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Fine particulate matter (PM2.5) seriously affects the environment, climate, and human
health. Over the past decades, the Beijing–Tianjin–Hebei region (BTH) has been severely
affected by pollutant gas and PM2.5 emissions caused by heavy industrial production,
topography, and other factors and has been one of the most polluted areas in China.
Currently, the long-term, large-scale, and high spatial resolution monitoring PM2.5

concentrations ([PM2.5]) using satellite remote sensing technology is an important task
for the prevention and control of air pollution. The aerosol optical depth (AOD) retrieved by
satellites combined with a variety of auxiliary information was widely used to estimate
[PM2.5]. In this study, a two-stage statistical regression [linear mixed effects (LME) +
geographically weighted regression (GWR)] model, combined with the latest high spatial
resolution (1 km) AOD product and meteorological and land use parameters, was
constructed to estimate [PM2.5] in BTH from 2013 to 2020. The model was fitted
annually, and the ranges of coefficient of determination (R2), root mean square
prediction errors (RMSPE), and relative prediction error (RPE) for the model cross-
validation were 0.85–0.95, 7.87–29.90 μg/m3, and 19.19%–32.71%, respectively.
Overall, the model obtained relatively good performance and could effectively estimate
[PM2.5] in BTH. The [PM2.5] showed obvious temporal characteristic within a year (high in
winter and low in summer) and spatial characteristic (high in the southern plain and low in
the northern mountain). During the investigated period of 2013–2020, the high pollutant
areas ([PM2.5] > 75 μg/m3) in 2020 significantly narrowed compared to 2013, and the
annual average [PM2.5] in BTH fell below 55 μg/m3, with a drop of 54.04%. In particular, the
[PM2.5] in winter season dropped sharply from 2015 to 2017 and declined steadily after
2017. Our results suggested that significant achievements have been made in air pollution
control over the past 8 years, and they still need to be maintained. The research can
provide scientific basis and support for the prevention and control of air pollution in BTH
and beyond.
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INTRODUCTION

Fine particulate matter (PM2.5, particles with aerodynamic
diameter less than 2.5 μm) are suspended in the atmosphere
as a composite of solid and liquid particles. It can carry toxic
and harmful substances over long distances, crossing countries
and geographic boundaries (Engel-Cox et al., 2013; Li et al.,
2017). Epidemiological studies have shown that exposure to
high PM2.5 concentrations ([PM2.5]) has adverse effects on
human health, such as increasing morbidity and mortality of
cardiopulmonary diseases (Chow et al., 2006; Gu et al., 2018;
Riediker et al., 2018; Zhang et al., 2018). With the rapid
economic and urbanization development, PM2.5 has become
a major air pollutant in China, especially in densely populated
urban agglomerations, such as the Beijing–Tianjin–Hebei
region (BTH) and the Yangtze River Delta region (He and
Huang, 2018a; Wang G. et al., 2021). Therefore, studying the
spatiotemporal patterns and trends of [PM2.5] is conductive to
taking accurate preventive measures against PM2.5 pollution for
policymakers and has important practical significance for air
pollution control (Yan et al., 2021).

At present, PM2.5 monitoring data mainly were derived from
the ground monitoring network and aerosol optical depth (AOD)
products generated by satellite sensors (van Donkelaar et al.,
2006; Chudnovsky et al., 2014). AOD is a measure of the degree
about which aerosols prevent light from penetrating the
atmosphere and describes the reduction effect of aerosols on
light. The AOD retrieved by visible channels is most sensitive to
particles with sizes between 0.1 and 2 μm (close to the particle size
of PM2.5), which is an important theoretical basis for establishing
the correlation between AOD and PM2.5 (Kahn er al., 1998; Hu
et al., 2013). Generally, satellite-derived AOD can provide
valuable information for the estimation of ground-level PM2.5

pollution due to its large spatial coverage, high spatial resolution,
and reliable repeated measurement, especially suitable for those
places without PM2.5 monitoring station on the surface (Schaap
et al., 2009; Yeganeh et al., 2017; Stowell et al., 2020). Recently,
most of the AOD products used to predict [PM2.5] were derived
from the Moderate Resolution Imaging Spectroradiometer
(MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS),
Multiangle Imaging SpectroRadiometer (MISR), and Advanced
Himawari Imager (AHI) that the nominal spatial resolutions for
AOD retrieved by their algorithms are 10 or 3 km, 17.6 or 4.4,
0.75 and 5 km, respectively (Lee et al., 2011; Hu et al., 2014a; Yao
et al., 2018; Wang et al., 2020). However, the coarser resolution
AOD products hinder the study of fine-scale [PM2.5]. For
example, the detailed spatial variability of PM2.5 exposure was
ignored at the urban scale (Hu et al., 2014b). A new high spatial
resolution (1-km) MODIS Collection 6 (C6) daily AOD product
(MCD19A2) was released in 2018, which was generated based on
the Multi-Angle Implementation of Atmospheric Correction
(MAIAC) algorithm and demonstrated excellent performance
in estimating [PM2.5] (Lyapustin et al., 2018; Zhang Z. et al., 2019;
Choi et al., 2019).

Previous studies have established a variety of models to
explore the relationship between station-based PM2.5

observations and satellite-based AOD data, including scaling

approach (Liu et al., 2004), semi-empirical (Wang and
Christopher, 2003), and statistical regression models. Given
their simplicity, fast process, and high performance, statistical
regression models are widely used. These models ranged from
simple linear regression (Engel-cox et al., 2004) in early study to
advanced statistical models, such as linear mixed effects (LME)
(Lee et al., 2011), generalized additive (GAM) (Liu et al., 2009),
geographically weighted regression (GWR) (Hu et al., 2013),
space-time LME (STLME) (Wang W. et al., 2021),
geographically and temporally weighted regression (GTWR)
(Bai et al., 2016), and time fixed effects regression (TEFR)
(Yao et al., 2018). To improve prediction accuracy, various
models have evolved from using AOD as the only predictor to
a combination of multiple additional predictors [e.g.,
meteorological factors, human activities, and land use (LU)
variables] (Gupta and Christopher, 2009; Hu et al., 2017). To
reduce the deviation caused by a single model prediction, more
complex models were then developed by combining two or more
models, such as two-stage model (e.g., LME + GWR, LME +
GAM, and TEFR + GWR) (Ma et al., 2016; Yao et al., 2019; Xue
et al., 2020; Guo et al., 2021) and three-stage model [e.g., inverse
probability weighting (IPW) + generalized additive mixed model
(GAMM) + kriging with external drift (KED)] (Liang et al., 2018).
In addition, some machine learning methods were employed to
estimate [PM2.5], such as random forest (RF) (Stafoggia et al.,
2019; Zhao et al., 2020), artificial neural network (ANN) (Polezer
et al., 2018), adaptive deep neural network (SADNN) (Chen et al.,
2021), and support vector machine (SVM) (Moazami et al., 2016).
However, the parameters in the machine learning models cannot
explain the spatiotemporal relationship between PM2.5 and AOD,
owing to an unknown mechanism, causing the model to lack
reasoning capability (Yang et al., 2021). The LME + GWR model
is weak in dealing with nonlinear relationships between various
predictors, but it can accurately capture the spatiotemporal
variability of PM2.5–AOD, which is better than the LME
model and LME + GAM model (Zhang K. et al., 2019; Guo
et al., 2021). Moreover, related studies indicated that adding
interaction terms (quadratic terms) to the statistical regression
models could better describe nonlinear effects (Xiao et al., 2017;
He et al., 2020).

PM2.5 estimation data with higher resolution and long-term
series are of great significance for the analysis of small-scale air
pollution (Lu et al., 2021). In this study, our main goal was to
estimate the [PM2.5] in the BTH and analyze its long-term
spatiotemporal characteristics and trends. The specific
objectives of this research were 1) to establish a suitable
two-stage statistical regression model (LME + GWR),
including adding quadratic terms and interaction terms in
the model to account for the nonlinear relationship, and
considering the influence of meteorological and LU
information and AOD data in the BTH; 2) to estimate the
daily [PM2.5] distribution with 1-km spatial resolution in the
BTH from 2013 to 2020; and 3) to analyze the spatiotemporal
characteristics and trends of long-term [PM2.5] on annual,
seasonal, and monthly scales. The results can provide a
reference for the joint prevention and control of particulate
pollution in the study area.
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MATERIALS

Study Area
The BTH (113.45°E–119.85°E and 36.03°N–42.62°N) is one of the
most important administrative, commercial, and cultural center in
northern China, including Beijing and Tianjin, and 11 prefecture-
level cities of Hebei Province (Figure 1). The region is densely
populated and is a secondary industry that used coal as the main
energy source emits various air pollutants, which causing relatively
severe haze (Zhao et al., 2019). In particular, in the inland plains,
coupled with unfavorable topography, it makes it more difficult for
pollutants to spread (Lv et al., 2017). According to the statistics from
the “China Environmental Bulletin” (http://www.cnemc.cn/jcbg/
zghjzkgb/) during 2013–2020, the BTH included seven, eight,
seven, six, six, five, four, and one, respectively, among the top 10
cities with poor air quality in China. Although the air quality in this
region has improved during the past few years, we should still pay
close attention to PM2.5 pollution. Therefore, it is essential to analyze
the spatiotemporal distribution and the trend of [PM2.5].

PM2.5 Monitoring Data and Predictor
Variables
In addition to addingAOD to themodel for [PM2.5] prediction, it has
been recognized that combining meteorological and LU information
can significantly improve the model predictability (Hu et al., 2017;
Wang G. et al., 2021). In this study, for the proposed two-stage
statistical regression (LME + GWR) model, a main independent

predictor (AOD) and eight auxiliary predictors [i.e., planetary
boundary layer height (PBLH), 2-m air temperature (TEMP), 10-
m wind speed (WS), relative humidity (RH, specific humidity
calculated), surface pressure (PRS), precipitation (PRCP), forest
coverage (FC), and urban coverage (UC)] were utilized through
variables selection and multicollinearity diagnosis. The datasets
covered the period from January 1, 2013, to December 31, 2020.
The detail information about the datasets is shown in Table 1.

1) PM2.5 data. The PM2.5 hourly concentration of 80 monitoring
stations in BTH was obtained from the National Urban Air
Quality Real-time Release Platform. In the process of fitting
the daily mean [PM2.5], we eliminated the [PM2.5] (i.e., <2 and
>500 μg/m3) that was not within the monitoring range of the
National Ambient Air Quality Standard (NAAQS) (GB 3095-
2012) to ensure the validity of the PM2.5 data.

2) AErosol RObotic NETwork (AERONET) AOD. The AOD
measured by AERONET was used as the true value to verify
the accuracy of the AOD retrieved by remote sensing. The
AERONET AOD data (version 3, level 2) from three sites
(i.e., Beijing, Beijing-CAMS, and Xianghe) were collected in
our modeling area (https://aeronet.gsfc.nasa.gov/), which
were used to validate the MODIS MAIAC AOD.

3) One-kilometer AOD data. High-resolution AOD products are
increasingly used to capture the fine-scale differences in the
spatial distribution of [PM2.5]. The emergence of the MAIAC
algorithm provided a theoretical basis for constructing a high-
resolution [PM2.5] estimation model. The MAIAC Terra/

FIGURE 1 | Study area with 80 monitoring stations in the Beijing–Tianjin–Hebei region (A) and sub-areas (B) divided by terrain.
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Aqua AOD (0.55 µm) products were available through the
MODIS Collection-6 data record. The AERONET AOD550 nm

was calculated from the AOD at 675 and 440 nm using the
Angstrom exponent. Simple linear regressions were carried
out between the MAIAC Terra/Aqua AOD (0.55 µm) and
AERONET AOD550 nm at the AERONET sites for each year.
The results show that the fitting with the coefficient of
determination (R2) in 0.81–0.91 was acceptable in all years
(Figure 2). The root mean square prediction error (RMSPE)
ranged from 0.10 to 0.25, 73.15%–83.74% of the samples
falling within the interval of 1 × variance, and the slope of
0.95–1.17, which met the verification accuracy requirements.

4) Meteorological data. The hourly PBLH data were derived
from the Goddard Earth Observing System Model 5-
Forward-processing (GEOS5-FP). Other daily
meteorological data (e.g., TEMP, WS, RH, PRS, and PRCP)
were extracted from the National Tibetan Plateau Data Center
(TPDC) and only cover the period from 2013 to 2018 (Yang
and He, 2019). The daily data from 2019 to 2020 were
downloaded from the National Meteorological Science Data
Center. The meteorological data in the two periods have
negligible influence on the model prediction results because
they have similar spatial resolutions and need to be
interpolated to the same resolution as MODIS MAIAC AOD.

5) LU data. LU data were downloaded from the Geographical
Information Monitoring Cloud Platform (GIM Cloud). The
study selected LU data in 2015 to represent the LU status from
2013 to 2020 and extracted the urban coverage and FC in the
study area into the model.

6) Data integration. Considering to match the daily [PM2.5], the
daily PBLH data were represented by averaging the
observation values obtained at two times during the transit
of the MODIS satellite. The daily meteorological data were
then resampled to the 1-km grid by the bilinear interpolation
method. In addition, the UC and FC data with 30-m spatial
resolutions were averaged over the 1-km grid.

METHODS

Collinearity Diagnosis
Considering the stability of the predictive model, the collinearity
of the independent variables should be diagnosed. In this study,
the variance inflation factor (VIF) and tolerance value (TV) were
selected to diagnose the collinearity of the selected variables. The

VIF and TV of all independent variables participating in the
model satisfied VIF < 10 and TV > 0.1 for each year (Table 2),
indicating that there was no collinearity problem among the
independent variables and could be considered for model fitting.

Two-Stage Statistics Regression Model
A two-stage statistical regression model consisting of LME model
and GWR model was used to simulate the spatiotemporal
variation of the PM2.5–AOD relationship. The LME model in
the first stage was applied to correct the time-varying relationship
of PM2.5–AOD. The quadratic term of AOD (AOD2) and the
interaction between PBLH and AOD (PBLH × AOD) were added
to the model to explain the nonlinear relationship between AOD
and PM2.5. The specific structure of the model is as follows:

PM2.5st � (β0 + θ0) + (β1 + θ1)AODst + (β2 + θ2)AOD2
st

+ (β3 + θ3)PBLHst + (β4 + θ4)WSst

+ (β5 + θ5)TEMPst + (β6 + θ6)RHst + (β7 + θ7)PRSst
+ (β8 + θ8)PRCPst + β9 × PBLHst × AODst

+ β10 × FCs + β11 × UCs

+ εst(θ1 ~8) ~ N[(0, 0, 0,ψ)], εst ~ N(0, σ2)
(1)

where PM2.5st is the [PM2.5] at station s on day t; AODst is the AODof
the grid cell inwhich the station s is positioned on day t; AOD2st is the
quadratic term for AOD at station s on day t; PBLHst, WSst, TEMPst,
RHst, PRSst, and PRCPst are the planetary boundary layer height,
wind speed at 10-m height, temperature at 2-m height, relative
humidity, surface pressure, and precipitation at station s on day t,
respectively; PBLHst × AODst is the interaction between PBLH and
AODat station s on day t; FCs andUCs are the FC value andUCvalue
at station s, respectively;β0 and θ0 are thefixed and random intercepts,
respectively; β1 and β2 are the fixed slopes of square polynomials for
AOD; β3, β4, β5, β6, β7, β8, β10, and β11 are the fixed slopes of PBLH,
WS, TEMP, RH, PRS, PRCP, FC, and UC; β9 is the fixed slope of the
interaction between PBLH and AOD; θ1 and θ2 are the daily random
slopes of square polynomials for AOD; and θ3–θ8 are the daily
random slopes of each meteorological variables, respectively.

The GWR model of the second stage was used to correct the
spatial heterogeneity between PM2.5 and AOD. The specific method
was to model the residuals of the LMEmodel. This GWRmodel was
fitted once a day to account for temporal variability. In addition, the
model using adaptive bandwidth selection methods calculated by

TABLE 1 | Information about data source, temporal and spatial resolution.

Variable Temporal resolution Spatial resolution Data source

PM2.5 hourly site http://106.37.208.233:20035/
AOD daily 1 × 1 km https://ladsweb.modaps.eosdis.nasa.gov/
Meteorological PBLH hourly 0.25° × 0.3125° ftp://rain.ucis.dal.ca/ctm/

TEMP, WS, RH, PRS, and PRCP daily 0.1° × 0.1° http://data.tpdc.ac.cn/zh-hans/data/ (2013–2018)
0.0625° × 0.0625° http://data.cma.cn/ (2019–2020)

Land use FC yearly 30 × 30 m http://www.dsac.cn/DataProduct/
UC

PBLH is planetary boundary layer height; TEMP, WS, RH, PRS, and PRCP are 2-m air temperature, 10-m wind speed, relative humidity, surface pressure, and precipitation, respectively.
FC and UC are forest coverage and urban coverage, respectively.
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minimizing the corrected Akaike Information Criterion (AIC) value.
The specific expression is as follows:

PM2.5 resist � β0(us, vs) + β1(us, vs)AODst + εst εst ~ N(0, σ2)
(2)

where PM2.5_resist is the residual value from the LME model at
station s in day t; AODst is the AOD value at station s on day t; (us,

vs) is the spatial coordinates of the monitoring station s; and β0
(us,vs) and β1 (us,vs) represent the regression intercept and
regression slope at station s, respectively.

For model verification, a 10-fold cross-validation (CV) method
was conducted to detect the degree of overfitting of the model. The
entire model-fitting dataset was randomly split into 10 subsets, with
each subset containing approximately 10% of the dataset. In each CV
time, we selected one subset as the testing sample and used the

FIGURE 2 | Scatter plot of MODIS MAIAC AOD and AERONET AOD at 550 nm for the period of 2013–2020 (A–H). The red dashed line is the regression line. The
black line is a 1:1 line. The gray lines represent the expected error (EE) envelopes [±(0.05 + 20%×AERONET AOD)]. It also shows the coefficient of determination (R2), the
number of samples (N), the percentage in EE (P), and the root mean square prediction error (RMSPE).
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remaining nine subsets to fit the model for prediction on the testing
sample. This process was repeated 10 times to ensure that all the
subsets were predicted. We fitted a linear regression was performed
between the measured and predicted [PM2.5], and the fitted R

2, slope,
RMSPE, and relative prediction error (RPE) were evaluated the
performance of the model. They represented by Eqs. 3 and 4,
respectively.

RMSPE �
�����������������∑n

i�1(ymod,i − yobs,i)2
n

√
(3)

RPE � RMSPE × 100%
�y

(4)

where ymod,i is the estimated PM2.5 at site i; yobs,i is the observed
PM2.5 at site i; n is the total number of data samples; and �y is the
average of the observed PM2.5.

The estimation process of the daily [PM2.5] by the LME +
GWR model is shown in Supplementary Figure S1.

RESULTS

Descriptive Statistics
As shown in Table 3, the daily minimum and maximum [PM2.5]
in the BTH were ranged from 2 to 3 μg/m3 and from 371 to
499 μg/m3, respectively, which indicated that the pollution degree

of different areas in the BTH had considerable differences. The
annual average [PM2.5] during the investigated period from 2013
to 2020 in the BTH were 91.27, 85.93, 72.89, 68.22, 61.02, 53.53,
45.75, and 40.97 μg/m3, respectively, indicating that the PM2.5

pollution has been on a downward trend in the past 8 years.
However, it still exceeded the limit (35 μg/m3) of the national
secondary standard for ambient air quality (GB3095-2012). The
average annual AOD ranged from 0.37 to 0.69 during the same
period. The great difference between the mean FC and UC
reflected that most of the monitoring sites in the study area
were located inside or around the city. In addition, the ranges of
the meteorological variables from 2013 to 2020 are also shown in
Table 3.

During the period from 2013 to 2020, the monthly [PM2.5]
monitored in the BTH demonstrated that the median monthly
[PM2.5] presented a U-shaped oscillation for each year (Figure 3).
Overall, the [PM2.5] displayed significant monthly differences,
following the change pattern of “high in winter, low in summer,
falling in spring and rising in autumn”. In detail, [PM2.5]
displayed a downward trend from January to May, a general
stability from June to September, and an upward trend from
October to December. The reason for the highest monthly
[PM2.5] in December and January was the combined effect of
coal-fired heating in winter and unfavorable meteorological
conditions in the BTH, such as low air humidity and weak
wind speed.

Model-Fitting and Validation
The comparison of LME + GWR model fitting (Figure 4A) and
10-fold CV results (Figure 4B) from 2013 to 2020 indicated that
the model displayed excellent performance in capturing daily
[PM2.5]. For model fitting, the data distribution was concentrated
toward the regression line. The R2 ranged from 0.89 to 0.97,
indicating that the two-stage model could effectively explain
89%–97% of the ground-level [PM2.5] variation. The slope
ranged from 0.89 to 1.04, indicating that only a small
prediction bias remained in the model. In addition, the fitting
results also displayed that the RMSPE and RPE were
6.85–24.60 μg/m3 and 16.67%–26.94%, respectively. Compared
with model fitting, the 10-fold CV results showed that the CV-R2,
CV-RMSPE, and CV-RPE ranged from 0.85 to 0.95, 7.87 μg/m3 to

TABLE 2 | The range of variance inflation factor (VIF) and tolerance value (TV) in the
analysis of variable collinearity.

Predict variables VIF TV

AOD 1.18–1.64 0.60–0.84
PBLH 1.17–1.60 0.69–0.84
WS 1.15–1.28 0.68–0.86
TEMP 1.15–1.78 0.56–0.86
RH 1.41–1.88 0.52–0.82
PRS 1.24–1.50 0.66–0.80
PRCP 1.03–1.07 0.93–0.96
FC 1.30–1.48 0.67–0.76
UC 1.43–1.87 0.53–0.69

PBLH is planetary boundary layer height; TEMP, WS, RH, PRS, and PRCP are 2-m air
temperature, 10-m wind speed, relative humidity, surface pressure, and precipitation,
respectively. FC and UC are forest coverage and urban coverage, respectively.

TABLE 3 | Statistical indicators of modeling variables.

Variables Minimum Maximum Mean Std. Deviation

PM2.5 (µg/m3) 2.00–3.00 371.00–499.00 40.97–91.27 34.18–77.23
AOD (unitless) 0.003–0.02 2.98–3.79 0.37–0.69 0.37–0.71
PBLH (m) 54.68–64.69 2,307.02–3,124.23 333.92–553.57 321.9–471.71
WS (m/s) 0.05–0.63 5.61–12.04 1.52–2.59 0.73–1.28
TEMP (°C) −22.66–-12.85 31.58–33.97 9.83–12.88 10.30–11.57
RH 0.04–0.10 0.93–1.00 0.42–0.51 0.16–0.18
PRS (hPa) 866.01–891.61 1,016.94–1,042.73 997.25–1,006.12 27.10–33.92
PRCP (mm) 0 42.02–99.12 0.30–0.43 2.27–2.74
FC 0 0.68–0.75 0.03–0.05 0.11–0.14
UC 0 0.79–1.00 0.55–0.78 0.29–0.33

PBLH is planetary boundary layer height; TEMP, WS, RH, PRS, and PRCP are 2-m air temperature, 10-m wind speed, relative humidity, surface pressure, and precipitation, respectively.
FC and UC are forest coverage and urban coverage, respectively.
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29.90 μg/m3, and 19.19–32.72%, respectively. The CV-R2

decreased, and CV-RMSPE and CV-RPE increased, indicating
that the model had a slight overfitting. In addition, Figure 4
shows that, when the measured [PM2.5] exceeds 400 μg/m

3, the
model had a slight “high value underestimation” phenomenon.

During the study period, the model performed best in 2020.
Under the regression of the observed and predicted [PM2.5] in the
study area,CV-R2was the highest at 0.95, and the CV-RMSPE and
CV-RPE were the lowest at 7.87 μg/m3 and 19.19%, respectively.
This is mainly attributable to the government’s series of “Air
Pollution Prevention and Control Action Plans” (APPCAP), and
the [PM2.5] has been declining year by year. About 93.72% of
[PM2.5] data samples in 2020 were less than 100 μg/m3. In
contrast, the model performed the worst in 2013, with the
lowest CV-R2 and the largest forecast uncertainty. The main
reason was that more than 32.38% of the data samples were more
than 100 μg/m3, and relatively discrete data samples increased the
difficulty of model fitting. Overall, the LME + GWR model that
we have established was robust. Using the LME + GWR model
combined with the 1-kmMAIAC AOD product could excellently
predict the daily near-surface [PM2.5] with CV-R2 > 0.84, CV-
RMSPE < 30 μg/m3, and CV-RPE < 33% in the BTH.

Spatiotemporal Patterns of PM2.5

Concentrations
Annual Variations
Figure 5 illustrated the annual mean [PM2.5] estimated by the LME
+ GWR model, and ground-level observed [PM2.5] from 2013 to
2020 in the BTH. The spatial variation pattern of [PM2.5] estimated
by the model was in good agreement with ground observations. The
low-value areas of [PM2.5] were located in the western and northern
mountainous areas (Zone I), and the high-value areas were located in
the middle and south of the BTH inland plain (Zone II). In general,

the [PM2.5] present a spatial distribution pattern of “low in the
northern mountains and high in the southern plains”. During the
study period, the annual mean [PM2.5] were 69.67, 65.31, 49.26,
51.17, 44.96, 43.11, 34.54, and 32.02 μg/m3, respectively, and the
overall PM2.5 pollution level dropped significantly. Moreover, high-
concentration areas ([PM2.5] > 75 μg/m3) have shrunk remarkably,
and polluted cities were mainly concentrated in Handan, Xingtai,
Shijiazhuang, and Baoding.

We adopted linear regression method to analyze the trends of
annual mean [PM2.5] in BTH. Figure 6 illustrates the spatial
distribution of the slope and significance level of [PM2.5] from
2013 to 2020. Most of the mountain areas (Zone I) in the BTH
failed the significance test (p ≥ 0.01). The reason was speculated
that the [PM2.5] changed slightly during the study period. In
addition, the [PM2.5] level showed a significant decreasing trend
(p < 0.05) in inland and coastal areas (Zone II and Zone III).

Seasonal Variations
PM2.5 pollution in the BTH displayed strong seasonal variability.
On the whole, the [PM2.5] presented the seasonal variation
characteristics of “high concentration in winter, low
concentration in summer, and transition between spring and
autumn” (Figure 7). During the study period in winter, the mean
[PM2.5] were 117.46, 84.24, 75.30, 72.72, 55.97, 52.75, 51.48, and
51.42 μg/m3, respectively. There was a sharp decline in pollution
from 2015 to 2017 and a steady decline after 2017. Compared
with the [PM2.5] in the winter of 2013, there was a decrease of
61 μg/m3 (52%) in 2017 and 66 μg/m3 (56%) in 2020. In addition,
the annual and seasonal mean [PM2.5] in the Zone II dropped the
fastest compared with Zone I and Zone III (Figure 8).

Monthly Variations
During the study period, the estimated monthly [PM2.5] of each year
presented a U-shaped pattern (Figure 9), which was consistent with

FIGURE 3 | The monthly mean observed PM2.5 concentrations from 2013 to 2020 (A–H) in the Beijing–Tianjin–Hebei region.
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the monthly measured [PM2.5] distribution (Figure 3). January and
December were the two months with the highest monthly mean
[PM2.5], which were related to coal-fired heating in the BTH. In
addition, the low atmospheric humidity and temperature in these
two months were also an important reason.

For the spatial distribution, the mean monthly [PM2.5] had
significant differences (Figure 10). The [PM2.5] from May to
September remained at a relatively low level. From October to
February of the next year, cities in inland plain areas (e.g.,
Shijiazhuang, Baoding, Handan, and Xingtai) had the high-
level [PM2.5].

Figure 11 represents the daily fluctuations of [PM2.5] based on
station measurements and model estimates in Beijing and
Shijiazhuang. The [PM2.5] estimated by LME + GWR from
2013 to 2020 had excellent consistency with the monitoring
station data and merely appeared a “high value
underestimated” prediction deviation at few high
concentrations (more than 400 μg/m3). The fluctuation pattern
of PM2.5 pollution in Shijiazhuang was identical with Beijing. The
peak values of [PM2.5] were mainly distributed in winter, and the
peak value in Shijiazhuang (the highest of 492.28 μg/m3 appeared
in 2014) was higher than that in Beijing (the highest of 463.52 μg/

FIGURE 4 | Comparison of model fitting (A) and 10-fold cross-validation (B) results from 2013 to 2020.
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FIGURE 5 | The distribution of the annual mean estimated PM2.5 concentrations and observed PM2.5 concentrations in the Beijing–Tianjin–Hebei region during
2013–2020 (A–H).

FIGURE 6 | Spatial distributions of the slope (A) and significance levels (B) of annual mean PM2.5 concentrations in the Beijing–Tianjin–Hebei region from 2013
to 2020.
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FIGURE 7 | Distribution of mean PM2.5 concentrations in spring (A1–H1), summer (A2–H2), autumn (A3–H3), and winter (A4–H4) in the Beijing–Tianjin–Hebei
region during 2013–2020.
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FIGURE 8 | Scatter plots of seasonal and annual trends of PM2.5 concentrations in the Zone I (A1–E1), Zone II (A2–E2), Zone III (A3–E3), and the
Beijing–Tianjin–Hebei region (A4–E4) from 2013 to 2020. (The gray band represents the 95% confidence interval).
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m3 appeared in 2015). During the study period, the annual mean
[PM2.5] in Beijing were 57.54, 54.34, 54.30, 54.53, 54.38, 39.07,
30.87, and 30.09 μg/m3, which were lower than 108.40, 91.61,
69.31, 74.48, 67.63, 53.63, 43.52, and 39.87 μg/m3 in Shijiazhuang.
However, PM2.5 fell sharply in Shijiazhuang, with a drop of
63.21% from 2013 to 2020. In addition, the frequency of high
pollution in Shijiazhuang in winter was higher than that in
Beijing.

DISCUSSION

Causes Affecting the Spatiotemporal
Distributions of PM2.5
During the period from 2013 to 2020, [PM2.5] in the BTH showed
obvious spatiotemporal variations on different scales of annual,
seasonal, and monthly. Overall [PM2.5] in the BTH revealed a
downward trend during the investigated period. Exploring the
reasons for the decrease in the [PM2.5] was inseparable from the
national policy control, such as coal-to-gas and energy-saving
transformation (Pan et al., 2021). In detail, the APPCAP
implemented between 2013 and 2017 has successfully reduced
[PM2.5] (Yue et al., 2020), and the sharp decline in 2017 was
closely related to the termination year of the APPCAP in 2017.
Moreover, the [PM2.5] in December 2015 and December 2016
were significantly higher than that in other years. The reason was
that El Niño in 2015 enhanced the winter air pollution in
northern China (Chang et al., 2016). The high concentration
in the winter of 2016 might be influenced by anthropogenic
factors (Ding et al., 2021). In addition, the [PM2.5] in the winter of
2018–2020 decreased slowly compared with 2017, and the light-
pollution areas (such as Langfang and Tangshan) slightly
expanded. Furthermore, combined with the contribution of
the suspension of work and production during new
coronavirus disease (COVID-19) (Xian et al., 2021), the
[PM2.5] in the winter of 2020 dropped to 51.42 μg/m3, which
was the lowest [PM2.5] in winter during the study period.

In the BTH, [PM2.5] presented the significant seasonal variation
characteristics of “high in winter, low in summer, and transition

between spring and autumn”, which were consistent with previous
studies (Wu et al., 2016; Guo et al., 2021; Lu et al., 2021). The high
[PM2.5] in winter was concentrated in cities such as Shijiazhuang,
Xingtai, and Handan. In the study areas, pollutant emissions were
mainly due to the coal-fired heating and unfavorable meteorological
conditions (Lv et al., 2017). Relevant studies have pointed out that
the increase of boundary layer height and higher water vapor content
in summer are the main reasons for the low [PM2.5] (Qu et al., 2016;
Ding et al., 2021). Moreover, the elevated [PM2.5] levels in autumn
were likely caused by the large scale straw burning in the rural areas
and coal burning for heating in November (Duan et al., 2004; Lv
et al., 2017). In addition, the spatiotemporal variation trends on the
monthly scale follow the characteristics of seasonal changes, with the
most polluted months appearing in December and January.

Comparisons With Other Studies in the
Beijing–Tianjin–Hebei Region
In previous studies, the CV-R2 value range of the satellite-based
ground [PM2.5] estimation model for the BTH was 0.54–0.95
(Table 4). Among these, the [PM2.5] estimation model based on
MODIS MAIAC AOD (CV-R2 up to 0.82–0.95) has been found to
perform better than other [PM2.5] estimation models (a maximum
CV-R2 of 0.83), owing to its superior spatial resolution. Under the
same high spatial resolution of AOD, our model showed similar or
even better performance than other machine learning models. The
performance statistics of the LME + GWR model developed was
also comparable with other studies conducted in the United States
that used the MODIS MAIAC AOD data (CV-R2 up to 0.62–0.84)
(Hu et al., 2014a, 2014b; Chudnovsky et al., 2014; Stowell et al.,
2020). For model, the LME model cannot estimate the daily value
of PM2.5 at non-monitoring points, even if there are abundant data
available. Models such as TEFR and STLME also have this
shortcoming (Wu et al., 2016; Wang W. et al., 2021). In
addition, machine learning methods that account for complex
nonlinear relationships between different variables by adding
hidden nodes and layers exhibited good performance in
estimating [PM2.5] (Ni et al., 2018; Stafoggia et al., 2019; Sun
et al., 2019; Zhao et al., 2020; Ding et al., 2021). However, the

FIGURE 9 | Statistical variations of the monthly mean PM2.5 concentrations in the Beijing–Tianjin–Hebei region from 2013 to 2020.
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addition ofmore hidden nodes and layers consumed a lot of time in
estimating PM2.5 load and produced different results for each
training (Wang W. et al., 2021). Therefore, the LME + GWR
model has certain advantages in terms of performance and
stability. For AOD product, AHI AOD was commonly used to
estimate hourly [PM2.5] due to its high resolution. However, AHI
cannot retrieve AOD at nighttime, and the quality is slightly
inferior to MODIS AOD (Sun et al., 2019; Wang W. et al., 2021).

The model proposed in this study has many advantages. First, the
high spatiotemporal resolution MAIAC Terra/Aqua fusion AOD
data were employed in the model and achieved satisfactory

performance. Second, the AOD quadratic term (AOD2) and the
interaction term of AOD and PBLH (PBLH×AOD) were introduced
into the first-stage LME model to describe the nonlinear effect of the
model. Third, we adopted theGWRmodel as the second-stagemodel
to improve the spatial difference of the PM2.5–AOD. The bisquare
kernel bandwidth function and adaptive bandwidth method were
selected owing to the difference between the daily sample data. After
CV, the degree of overfitting was very small (compared with R2, CV-
R2 was only reduced by 0.01–0.04).

However, themodel still has some limitations. One limitationwas
the mismatch in spatial resolution between MODIS MAIAC AOD

FIGURE 10 | Spatial distributions of monthly mean PM2.5 concentrations (A–L) in the Beijing–Tianjin–Hebei region during 2013–2020.
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(0.01° × 0.01°) andmeteorological parameters (0.1° × 0.1° and 0.0625°

× 0.0625°). Although the bilinear interpolation method for
meteorological factors has proved to have better performance
than linear interpolation and nearest neighbor interpolation
algorithms (Zhao et al., 2020), more meteorological products with
high spatial resolution were still needed. Another limitation was that
we only keep three data records in some days to bring into themodel.
Related studies have pointed out that the overfitting degree of the
two-stage model incorporating GWR decreases with the increase in
the number of matching data records per day (Hu et al., 2014a; Wu
et al., 2016). Therefore, too few observations in some days would lead
to the GWR model to overfitting. We will explore the optimal
threshold that matches the minimum number of data records later.
In addition, some studies have indicated that PM2.5 monitoring

stations mostly located in cities and suburbs, and the PM2.5

estimation in mountainous and rural areas was relatively poor
(Zeng et al., 2020; Ding et al., 2021). Our study area is in the
BTH with characteristics of urban industrial conditions. In
particular, Hebei Province that has many rural administrative
units also has a large number of factories. Provincial monitoring
sites with a larger coverage area should be added to future research to
increase the regional representation of the sample.

CONCLUSION

In this study, the two-stage model (LME + GWR) that applied
MODIS MAIAC AOD and measured [PM2.5] and

FIGURE 11 | Daily fluctuation in PM2.5 concentrations based on station observations and model-based estimates in Beijing (A) and Shijiazhuang (B).

TABLE 4 | Performances of previous studies on PM2.5 estimates in the Beijing–Tianjin–Hebei region.

Related study Spatial resolution (km) Time period Model Model-fitting Cross-validation AOD source

R2 RMSPE R2 RMSPE

Wang et al. (2019) 10 2017 LME 0.81 24.48 0.78 26.69 MODIS, NAQPMS
Wu et al. (2016) 6 2014 TEFR + GWR 0.88 13.05 0.71 19.29 VIIRS
Wang et al. (2021b) 5 2018 STLME 0.88 17.10 0.83 20.90 AHI
Ni et al. (2018) 3 2014–2016 BPNN 0.68 20.99 0.54 24.13 MODIS
He and Huang (2018b) 3 2013–2015 iGTWR 0.88 24.22 0.82 29.96 MODIS
Sun et al. (2019) 1 2017 DNN 0.91 14.27 0.84 19.90 AHI
Zhao et al. (2020) 1 2010–-2016 RF 0.86 23.48 0.83 MODIS
Ding et al. (2021) 1 2015–2019 CatBoost - - 0.88 17.79 MODIS
This study 1 2013–2020 LME + GWR 0.89–0.97 6.85–24.60 0.85–0.95 7.87–29.90 MODIS

BPNN, iGTWR, and DNN are the back propagation neural network model, improved geographically and temporally weighted regression model, and the deep neural networks model,
respectively.
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meteorological and LU data as input variables was constructed
to estimate the daily [PM2.5] from 2013 to 2020 in the BTH. The
LME + GWR model presented satisfactory performance (CV-R2

was 0.85–0.95, RMSPE was 7.87–29.90 μg/m3, and RPE was
19.19–32.71%) and provided a well-documented dataset for
air pollution monitoring. During the investigated period
from 2013 to 2020, PM2.5 pollution in the BTH region has
generally been on a downward trend. This decline is mainly due
to anthropogenic factors such as pollution-preventing policies,
but natural factors such as climate phenomenon (El Niño) also
have a certain effect. In particular, in winter season, the [PM2.5]
exhibited relatively small fluctuations from 2013 to 2014, a
sharp decline occurred from 2015 to 2017, and a steady
decline from 2018 to 2020.
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