 2019). Due to flexibility in
feeding behaviour and foraging areas (Whittock et al., 2016), Hg
concentrations in this turtle species may not reflect a single region.
Future studies could focus on sampling turtles at foraging grounds,
but obtaining high enough sample sizes from foraging areas may
remain difficult across multiple locations.

A second reason reason for lack of difference in Hg
concentrations between the two flatback rookeries is the form of
Hg emission by local industry in the Pilbara and the prevailing wind
direction. During mining and gas extraction operations, Hg can be

released as a gas or salt (Spiric, 2001; Li et al., 2019). In nearby areas
of the offshore Pilbara region (Barrow Island), most Hg as a by-
product of mining is released into the atmosphere (Young, 2019)
and its transport is consequently affected by wind direction. Once in
the atmosphere, Hg can attach to fine dust particles and travel
significant distances, contaminating sites well away from mining
operations (Steinnes et al., 1997; Csavina et al., 2014).

Future Directions
Additional studies onHg and the diet of flatback turtle would further
advance our understanding of theHg cycle for this species. Below are
recommendations on the next research steps to be taken:

a) Diet and food web reconstruction based on the analyses of δ13C
and δ15N and stomach contents, considering ontogeny, would
provide a detailed diet information and provide insights to the
low Hg concentrations measured in this species.

b) Mercury measurements in different environmental matrices
(e.g., seawater, sediments, atmospheric aerosols) and biological
indicators, would allow a complete overview of the Hg cycle in
the coastal WA ecological system and Hg exposure to aquatic
organisms.

c) Satellite tracking data would clarify any potential overlap in the
foraging grounds for turtles from Thevenard Island and Eighty
Mile Beach.

d) Laboratory studies on the metabolism of Hg in turtles would
provide an understanding of the distribution, accumulation,
and excretion of Hg in this species.

CONCLUSION

This study is the first to report Hg bioaccumulation in flatback
turtles. Our research establishes Hg concentrations for two flatback
turtle rookeries in Western Australia, advancing our understanding
of Hg concentrations in these marine organisms. Despite limited
understanding of environmental Hg concentrations and exposure by
flatback turtles, sampled turtles have amuch lowerHg concentration
than reported for other sea turtle species worldwide. The present
exploratory study found lowmercury accumulation at rookeries, but
a need remains to test for contaminants acquired at widely dispersed
foraging grounds. Further studies on the diet and trophic levels of
flatback turtles would support the interpretation of Hg exposure to
this species.
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