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Malaria occurrence is highly related to the geographical distribution of Anopheles dirus (An.
dirus) in the South-East Asia Region and Western Pacific Region (SEAR/WPR). Future
climate change has been shown to alter the geographical distribution of malaria vectors.
However, few studies have investigated the impact of climate change on the potential
distribution of An. dirus in the SEAR/WPR.We considered future climate and land-use data
under two climate change scenarios for Representative Concentration Pathways (RCP 4.5
and RCP 8.5) and population data from five Shared Socioeconomic Pathways (SSPs), by
using three machine learning models, namely, Random Forest (RF), Boosted Regression
Trees (BRT), and Maximum entropy (Maxent) to project the geographical distribution of An.
Dirus and to estimate the exposed population. A pseudo-absence dataset was generated
based on the relationships between model performance and the distance from the
pseudo-absence point to the occurrence point in order to improve model accuracy for
projection of the Environmentally Suitable Area (ESA) and exposed human population. The
results show that the pseudo-absence data corresponding to the distance of 250 km are
appropriate for modeling. The RF method ultimately proved to have the highest accuracy.
The predicted ESA of An. diruswould mainly be distributed across Myanmar, Thailand, the
southern and eastern part of India, Vietnam, the northern part of Cambodia, and the
southern part of Laos. The future ESA is estimated to be reduced under the RCP 4.5
climate change scenario. In the 2070s under RCP 8.5, the reduction of ESA is even
greater, especially in Thailand (loss of 35.49 10,000 square kilometers), Myanmar (26.24),
Vietnam (17.52), and India (15), which may prevent around 282.6 million people from the
risk of malaria under the SSP3 scenarios in the SEAR/WPR. Our predicted areas and
potential impact groups forAn. dirus under future climate changemay provide new insights
into regional malaria transmission mechanisms and deployment of malaria control
measures based on local conditions in the SEAR/WPR’s.
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1 INTRODUCTION

Malaria is a severe vector-borne disease caused by the
transmission of malaria parasites to humans through mosquito
bites, and this has caused a tremendous disease burden in sub-
Saharan Africa, Southeast Asia, the Western Pacific, and Latin
America (Kogan, 2020). It is estimated that 229 million cases and
409,000 malaria deaths were reported worldwide in 2019 (WHO,
2019). The occurrence of malaria depends on the interaction of
parasites, malaria vectors, the ambient environment, and human
beings. Among these factors, the vector plays the most important
role because malaria’s global geographical distribution is highly
consistent with that of its vectors (Hay et al., 2004; Sinka et al.,
2012). The prediction of changes in the geographic distribution of
malaria vectors could provide valuable knowledge in assessing the
potential threat of malaria transmission.

Anopheles dirus (An. dirus) is one of the most efficient and
geographically extensive malaria vectors (Rosenberg et al., 1990;
Meek, 1995). This effectiveness is demonstrated by the fact that
An. dirus is a long-lived and anthropophilic malaria vector. This
vector species is usually active in the early evening when people
are enjoying various indoor and outdoor activities, which thus
increases the bite rate and makes humans susceptible to malaria.
In addition, An. dirus has been found in more than ten countries
in the South-East Asia Region and Western Pacific Region
(SEAR/WPR), especially in Myanmar and Thailand, where
malaria prevalence is high (Gould et al., 1961; Obsomer et al.,
2013; Sriwichai et al., 2016). So, it is necessary to focus on the
geographical distribution of An. dirus.

It is worth noting that the geographical distribution of malaria
vectors is linked to climate change (Bueno-Marí and Jiménez-
Peydró, 2013). Many studies have shown that the spatial
distribution patterns of malaria mosquito vectors may change in
the context of climate change (Ren et al., 2016; Akpan et al., 2019;
Karypidou et al., 2020). For example, Akpan et al. (2019) found that
the distribution of An. gambiae s.l. may have large range expansions
toward the north under future climate change scenarios (Akpan
et al., 2019). Valderrama et al. (2021) found that the geographical
area ofAn. pseudopunctipennismay shift in longitude and latitude in
Chile under projected climate scenarios (Valderrama et al., 2021),
while Hertig (2019) found that the potential distributions of
dominant vectors of human malaria may reduce in some
Mediterranean areas (Hertig, 2019). These studies have
demonstrated the complexity of the impacts of climate change on
the spatial distribution of malaria vectors. At present, only a few
studies have been conducted concerning the distribution projection
of An. dirus under climate change scenarios (Ren et al., 2016). Ren
et al. used the current and future climate data to project the
environmentally suitable area for An. dirus in China and found
that the environmentally suitable area would increase in the 2030s
but decrease in the 2050s (Ren et al., 2016). Ren’s research has given
us an insight into the potential distribution of An. dirus in China
under climate change conditions. However, existing evidence over
the impacts of climate change onAn. dirus’s potential distribution in
the SEAR/WPR is insufficient, although the SEAR/WPR is more
informative on understanding the geographical distribution of
malaria vectors.

Machine learning models (for example, Boosted Regression
Trees, Random Forest, and Maxent) have been widely used in
predicting the geographical distribution of malaria vectors under
future climate change scenarios (Hertig, 2019; Karypidou et al.,
2020; Valderrama et al., 2021). These models have demonstrated
outstanding model performance and prediction results. It is
worth noting that such predictive models rely on both
presence and absence data, but the absence data are usually
replaced by background data or artificial absence data, which
are called “pseudo-absence data” (Zaniewski et al., 2002; Engler
et al., 2004; Phillips et al., 2009). Many studies have agreed that
the choice of pseudo-absence data affects the accuracy of model
predictions (VanDerWal et al., 2009; Wisz and Guisan, 2009;
Lobo et al., 2010; Barbet-Massin et al., 2012; Senay et al., 2013).
These studies focused on the number of pseudo-absence, the
geographical distance from presence sites, and the environmental
features between pseudo-absence and occurrence points. Several
pseudo-absence data-generation approaches have been proposed
in species modeling, such as an ENFA-weighted pseudo-absence
generation method or an AUC-driven method (Engler et al.,
2004; VanDerWal et al., 2009; Wisz and Guisan, 2009; Iturbide
et al., 2015). For example, VanDerWal developed an exploratory
analysis method of obtaining pseudo-absence data (VanDerWal
et al., 2009), who considered the relationships between pseudo-
absence data and model performance, finding that the model
AUC value was related to pseudo-absence data generated by
different distance to occurrence points. However, these methods
of pseudo-absence data selection are rarely considered in the
distribution projection of malaria vectors.

This study first used the model performance–based approach
to generate the pseudo-absence data by considering the various
distances to An. dirus occurrence points in the study area
(VanDerWal et al., 2009). Then, we collected the geographic
raster data on climate change and land-use change and compared
three machine learning–based models in predicting An. dirus
distributions. Finally, we selected the best model to predict the
geographical distribution of An. dirus and examined the changes
in the ESA of An. dirus and the exposed human population under
current and future climate scenarios. Our study may provide
decision-making evidence for regional malaria control in the
SEAR/WPR and a streamlined approach reference for modeling
the impacts of climate change on malaria vectors.

2 DATA

2.1 Study Area
The study area of the South-East Asia Region andWestern Pacific
Region (SEAR/WPR) has a considerable latitude span, from 47°S
to 53°N, including the two most populous countries, China and
India, containing about half the world’s population. The SEAR/
WPR experiences a high diversity of malaria vector species, had
an estimated 8 million malaria cases in 2019, and the deaths
reached 12,200 cases (WHO, 2019). Imbalanced environmental
sustainability and socio-economic growth problems, coupled
with population, geographical locations, and intricate climate
types, make this region highly vulnerable to climate change (Yang
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et al., 2020). In the SEAR/WPR, the temperature may increase by
0.5–2°C by 2030 and 1–7°C by 2070, especially in the arid regions
of India and Western China (Preston, 2006). Rainfall may
increase in most areas in the future, but the winter rainfall
may decline in South and Southeast Asia. There are 25
countries included in the study area (Figure 1), with 10
countries in Southeast Asia and 15 in the Western Pacific, as
defined by WHO regions; this excludes small island countries.

2.2 An. dirus Presence Data
The An. dirus presence data, with 234 records, were collected
from the Malaria Atlas Project (MAP) (https://www.
malariaatlas.org/). The data were generated via a systematic

literature search of Anopheles distribution and biology and
combined expert opinions (Hay et al., 2010; Sinka et al., 2011).
In addition, in this study, we combined another An. dirus
presence database (Massey et al., 2016) and obtained 77
records. The time range of the An. dirus presence data is
filtered from the earliest presence records (1983 to 2000) to
represent the baseline/current period. When aggregating the
data from the two databases, we deleted those records that did
not contain coordinate information or were identified as
duplicate records. In addition, only one unique record was
retained if multiple records appeared within a 1-kilometer
grid. Finally, a total of 228 An. dirus occurrence data were
retained for modeling and predicting (Figure 1). We

FIGURE 1 | Map of the present sites of An. dirus during the baseline period (1983–2000) in the study area of the South-East Asia Region and Western Pacific
Region (SEAR/WPR). The base map shows the population distribution at a 1 km2 resolution in 2000.
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summarized the presence of An. dirus in each country over the
study area, as shown in Supplementary Table S1.

2.3 Environmental and Population Data
We utilized bioclimatic environmental data from the Worldclim
database (http://www.worldclim.org/), which was processed from
global weather station data, widely used, and of good quality
(Hijmans et al., 2005; Fick and Hijmans, 2017). The bioclimatic
data include 19 variables related to temperature and precipitation,
and they can be used to describe environmental variations and
climate changes. We chose the bioclimatic data from the
1970–2000 period representing the baseline climate, and their
spatial resolution was 30 arc-s (~1 km2 at the Equator).

Furthermore, we obtained future bioclimatic data from the
Climate Change, Agriculture, and Food Security (CCAFS)
climate data portal (http://www.ccafs-climate.org/) (Navarro-
Racines et al., 2020) under two scenarios regarding RCPs
(RCP 4.5 and RCP 8.5) and three-time slices (30-year means):
2030s (2020–2049), 2050s (2040–2069), and 2070s (2060–2089).
CCAFS-Climate data corresponds to output data of General
Circulation Models (GCMs) from the Coupled Model
Intercomparison Project Phase 5 (CMIP5). We chose five bias-
correcting GCM output data (GFDL-ESM2M, IPSL-CM5A-LR,
MIROC-ESM-CHEM, MOHC-HadGEM2-ES, and NCC-
NorESM1-M) to reduce the uncertainty of a single GCM result.

The RCPs are a series of future potential development
trajectories that can be used to denote the magnitude of
emissions and concentrations of future greenhouse gases
(Moss et al., 2010; van Vuuren et al., 2011). We chose two
RCPs (RCP4.5 and RCP8.5) to represent potential future
climate change scenarios. In RCP4.5, radiative forcing
increases to 4.5 Wm−2 by 2,100, representing a low, stable
emission scenario, while RCP8.5 represents an extreme
scenario, with the radiative forcing reaching over 8.5 Wm−2

corresponding to significant energy and industry CO2

emissions. These future bioclimatic data meet the spatial
resolution requirements for baseline climate data and have
been adopted to investigate the effects of future climate
change on the vectors of infectious diseases, such as malaria
(Laporta et al., 2015; Ryan et al., 2020) and dengue (Messina et al.,
2019).

Land-use data were obtained from the Global Ecology
Laboratory, University of Maryland (https://luh.umd.edu/)
(Hurtt et al., 2011). These data provide an advantage in
species distribution research as it is temporally consistent with
the bioclimatic data, including the baseline and future scenarios.
Because the land-use data were made up of half-degree grids, a
bilinear interpolation resample method was applied to ensure that
spatial resolution corresponds with the bioclimatic data in R.

Population data on a future spatial population projection
under new explicit population scenarios based on Shared
Socioeconomic Pathways (SSPs) were obtained from the
Climate and Global Dynamics Laboratory (https://www.cgd.
ucar.edu/) and further improved from the original resolution
of 1/8° to 1 km (Jones and O’Neill, 2016; Gao, 2017). Five SSP
pathways represent different development patterns regarding
demographics, economics, lifestyles and technological

development, governance, and other societal factors (Jones and
O’Neill, 2016). In short, SSP1 is a sustainable development path.
SSP2 represents the center regarding population development
and economic growth. SSP3 and SSP4 denote the regional rivalry
and inequality pathways under a relatively low development
trajectory. In addition, SSP5 is a fossil fuel–dependent
development trajectory. The five SSPs were combined with
two RCPs to represent population distribution under future
scenarios in our research.

3 METHODS

3.1 Machine Learning Models
We adopted three machine learning models (i.e., RF, BRT, and
Maxent) to predict the future geographical distribution of An.
dirus. The Random Forest (RF) model is an ensemble classifier
that combines the results of multiple trees to determine the final
predictions using the bootstrapping method (Breiman, 2001).
The RF model can also identify essential variables and produce
current and future species distribution predictions (Evans et al.,
2011).

The Boosted Regression Trees (BRT) model combines two
algorithms (Elith et al., 2008). One is the regression tree, the goal
of which is to determine the response to predictor factors based
on a recursive binary splits method. Another one is boosting, an
ensemble learning method similar to RF, but the process is
different in terms of generating results (Svetnik et al., 2003;
De’ath, 2007). The BRT model can generate highly reliable
results and significantly improve predictive power (Sugawara
and Nikaido, 2014).

The concept behind the maximum entropy method (Maxent) in
SDMs is based on using environmental information on known
species presence sites to find the species probability distribution of
maximum entropy (closest to uniform) and estimate the probability
distribution (Phillips et al., 2006). The prediction result is generated
by establishing functional relationships between species presence
and environmental information. The Maxent model has more
condensed mathematical formulations than other machine
learning technologies, such as RF and BRT (Phillips et al., 2006).
The implementation of the three abovementioned models was
performed in R (Version 4.0.3) with the “dismo,” “gbm,” and
“randomForest” packages and the Maxent (Version 3.4.1) interface.

3.2 Model Evaluation
Among RF, BRT, and Maxent, we aimed to select the model with
the best performance to conduct the distribution prediction for
An. dirus. First, we randomly split the dataset into 75% and 25%
subsets for model training and testing. The process was repeated
30 times, producing 30 groups of training and testing datasets to
increase the robustness of model prediction. Second, in order to
evaluate model performance, we used two threshold-independent
metrics based on threshold dependence (Liu et al., 2011), namely,
the area under the receiver operating characteristic curve (AUC-
ROC) and the area under the precision-recall curve (AUC-PRC),
and two threshold-dependent metrics (accuracy and precision).
To be specific, AUC-ROC is a standard indicator representing the
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discrimination ability for species distribution models (Fielding
and Bell, 1997; West et al., 2016). However, AUC-ROC could be
misleading in terms of model evaluation when facing an
imbalanced dataset with rare occurrence points and a large
number of pseudo-absence points (Saito and Rehmsmeier,
2015). In this case, AUC-PRC is more suitable for use in
evaluating the predictive model performance when the model
data are imbalanced (Saito and Rehmsmeier, 2015; Sofaer et al.,
2019). Regarding threshold-dependent metrics, the index of
accuracy is the proportion of all correct predictions, and the
index of precision is the proportion of positive observations that
are predicted to be positive (Liu et al., 2005). These are often used
to evaluate the performance of machine learning technologies
(Ren et al., 2018; June 2021). The 10th percentile training
presence value was used to calculate the threshold-dependent
metrics because it provided high correct classification rates for
validation (Vale et al., 2014).

3.3 Pseudo-Absence Data Generation
A species distribution model requires using the values of 0 and 1,
where 0 represents the absence and 1 represents the presence.
Absence data are often artificially generated (called “pseudo-
absence data”), and there are various approaches to generating
pseudo-absence data. In this study, according to VanDerWal’s
proposed exploratory approach to pseudo-absence data generation
(VanDerWal et al., 2009), we conducted a four-step procedure to
generate our pseudo-absence data. First, we obtained 10,000
random points in the study area (Urbani et al., 2017). Second,
we calculated the distance from each random point to the nearest
presence point and excluded those points within a given distance to
provide different datasets based on varying different distances.
Third, we used the pseudo-absence and presence data to compose
the training and testing datasets for modeling and then evaluated
the model performance. Finally, trend curves based on the distance
and metrics values were plotted. We determined the optimal
pseudo-absence data when the model metric values were stable
with increased distances (VanDerWal et al., 2009).

4 RESULTS

4.1 Variable Screening
In choosing the final variables for modeling, we took three separate
steps. First, we utilized the Maxent model for univariate variables, in
which variables did not contribute to the model if their AUC values
were below 0.5 and were, therefore, excluded. Second, we screened
for variables with biological importance for An. dirus survival (Ren
et al., 2016). Third, Pearson’s correlation coefficients were calculated
to identify the potential collinearity between the variables. We then
excluded the variable with the lower AUC valuewhen the correlation
coefficient between the two variables was greater than 0.75 (Tuanmu
et al., 2013). The land use variables were chosen as they provided
essential information regarding An. dirus occurrence.

As a result, we selected seven variables as predictors for the
projection of An. dirus distribution (Supplementary Table S2).
Specifically, three bioclimatic variables were selected: annual
temperature range, mean temperature of the warmest quarter, and

precipitation during the wettest quarter. Four land use variables were
selected: pasture, cropland, primary vegetation land, and urban land.
In addition, the temporal change of climatic variables based on five
GCMs and two climate change scenarios are plotted in
Supplementary Figure S1. We found that the annual temperature
range may increase by 0–0.5°C in the occurrence area of An. dirus.
Themean temperature of the warmest quartermay rise bymore than
4°C in the 2070s under RCP 8.5, while the precipitation of the wettest
quarter shows only a slight increase in the future.

4.2 Selection of Pseudo-Absence Data
Figure 2 depicts the relationships between model performance
(AUC-ROC, AUC-PRC, accuracy, and precision) and the
pseudo-absence datasets obtained by using distances to
occurrence points. All four metrics are increased with an
increase in the distance until the values approach 1. The result
of the three models shows a consistent trend. It is worth noting
that the AUC-ROC and accuracy values are always high. In
contrast, AUC-PRC and precision values vary widely, showing
an obvious increase with distance. Here, in line with a previous
study (VanDerWal et al., 2009), we selected the pseudo-absence
data corresponding to a distance value of 250 km.

4.3 Model Performance
Table 1 shows that there is not much difference between the three
models regarding the AUC-ROC and accuracy metrics. These
two metric estimates are all above 0.9. In contrast, AUC-PRC and
precision show apparent differences between the three models.
The AUC-PRC value of the BRT model is close to the RF (both
are greater than 0.9), but the BRT model (0.779) shows poorer
performance than RF (0.867) for precision. The Maxent model
performed the worst of the three models by all measures. Based
on the quality of the output, we chose the RF model to conduct
the distribution prediction for An.dirus.

The relative importance levels of environmental variables for
An. dirus based on the RF model are summarized in
Supplementary Figure S2 (Song et al., 2020; Zhang et al.,
2021). On the one hand, temperature variables, including the
annual temperature range and the mean temperature of the
warmest quarter, make an essential contribution to predicting
the distribution of An. dirus. On the other hand, two land-use
variables, the fraction of each grid cell in pasture and the fraction
of each grid cell in primary vegetation land, are identified as the
primary factors for the occurrence probability of An. dirus. The
results also show that the fraction of each grid cell in cropland, the
fraction of each grid cell in urban land, and the precipitation
during the wettest quarter may have relatively low importance.

4.4 Prediction of Current and Future
Environmentally Suitable Area
We divided the continuous probability of RF prediction into
suitable/unsuitable using the 10th percentile training presence
value as a threshold (Vale et al., 2014). The ESA represents the
area where the predictive An. dirus occurrence probability is greater
than the threshold. Conversely, we supposed that the area with a
smaller probability value than the threshold is not suitable for An.
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dirus. The predicted current ESA for An. dirus is mainly distributed
in Myanmar, Thailand, the southern and eastern parts of India,
Vietnam, the northern part of Cambodia, and the southern part of
Laos. Bangladesh, the Hainan province of China, and the northern

part of Malaysia are also predicted in a few ESAs (Figure 3A). The
detailed statistics are summarized in Supplementary Table S3.
Furthermore, the predicted results based on five GCMs show that
under both future climate scenarios, there is considerable reduction
ofAn. dirus ESA (Supplementary Figure S3), especially in Thailand
(loss of 35.49 ten thousand square kilometers under RCP8.5 in the
2070s),Myanmar (26.24), Vietnam (17.52), and India (15) under the
RCP 8.5 scenario (Figure 4). In addition, the loss of ESA is larger
than the increase in ESA for An.dirus in Thailand, Myanmar,
Vietnam, and Cambodia under both scenarios. The lost ESA has
76.66 ten thousand square kilometers across the entire study in the
2070s under RCP 4.5, while the ESA gained is only 12.97. The
predicted potential increase is mainly in India, Laos, and Malaysia
(Figure 4). The ESA of the southern part of India has a notable

FIGURE 2 | Relationships betweenmodel performance and the pseudo-absence datasets selected based on various distances: (A) AUC-ROC, (B) AUC-PRC, (C)
accuracy, and (D) precision. The distance refers to the radius from An. dirus occurrence points. The models include Boosted Regression Trees (BRT), Random Forest
(RF), and the Maximum entropy method (Maxent).

TABLE 1 | Evaluation of three alternative machine learning models (RF, BRT, and
Maxent). Values in parenthesis are the average standard deviation calculated
from 30 iterations.

Model AUC-ROC AUC-PRC Accuracy Precision

RF 0.998 (0.001) 0.950 (0.015) 0.994 (0.001) 0.867 (0.041)
BRT 0.997 (0.001) 0.931 (0.017) 0.991 (0.004) 0.779 (0.093)
Maxent 0.996 (0.002) 0.866 (0.036) 0.987 (0.006) 0.698 (0.111)
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FIGURE 3 |Geographical distribution of the projected Environmentally Suitable Area (ESA) of An. dirus in the current (1983–2000) and in the future under scenarios
of RCP 4.5 and RCP 8.5 in SEAR/WPR. (A) Current and (B–D) future conditions of the 2030s, 2050s, and 2070s under RCP 4.5, and (E–G) future conditions of the
2030s, 2050s, and 2070s under RCP 8.5. The unsuitable class in the legend represents that the predicted probability is lower than the threshold. The suitable class
represents a higher predicted probability than the threshold. The gained and lost classes represent the gained ESA and lost ESA, respectively, calculated based on
the current distribution as the reference. Predictions are based on an ensemble of predictions from five general circulation models (GFDL-ESM2M, IPSL-CM5A-LR,
MIROC-ESM-CHEM, MOHC-HadGEM2-ES, and NCC-NorESM1-M).
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tendency to expand northward under RCP 8.5. Moreover, the ESAs
of Laos and Malaysia exhibit a slight tendency to move to the north
and south, respectively, under RCP 4.5.

4.5 Estimation of Exposed Population
The changes in the estimated exposed population based on the
gained and lost ESA under five SSP scenarios and two RCP
scenarios in the 2030s, 2050s, and 2070s are summarized in
Figure 5. The detailed statistics are listed in Supplementary
Table S4. Overall, the human population exposed to the lost ESA
is significantly larger than those exposed to the gained ESA.
Temporally, the population exposed to the lost ESA may
gradually increase from the 2030s to the 2070s under both
scenarios. The population exposed to the lost ESA may reach
164.5 million people in the 2030s, 220.5 million in the 2050s, and
257.7 million in the 2070s under the RCP 4.5–SSP3 scenario.
However, the population exposed to the gained ESA would be
small and will gradually decrease in the future under RCP 8.5
(Figure 5). The population exposed to the gained ESA is expected
to be 47.5 million people in the 2030s, 43.7 in the 2050s, and 19.1
in the 2070s under the RCP 8.5–SSP3 scenario. Comparing the
two climate change scenarios, we find that the change in the
population exposed to the gained and lost ESA of An. dirus in the
future under the RCP 8.5 scenarios may be greater than that
under the RCP 4.5 scenario. Comparing the five SSPs, we find that
the relationship between population exposure changes is mostly
consistent with each SSP scenario. The only difference is that it
may have the highest population exposure under the SSP3

scenario rather than other SSPs. It is estimated that there may
be 282.6 million people exposed to the lost ESA of An. dirus in the
2070s under the RCP 8.5-SSP3 scenario.

5 DISCUSSION

Understanding the current and future geographical distribution of
malaria vectors may provide critical clues in identifying potential
malaria transmission areas. In this study, we assessed the current and
future effects of climate and land-use changes on the geographical
distribution of An. dirus under scenarios RCP 4.5 and RCP 8.5 in the
SEAR/WPR based on the RF model. The current predicted results
show that the ESA for An. dirus is mainly distributed across
Myanmar, Thailand, the southern and eastern parts of India,
Vietnam, the northern part of Cambodia, and the southern part
of Laos. Our predicted current distribution of An. dirus is largely
consistent with other research (Sinka et al., 2011; Obsomer et al.,
2012;Moyes et al., 2016), and the advantage of this study is to identify
the potential change of distribution An. dirus in the noted regions.

The geographical distribution of An. dirus may be significantly
reduced under future climate change in the SEAR/WPR, providing
new insights into future malaria transmission patterns in these
regions. Furthermore, we assessed how many exposed humans
might benefit from future climate change in these regions against
the background of themalaria-associatedAnopheles dirus. Fine-scale
mapping with 1-kilometer resolution can ensure the accurate
implementation of regional malaria control measures. Moreover,

FIGURE 4 | Gained and lost sizes of the projected Environmentally Suitable Area (ESA) of An. dirus by the country under scenarios of RCP 4.5 and RCP 8.5 in the
2030s, 2050s, and 2070s. The results are based on an ensemble of predictions from five general circulation models (GFDL-ESM2M, IPSL-CM5A-LR, MIROC-ESM-
CHEM,MOHC-HadGEM2-ES, and NCC-NorESM1-M). The x-axis shows the top 10 countries with the most remarkable change in ESA. Countries are sorted from left to
right based on the current ESA. Countries not shown indicate that no ESA is predicted. The gained and lost values of ESA are calculated by comparing the ESA of
the baseline period. The y-axis unit is ten thousand square kilometers.
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we considered the environmental factors related to the future land-
use change to provide more accurate geographical predictions than
other studies (Obsomer et al., 2012).

Regarding variable importance, we found that temperature
plays a major role in predicting the distribution of An. dirus.
Previous studies have shown that the annual temperature range is
a key environmental variable and a negative near-linear
relationship exists between the annual temperature range and

the probability of occurrence for An. dirus (Ren et al., 2016). The
mean temperature of the warmest quarter will affect the entire
An. dirus life process, including egg, larva, pupa, and adult (Beck-
Johnson et al., 2017). Higher mean temperatures of the warmest
quarter in the future may be the main reason for the reduction of
An. dirus ESA (Supplementary Figure S1). In addition, the land-
use variables regarding the fraction of each grid cell in the pasture
and the fraction of each grid cell in primary vegetation land are

FIGURE 5 | Statistics of projected gained and lost exposed human populations based on the variation of ESA ofAn. dirus under scenarios of RCP 4.5 and RCP 8.5
in the 2030s, 2050s, and 2070s. The results are based on an ensemble of predictions from five general circulation models (GFDL-ESM2M, IPSL-CM5A-LR, MIROC-
ESM-CHEM, MOHC-HadGEM2-ES, and NCC-NorESM1-M). The x-axis shows different future times. The y-axis represents the human population exposed to gained
and lost ESA of An.dirus.
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identified as important factors, which could be related to the
living environment of An. dirus, such as breeding sites and larval
survival (Htay-Aung et al., 1999; Obsomer et al., 2007).

Our study found a staggering loss of the ESA for An. dirus
under future climate and land-use changes in the SEAR/WPR. It
is estimated that a large amount of ESA loss for An. dirus may
occur in Thailand (35.5 ten thousand square kilometers),
Myanmar (26.2), Vietnam (17.5), and India (19.2) in the
2070s under the RCP 8.5 scenario. This may be related to
rising temperature and land-use transformation in the future.
For instance, in countries with previously suitable environmental
conditions, such as Thailand, deforestation would lead to the
destruction of An. Dirus’s habitat (Guerra et al., 2006; Zeng et al.,
2018). In addition, the excessive temperature and erratic
precipitation would further reduce the survival rate of the
mosquito populations (Paaijmans et al., 2007; Murdock et al.,
2016). Subsequent studies should be conducted to investigate the
response relationship between correlated variables such as
temperature and the ESA of An. dirus in order to explain the
changes of An. dirus ESA under the context of climate change.

We predicted that the future ESA of An. dirus may increase in
India, Laos, and Malaysia, but this differs between climate change
scenarios. For example, the ESA for An. dirus expands from the
southern part of India to the further north under the RCP 8.5
scenario. Such an explanation may be due to the rising temperature
under RCP 8.5 scenarios, and the existing forest areas aremaking the
environmental conditions more suitable for An. dirus’s survival
(Palanisami et al., 2019; Hinz et al., 2020). Meanwhile, in Laos
and Malaysia, the newly gained ESA for An. dirus is more likely to
appear under the RCP 4.5 scenario rather than the RCP 8.5 scenario.
This could be due to the temperature and vegetation there meeting
the survival conditions ofAn. dirus under a stable emission scenario.

Climate change has an uncertain impact on the distribution of
malaria vectors. On the one hand, climate change could have a negative
impact, such as expanding the distribution area of malaria vectors and
increasing the population at risk (Karypidou et al., 2020; Ryan et al.,
2020). However, climate change could also be an opportunity for
malaria eradication in some regions, such as the Mediterranean area
(Hertig, 2019) or some overheated areas (Murdock et al., 2016). We
used the predicted demographic data from five SSP scenarios to
calculate the exposed population and found that the number of
people exposed to the reduced ESA may gradually increase.
Humans may benefit more substantially in the context of regional
rivalry (SSP3) than other SSPs. It is estimated that in the 2070s, under
the scenarios of RCP 8.5–SSP3, climate changemay potentially prevent
approximately 282.6 million people from living in environmentally
suitable areas of An. dirus. Moreover, this information on the decrease
of the exposed population may help further understand the burden of
malaria for countries in the SEAR/WPR to make a reasonable
investment in terms of economic and social resources.

This study concludes that humans may benefit from the
shrinking of the potential spatial distribution area of An. dirus
under the future climate change, but this is only a result of the
potential impact of climate change on the malaria vectors in the
SEAR/WPR. Neither a single species nor a region is entirely
representative. Therefore, our findings do not indicate that we
encourage countries to maintain or potentially increase emissions

to improve malaria control in the future. In fact, many studies
have shown an increase in the number of people at risk of malaria
worldwide (Caminade et al., 2014). Thus, we still suggest that
countries should actively take measures to reduce carbon
emissions in order to protect human beings from the threat of
climate change and promote human development.

This study has several limitations. First, we assumed that the
current relationships between the environmental variables and the
presence probability of An. dirus are applicable under future
environmental conditions. However, such relationships may
change when the mosquitoes have evolved in a changing
environment (Tonnang et al., 2010; Ren et al., 2016). Second, we
did not consider anthropogenic factors, such as urbanization, human
migration, and other human behaviors, that may also influence the
suitable habitat for An. dirus (Hume et al., 2003; Qi et al., 2012).
Third, other dominantmalaria vectors should be further investigated
in SEAR/WPR to systematically assess the impact of climate change
on the risk of malaria transmission in the region (Sinka et al., 2011).

6 CONCLUSION

Focusing on the SEAR/WPR, we used the future climate and land-
use data to project the geographical distribution of An. dirus under
two climate change scenarios, RCP 4.5 and RCP 8.5. Among three
alternative machine-learning technologies, RF had better overall
performance than the BRT and Maxent technologies. We adopted
a practical approach of pseudo-absence generation to improve the
models’ predictive accuracies.We utilized the ESA of An. dirus and
the population exposed to the ESA of An. dirus to measure the
potential impacts of climate change and future population changes.
We detected significant reduction in the ESA of An. dirus and a
considerable decrease in the exposed population based on the lost
ESA under future climate change scenarios in the study area,
indicating that climate change may positively affect potential
malaria transmission. Among the potential influencing variables
of climate and land use, pastures, primary vegetation land, annual
temperature range, and mean temperature of the warmest quarter
are relatively more essential in the geographical prediction of An.
dirus distribution. Our findings are expected to help country-
specific departments develop regional malaria prevention and
control strategies based on local conditions and provide a
reference method for similar species distribution modeling
research.
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