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The Huang-Huai-Hai River Basin in eastern China has suffered from severe water scarcity
during recent decades due to the effects of climate change and human activities.
Quantifying the changes in the amount of terrestrial freshwater available in this region
and their driving factors is important for understanding hydrological processes and
developing a sustainable water policy. This study proposed an ensemble learning
model to reconstruct historical variations in the terrestrial water storage (TWS) of the
Huang-Huai-Hai River Basin, China. The model was trained using the observations of the
variations in TWS from the Gravity Recovery and Climate Experiment mission (GRACE)
satellites, climatic driving, and human withdrawal datasets produced on a monthly scale.
The variations in the reconstructed TWS were compared with the results of several land
surface and hydrological models with a variety of in situ measurements of the soil water
content. The contributions of the climate and human activity to the ensemble learning
model were also quantified. The results show that the proposed approach generally
outperforms the land surface and hydrological models examined in this study, matches the
patterns in the GRACE solutions, and reconstructs past changes in TWS, which are
consistent with the GRACE observations. Climatic variables are the most important in the
ensemble learning model, with precipitation over the prior month being a critical factor. The
model that includes human intervention tends to perform better than without it. Irrigation,
industry, and domestic water withdrawals contribute equally to the model. This study
provides a flexible and easily implementable model that can bridge the gap between
GRACE observations and past changes in TWS. The model is applicable in areas with
intense human activities, and the results have the potential to be assimilated into and
enhance hydrological models.
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1 INTRODUCTION

Monitoring and modeling the dynamics of terrestrial freshwater
resources are vital for human beings to cope with the growing
global water crisis (Carpenter et al., 2011). Most terrestrial
freshwater resources, excluding those in Antarctica and
Greenland, are stored as groundwater, which is difficult to
sense directly by using conventional satellite-based optical
remote sensing (Alsdorf et al., 2007; Wood et al., 2011; Taylor
et al., 2012; Gleeson et al., 2015). Although the groundwater table
in the wells can be measured, it is difficult to estimate water
storage dynamics at the scale of a large basin or continent based
on the spatially sparse water table records (Yeh et al., 2006; Voss
et al., 2013). Land surface models (LSMs) and global hydrological
studies and water resource models (GHWMs) provide alternative
ways to understand land water storage and its dynamics on a
global basis (Wood et al., 2011; Mo et al., 2016). However,
problems can arise, especially over areas in which human
activity is intense, as a result of many uncertainties in the
experimental parameters, input data and index, and initial
conditions of the model (Scanlon et al., 2018). Therefore, the
development of alternative methods that can be implemented to
monitor and model terrestrial water storage (TWS) is of great
significance.

The Gravity Recovery and Climate Experiment (GRACE)
satellites, which were launched in 2002, revolutionized the
observation and understanding of terrestrial hydro-systems
(Rodell, 2004; Yeh et al., 2006; Feng et al., 2013; Save et al.,
2016; Scanlon et al., 2016; Wiese et al., 2016; Andrew R. et al.,
2017; Scanlon et al., 2018). Compared with global models,
GRACE solutions provide a more direct means of measuring
variations in global water storage because the satellites measure
changes in the Earth’s gravity field by quantifying alterations in
the relative distance between the twin GRACE satellites that occur
as a result of gravitational changes. After removing noise from the
results, such movements can be considered quite relevant to
changes in the amount of water stored at a particular place
(Save et al., 2016; Sean Swenson, 2006; Watkins et al., 2015).
Variations in the TWS that are measured by the GRACE satellites
result from the influences of both climatic and human
interventions. Therefore, the GRACE solutions provide reliable
information about the variation in TWS on a global basis, and the
system has been successfully applied in drought mapping
(Leblanc et al., 2009), surface water monitoring (Rodell et al.,
2009; Huang et al., 2012; Feng et al., 2013), and water balance
modeling (Rodell, 2004; Rodell et al., 2011).

Given the higher reliability of this method as compared to
LSMs and GHWMs, the results of GRACE total water storage
anomalies (TWSA) have the potential for improving models
describing TWS dynamics. The assimilation or fusion of the
GRACE solutions with land surface models or global reanalysis
systems has garnered increasing amounts of attention in recent
years (Kumar et al., 2016; Li et al., 2019). The empirical GRACE
observations can be integrated using global model outputs by
linking TWS-related variables with the TWSA dataset produced
by GRACE. Suchmodels can be simplified to linear or polynomial
functions that occur between the TWSA and related variables

under ideal conditions, and successful experiments have been
conducted for the Amazon Basin using this method (Nie et al.,
2015; Humphrey et al., 2017). These models are certainly based
on a fundamental hypothesis that the mismatches in TWSA and
land surface model simulations can be calibrated using typical
regression models; however, this assumption is only valid for
specific regions and in certain situations. Machine learning is a
powerful tool for fitting relations. As reported in previous study
(Long et al., 2014), artificial neural networks (ANNs) can produce
GRACE TWSA-like predictions for southwestern China that date
back to the 1980s by learning the matching patterns between the
available GRACE TWSA and independent indicators such as
precipitation and soil moisture. Similar experiments were
conducted over northwestern China by comparing three
machine learning approaches (support vector machine,
artificial neural networks, and random forest (RF)) and the
general linear regression model (Yang et al., 2018). The
empirical results indicated that the RF model outperformed
the others and that the linear regression model was not
applicable in this area. A recent study has also proven that
ensemble learning algorithms perform well when learning the
matching patterns between GRACE TWSA and climate forcings
(Jing et al., 2020).

However, few experiments have been conducted in areas
undergoing intensive irrigation or industrial activity, which are
the major human interventions that lead to a decrease in TWS
(Feng et al., 2013; Voss et al., 2013). Human withdrawal can be
one of the most significant factors that lead to errors in land
surface models for heavily irrigated areas (Joodaki et al., 2014;
Pokhrel et al., 2017; Tangdamrongsub et al., 2018). In addition,
the tools and models that have been initiated for extending the
time span covered by GRACE rely heavily on the soil moisture
produced by global models or reanalysis systems. This limits the
application of the proposed models because they are restricted by
the availability of LSMs or the output from reanalysis systems for
specific regions and periods. More importantly, it is impossible to
separately quantify the contributions of climate and artificial
factors with these models due to the dependence on soil
moisture variables and the ignorance surrounding human
intervention.

This study proposes a machine learning model that can learn
the underlying patterns connecting TWS dynamics with
variations in the climate and human water withdrawal. The
model has been tested in the Huang-Huai-Hai River Basin of
China, which is a heavily irrigated area with intensive human
activity and is suffering from a water scarcity crisis. A GRACE-
consistent TWSA was generated for the study area back to the
1980s and was compared with LSMs/GHWMs and in-situ soil
moisture measurements. The significance of the contribution
from each factor to the TWSA estimation model is estimated.
This study attempts to provide new perspectives for the high-
quality modeling of TWS dynamics by using a machine learning
framework over areas that suffer from severe human-induced
water scarcity. It is highly expected that flexible machine learning
tools have great potentials to enrich complex physical models and
extend our understanding of TWSmodeling for areas such as that
studied herein.
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2 RESEARCH AREA

The research area covers the Huang-Huai-Hai River Basin in
China, which comprises three major river basins: the Yellow
River (or Huanghe), Huaihe River, and Haihe River basins. It is
located between 95°53′–122°42′E and 30°57′–42°43′N. The
areas of the three basins are 752,000 km2 (Yellow River
Basin), 274,000 km2 (Huaihe River Basin), and 318,000 km2

(Haihe River Basin). Dominated by low plains and suitable
temperatures, the Huang-Huai-Hai River Basin seems
abundant as a large block of well cultivated land and is
considered one of the most nourished agricultural zones in
China. The Huang-Huai-Hai River basin has long been the
political and cultural center of China. The cultivated land,
population, and gross domestic product (GDP) of this basin
account for more than one-third of the national totals, while
the amount of water available accounts for approximately 7%
of the total (Yan et al., 2013; Yuan et al., 2019). The terrain and
climate in the basin changes gradually from west to east; it
includes a plateau with a mountain climate, hills with a
continental climate, and temperate plains that are affected
by monsoon.

3 DATA SOURCES

3.1 Model Input Data
3.1.1 CSR GRACE Mascon Solution
The data of terrestrial water storage anomalies (TWSAs) derived
from the latest GRACE RL06 Mascon solution produced at the
Center for Space Research (CSR), the University of Texas at
Austin are used in this study (Save et al., 2016; Save, 2019). The
CSR GRACE TWSA dataset is available within the period from
January 2003 to June 2017, and the dataset implemented in this
study covers the duration from January 2003 to December 2015.
The TWSAs produced are relative to the mean baseline for
2004–2009 and are provided on a 1/4 (0.25) degree grid. The
gridded TWSA data are rescaled to 1/2 (0.5) degree grids by
averaging all the 1/4-degree grids within a 1/2°, which is

consistent with the climate data and global model outputs in
this study.

3.1.2 The Climate Forcing Data
The climate data version 4.03 of the Climatic Research Unit Time
Series (CRU TS) derived from the University of East Anglia was
used as climate forcing data (Harris et al., 2014). The CRU TS
dataset was gridded (1/2°) using records from over 4,000 weather
sites. Ten variables included in the dataset that have been
considered important parameters in the water cycle were used
in this study (Table 1).

3.1.3 Water Withdrawals
Water withdrawal data were obtained from the global hydrology
model PCR-GLOBWB 2.0, which was developed at Utrecht
University (Sutanudjaja et al., 2018). The model uses two sets
of computational grids (5 arcmin (1/12 arc-degree) and 30
arcmin (1/2 arc-degree)) that cover 5 continents, excluding
Greenland and Antarctica.

Irrigation and non-irrigation water withdrawals were
calculated separately in the PCR-GLOBWB 2.0 model.
Irrigation water includes paddy water and that used for other
agriculture purposes, whereas non-irrigation water covers three
sectors: industry, livestock, and domestic water withdrawal. The
irrigation water demand is calculated first, and water withdrawal
is set to equal the gross water demand unless sufficient water is
not available.

The irrigation water demand is calculated from the crop
composition (which varies each month and includes multi-
cropping) and the area irrigated per cell. The basic dataset is
derived from MIRCA 2000, which includes monthly irrigation
(paddy and nonpaddy irrigation fractions per cell) and rain-fed
crop areas. The total area of irrigation per cell varies over time and
is generally based on the area reported by FAOSTAT. The
calculation of the amount of water demanded for irrigation
follows the FAO guidelines (Rao and Chandran, 1977; Allen
et al., 1998; Sutanudjaja et al., 2018). Demand that is not
associated with irrigation was calculated using the approaches
from (Wada et al., 2014). In cases where available water is

TABLE 1 | Variables in the CRU TS climate data.

Abbreviation Variable full name Units

CLD Cloud cover Percentage (%)
DTR Diurnal temperature range Degrees Celsius
FRS Frost day frequency Days
PET Potential evapotranspiration Millimeters per month
PRE Precipitation Millimeters per month
TMP Daily mean temperature Degrees Celsius
TMN Monthly average daily minimum temperature Degrees Celsius
TMX Monthly average daily maximum temperature Degrees Celsius
VAP Vapor pressure Hectopascals (hPa)
WET Wet day frequency Days
PIR Paddy irrigation withdrawal Centimeters per month
NPIR Non-paddy irrigation withdrawal Centimeters per month
DOME Domestic water withdrawal Centimeters per month
IND Industry water withdrawal Centimeters per month
LIST Livestock water withdrawal Centimeters per month
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insufficient, the water withdrawal amount is measured and scaled
down to that of water available and then distributed
proportionally to retrieve the gross water demand of every sector.

A dataset comprising 30 arc-minute grid cells from the period
1979–2015 was used in this study. Table 1 summarizes the water
withdrawal variables used. Detailed information concerning the
PCR-GLOBWB model can be found in (Sutanudjaja et al., 2018).

3.1.4 Auxiliary Data
The auxiliary input data included the digital elevation model
(DEM) and data describing the climate zone, which were used to
address the complex variations in terrain and climate in the study
area. DEM data from the GTOPO30 dataset (https://www.usgs.
gov/centers/eros/) were used. The 1/2-degree gridded Köppen-
Geiger climate zone data (Kottek et al., 2006) from http://
koeppen-geiger.vu-wien.ac.at/were used to describe the climate.

3.2 Data Used for Comparison
3.2.1 Global Models
Two global land surface water models and one hydrological
research and water resources model are together compared
with the TWS reconstructed using the machine learning
model. The catchment land surface model (catchment) (Koster
et al., 2000) and the Noah model (Chen et al., 1997; Chen et al.,
1996; Ek et al., 2003; Koren et al., 1999), which are included in
version 2 of the Global Land Data Assimilation (GLDAS-2), are
used for comparison, and the datasets are obtained from the
website https://disc.gsfc.nasa.gov/datasets. The PCR-GLOBWB
model (Sutanudjaja et al., 2018) available at http://www.
globalhydrology.nl/is used to describe the hydrology in the
study area. It should also be mentioned that the catchment
model does not comprise the surface water storage amount
and that the groundwater and surface water storage are not
simulated by the Noah model, whereas PCR-GLOBWB
includes all the TWS components. The PCR-GLOBWB model
considers human water consumption, whereas human
intervention is not included in the land surface models.

The TWS of the three models is calculated by summing all the
available components. The PCR-GLOBWB model is run in a no-
human mode (i.e., without human intervention) to assess the
impact of human activities factors on the model. The average
TWS from 2004 to 2009 is removed from the original TWS to
obtain the TWSA before a comparison with the GRACE TWSA.
As a result, we refer the TWSA obtained from the catchment,
Noah, and PCR-GLOBWB models as catchment TWSA, Noah
TWSA, and GLOBWB TWSA, respectively. Additionally, the
TWSA of the PCR-GLOBWB model with no artificial
intervention is referred to as the GLOBWB(N) TWSA.

3.2.2 The In-Situ Soil Moisture Data
The dataset of in-situ cropland soil moisture in China is collected
from cropland sites at a temporal resolution of 10 days from 1991
to 2002. The relative soil moisture (unit: %) was provided at five
different depths (0–10 cm, 0–20 cm, 0–50 cm, 0–70 cm, and
0–100 cm). The original dataset is obtained from the National
Meteorological Information Center of China (http://data.cma.cn/
data/). Several of the records from the study period are absent in

the original dataset, meaning that preprocessing was required
before use. Sites, for which the observation extended over less
than 3 years (36 months), were removed; further, because
observations were mainly absent at soil depths of 0–70 cm and
0–100 cm, only measurements taken at 0–50 cm were used. The
spatial locations of the 29 sites that were selected following pre-
processing are shown in Figure 1. The monthly soil moisture data
are calculated as the average of the 10-d measurements.

4 METHODOLOGY

4.1 The TWS Dynamics Model and
Experiment Design
The withdrawal of water produces significant amounts of stress
on the water security in northern China, and terrestrial water
storage dynamics are under the dual influence of climate change
and human activities. The basic concept for the model proposed
in this study was to learn the underlying patterns of GRACE
TWSA that are associated with climatic and human factors using
machine learning algorithms. The validated model was then
utilized for the period of 1980s to obtain an extended
GRACE-consistent TWSA product. This model considers both
climatic and human factors. In addition, the variation in the TWS
for a particular basin at a specific time is closely associated with
the climate conditions and human activities within the months
prior. Thus, the prior conditions were included in the model. The
following function gives the expression for the model:

TWSA(i,t) � f(X(i,t), X(i, t−1), X(i,t−2), X(i,t−3),W(i,t), W(i, t−1),

W(i,t−2),W(i,t−3), lati, loni, alti, climi, t)
(1)

where TWSA(t,i) means the TWSA of grid cell i for month t (t = 1,
2, 3,...., 12); X(i,t) is an array describing the climatic forcing
variables (see Table 1) in grid cell i of month t; X(i, t−1), X(i,t−2),
and X(i,t−3) are the climatic forcing arrays during the previous
one, two, and 3 months, respectively; W is an array describing
human water withdrawal (see Table 1) in grid cell i for month t;
W(i, t−1), W(i,t−2), and W(i,t−3) are the water withdrawal arrays
during the previous one, two, and 3 months, respectively;
lati, loni, and alti are the latitude, longitude, and altitude in
grid cell i, respectively, which are included to address the
geolocations; climi is the climate zone at grid cell i; and t is
the time variable (t = 1, 2, 3,..., 12). All the climatic and human
withdrawal variables in Eq. 1were found to be anomalies after the
mean values of the 2004–2009 baseline line were removed, which
is in line with the GRACE TWSA data.

The model was designed using two well-known ensemble
learning algorithms: random forest (RF) (Breiman, 2001) and
extreme gradient boosting (XGB) (Chen and Guestrin, 2016).
Ensemble learning algorithms are a type of machine learning
mechanism that has been increasingly used for geoscientific
applications, showing strong uniqueness and outperforming
other machine learning algorithms (Catani et al., 2013; Keller
and Evans, 2019; O’Gorman and Dwyer, 2018; Reichstein et al.,
2019). The basic concept behind ensemble learning is to combine
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multiple simple learners to obtain more reliable guides. In
addition to their flexibility (no feature normalization is
required and simple parameters can be used) and good
performance, it is possible to inspect the essence of each
variable through variable importance ranking in the RF and
XGB models. Successful results have been reported in the
evaluation of important variables using the RF algorithm to
monitor surface temperature (Hutengs and Vohland, 2016),
soil moisture (Long et al., 2019), and groundwater (Rahmati
et al., 2016). The random forest (RF) algorithm is widely regarded
as one of the best types of ensemble learning algorithms that
implements bagging (from bootstrap aggregating). RF uses a
bootstrap method that repeatedly draws random subsets from
the total training sets with a few replacements. One simple learner
(usually a decision tree) is independently generated with each
subset (Breiman, 2001), and the final prediction is obtained by
averaging the predictions from all the individual trees in the
forest.

The XGB model uses the same base learner as the RF model,
but a different ensemble strategy is implemented. XGB
regression uses a gradient boosting method as an ensemble
strategy (Chen and Guestrin, 2016), Gradient boosting is an
optimization method that minimizes the residuals by fitting
onto the residues forecast by the (i-1)th tree to correct the
errors from the predecessors (the ith tree). The performance
of the XGB model has not been widely evaluated in earth
system modeling, and few studies have compared RF
with XGB.

Considering the comparable performance, use of the same
base learner, and different ensemble strategies, a comparison of
the two ensemble learning models is beneficial for assessing
their application in hydrology models. More importantly,
because the importance of the variables used in the XGB
model can be evaluated using the same approach as RF,

interpretation of the variable importance results from the
two models is expected to enhance our knowledge of the
influence that climate and human factors have on TWS
models. Details of the learning process and the variable
importance calculation are provided in a previous study (Jing
et al., 2020). The models are implemented using Python and the
related modules Scikit-learn (Pedregosa et al., 2011) and
XGBoost (Chen and Guestrin, 2016).

4.2 Validation Strategy
The evaluation of a model typically relies on cross-validation with
randomly sampled subsets. For the ensemble learning models in
this study, a cross-validation scheme was used in which the
subsets were repeatedly and randomly drawn with replacement
for training. Designation is the key point because it improves the
stability and accuracy while reducing the likelihood of overfitting.
Hence, temporally adjacent years were used for validation in this
study instead of cross-validation based on randomly selected
subsets.

The validation sets used were temporally adjacent to evaluate
the temporal correlations and the capacity of a model to predict a
time series for the TWSA. Thus, the period 2003–2015 was
divided into two training-validation groups, with the Group 1
(G1) training set covering the period 2006–2015 and validation
set covering the period 2003–2005 and the Group 2 (G2) training
set describing the period 2003–2011 and validation set covering
2012–2015.

The model was also trained without the inclusion of human
factors. The models without human factors are referred to in
the following sections (Table 2) as RF(N) and XGB(N),
respectively.

The validationmetrics include the coefficient of determination
(R2), correlation coefficient (R), root mean square error (RMSE),
and mean error (ME), which are calculated as follows:

FIGURE 1 | Basin boundaries and the locations of in-situ soil moisture sites.
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R2 � 1 − ∑n
i�1(xi − yi)2∑n
i�1(yi − �y)2 (2)

R � ∑n
i�1(xi − �x)(yi − �y)�����������∑n

i�1(xi − �x)2
√ �����������∑n

i�1(yi − �y)2√ (3)

ME � ∑n
i�1xi −∑n

i�1yi

n
(4)

RMSE �
������������∑n

i�1(xi − yi)2
n

√
(5)

In Eq. 2, xi is the estimated TWSA value at grid i, yi is the
GRACE TWSA in grid i, �y is the mean of the GRACE TWSA
grids, and R2 is used to evaluate the variance in the dependent
variable that can be predicted from the independent variables.
The value of R calculated by Eq. 3 is used to measure the
correlations between time series in this study, with xi

representing the basin-level averaged estimated TWSA of
month i, yi the corresponding GRACE TWSA, and �x and �y
the corresponding average values of TWSA over time. In Eqs 4,
5, xi and yi represent the estimated TWSA and observed
TWSA, respectively.

There is notable seasonality in the TWSA time series, which
has a significant impact on the above error metrics. Therefore,
the seasonal cycle needs to be removed from the TWSA time
series before the R, ME, and RMSE between the different
sources are calculated. Periodic trend decomposition using
local regression (STL) is used to remove the periodic cycle. The
STL approach proposed by Cleveland et al. (1990). has been
increasingly reported as a versatile and moderate method for
time-series decomposition (Lu, 2003; Scanlon et al., 2018). The
TWSA can be decomposed into three components:

Stotal � Slong−term + Sseasonal + Sresidual (6)
where Stotal is the original TWSA time series, Slong−term is the long-
term trend in the TWSA time series, Sseasonal is the periodic
variation, and Sresidual is the residual. Readers are also referred to
(Cleveland et al., 1990) for further details of the STL approach.
The root mean square of the residuals (Sresidual) is used to
approximate errors in the measurement following the method
in (Scanlon et al., 2018):

MeasErr �
�������∑n

i�1resi
n

√
(7)

whereMeasErr is the measurement error and resi is the residual
sequence (Sresidual) in Eq. 6.

5 RESULTS

5.1 Model Performance
5.1.1 Spatial Patterns of TWSA
Figure 2 present the spatial patterns in the estimated TWSA from
the RF and XGBmodels, respectively, for September 2013 whichwas
accompanied by the TWSA form the GRACE CSR-M solution and
the global models. The TWSAs produced by the machine learning
models (Figures 2B,D) are consistent with the spatial patterns of the
TWSAs produced by GRACE. The TWSA without human
withdrawal (Figure 2C,E) are less negative than those from the
GRACE solutions and the results that include human factors,
indicating the significance of human factors in the TWS dynamic
model of the basins. The spatial patterns of the TWSA from the
global models differ from those produced by GRACE. The TWSA is
more negative in catchment than in GRACE for the Huaihe River
Basin, while PCR-GLOBWB TWSA is more negative than GRACE
in the Haihe River Basin. PCR-GLOBWB without human
intervention (PCR-GLOBWB(N)) failed to capture the most
negative TWSA grids compared to models including human factors.

Figure 3 displays the spatial pattern of the RMSE from each
model compared with the GRACE solution for the validation
set. The LSMs and the PCR-GLOBWB model generally have a
higher RMSE compared with GRACE TWSA than the machine
learning models, especially in terms of most of the lower
Yellow River, Huaihe River, and Haihe River Basins. The
inclusion of human withdrawal is beneficial to the machine
learning models because a higher RMSE can be seen in the
RF(N)/XGB(N) models, especially for G2. The PCR-GLOBWB
model with human factors produced a higher RMSE over the
Haihe River Basin, the lower stream of Yellow River Basin, and
the Hetao Plain than the PCR-GLOBWB(N) model, indicating
that the PCR-GLOBWB model overestimated the impact of
human withdrawal on the decline in TWS in the Haihe River
Basin.

TABLE 2 | Arrangement of experimental groups for training and validation.

Group ID Model Input Training set Validation set

G1 RF Climate forcing, Water demand 2006–2015 2003–2005
XGB
RF(N) Climate forcing
XGB(N)

G2 RF Climate forcing, Water demand 2003–2011 2012–2015
XGB
RF(N) Climate forcing
XGB(N)
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FIGURE 2 | Spatial patterns of TWSA for (A) GRACE, (B) RF, (C) RF(N), (D) XGB, (E) XGB(N), (F) Catchment, (G) Noah, (H) PCR-GLOBWB, and (I) PCR-
GLOBWB(N) in September 2013 (Unit: cm).

FIGURE 3 | Spatial patterns and in the root mean square error (RMSE) of TWSA of GRACE observations and the different models in G1: (A) RF, (B) RF(N), (C) XGB,
(D) XGB(N), (E) Catchment, (F) Noah, (G) PCR-GLOBWB, and (H) PCR-GLOBWB(N); and spatial patterns and in the RMSE of TWSA of GRACE observations and the
different models in G2: (I) RF, (J) RF(N), (K) XGB, (L) XGB(N), (M) Catchment, (N) Noah, (O) PCR-GLOBWB, and (P) PCR-GLOBWB(N).
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Figure 4 together show grid-by-grid scatter plots describing
the results of the GRACE TWSA (x-axis) and the TWSA
patterns from the machine learning tools and global models
(y-axis). Figure 4 displays the validation sets in G1 and G2.
According to the results, the machine learning models that
included human factors generally outperformed thosethat did
not. The RF and XGB models obtained consistent results, and
both outperformed the global models examined in this study.
Specifically, the R2 values between RF TWSA and GRACE
TWSA are 0.64 (G1) and 0.75 (G2), the RMSE is 2.67 cm for G1

and 3.43 cm for G2, and the MEs are all within ±1.0 cm. The
results for the XGB TWSA are similar to those of the RF model
(Figures 4E,F). The RMSEs of the machine learning model
results are close to the claimed uncertainty value of the GRACE
CSR-M solution (approximately 2 cm globally), indicating the
quality of the results predicted by the machine learning
models. The TWSA of the global models, in contrast,
demonstrates a lower R2 and a higher RMSE than those
from the machine learning models against the GRACE
solution.

FIGURE 4 | Scatter plots between the TWSA of the GRACE observations and different models showing the validation sets for G1: (A) RF, (B) RF(N), (C) XGB, (D)
XGB(N), (E) Catchment, (F) Noah, (G) PCR-GLOBWB, and (H) PCR-GLOBWB(N); and scatter plots between the TWSA of the GRACE observations and different
models showing the validation sets for G2: (I) RF, (J) RF(N), (K) XGB, (L) XGB(N), (M) Catchment, (N) Noah, (O) PCR-GLOBWB, and (P) PCR-GLOBWB(N).
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Although the machine learning models obtained similar R2
values for the two groups in the validation set, the RMSEs in G2
were higher than those in G1. In addition, the discrepancies between
the RF/XGBmodel and the RF(N)/XGB(N) model are more notable
in G2 than in G1. The RF/XGB models that include human factors
greatly reduce the estimation errors in G2 compared with those that
did not include human factors (Figures 4D,H). In G2, the MEs of
RF(N) and XGB(N) increase to 1.93 and 1.89 cm, respectively, which
are much higher than those produced by the RF and XGB models,
suggesting that machine learning models tend to overestimate
TWSA values compared to the GRACE solution when human
factors are not included and the differences are more evident in
G2 than G1.

5.1.2 Temporal Behaviors of Basin Level TWSA
Figure 5 shows a comparison of the basin-level TWSA time
variation series from GRACE, the machine learning models, and
the global models considered in this study. The TWSA estimated
by the land surface models is more positive than the GRACE
TWSA time series. Meanwhile, the TWSA estimated using the
machine learning models shows good correlation with the
GRACE TWSA time series, while the model without human
factors also produces a marginally more positive TWSA than the
GRACE solution, especially for G2.

According to Figures 5E,F, the PCR-GLOBWB model
overestimate the decrease in the TWSA in the Haihe River
Basin relative to the GRACE solution. This is consistent with

FIGURE 5 | Comparison of the Basin level TWSA time series of GRACE observations, different models of the Yellow River Basin in (A)G1, (B)G2, the Huaihe River
Basin in (C) G1 and (D) G2, and the Haihe River Basin in (E) G1 and (F) G2 (Red background color indicates the validation period).
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Figures 2H, 4, which implies a more severely negative TWSA of
PCR-GLOBWB than that produced by the GRACE solution.
Such overestimation of the TWS decline in the Haihe River
Basin is partly related to the overestimation of human
intervention in the basin because the PCR-GLOBWB(N)
model produced more positive and less negative TWSAs for
the basin (Figures 5E,F).

Figure 6 present the correlation coefficient (R), RMSE, and
ME between the basin-level TWSA from GRACE and the
machine learning tools, as well as the globally used models
examined in this study. To reduce the influence of seasonal
variation, the seasonal components were removed before the
values of R, RMSE, and ME were calculated. The RF and XGB
TWSA time series for the training set perfectly reproduced the
GRACE TWSA time series over the three basins, with a high R
(>0.8) and a low RMSE (<2.0 cm). The R for RF/XGB in the G1
validation set was generally higher than that of RF(N)/XGB(N) in
the same group. Although similar values of R were obtained for
G2 by RF/XGB and RF(N)/XGB(N), the RMSE and ME of the
RF(N)/XGB(N) models were much lower than those of RF/XGB.
In general, the RF/XGB models outperform RF(N)/XGB(N) with
a higher value of R and a lower RSME and ME. Compared with
the LSMs and PCR-GLOBWB models, the TWSA estimated
using machine learning models is much closer to the GRACE

solution, with lower values of RMSE and ME. However, the
correlation coefficients of all the machine learning models were
lower for the validation set than for the training set. There are two
possible reasons for this, the first is that only thirty-six samples
(12 months × 3 years) were available for calculating the
correlation coefficients of the basin-level TWSA time series in
the validation set, and this number of samples may be too small to
obtain a valid correlation estimation (Bonett and Wright, 2000);
Another reason might be the machine learning models usually
perform better in the training set than in the validation set, as the
models are trained based on the data in the training set.

5.2 Reconstruction of Past TWSA
The models were trained using datasets covering the entire period
of 2003–2015 with human factors and then applied to the period
1979–2015 to generate a value for TWSA that reaches back to
1979. The entire period was divided into three subperiods for
analysis: 1979–1990 (P1), 1991–2002 (P2), and 2003–2015 (P3).
Figure 7 displays the average TWSA series from the RF and XGB
models for the three basins and the TWSA from catchment,
Noah, and PCR-GLOBWB. The three subperiods are identified
with different panel background colors in the figure. The RF and
XGB models produced similar TWSA estimations; therefore,
Figure 8 only presents the coefficients of correlation and MEs

FIGURE 6 | (A) Correlation coefficients (R), (B) RMSE, and (C)ME between the de-seasonalized TWSA produced by GRACE observation and the models for the
Yellow River Basin from the validation set in G1 and G2; (D) The correlation coefficients (R), (E) RMSE, and (F)ME of the de-seasonalized TWSA of GRACE observation
and the unique models for the Huaihe River Basin from validation sets in G1 and G2; (G) The correlation coefficients (R), (H) RMSE, and (I) ME of the de-seasonalized
TWSA of GRACE observation and the unique models for the Haihe River Basin from the validation sets in G1 and G2.
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among the RF TWSA and the three global models after seasonal
variations and residuals are removed.

In general, the TWSA reconstructed using machine learning
models is well correlated with the TWSA of the LSMs (catchment
and Noah) throughout the three subperiods, except for P2 in the
Huaihe River Basin (Figure 8A,C,E). The TWSA from the PCR-
GLOBWB models shows higher correlation with the
reconstructed TWSA but low correlation and high MEs for P1
and P2, especially over the Huaihe and Haihe River Basins
(Figure 7). This can also be seen in Figure 8. In addition, the
MEs between the RF TWSA and the TWSA from the global
model were consistent for the three sub-periods. The
measurement errors (RMS of the residuals from STL analysis)
of RF and XGB TWSA in the three subperiods were consistent
(Table 3). Therefore, the quality of the RF and XGB TWSA for
the past few decades is generally stable and in line with the
GRACE TWSA for the period 2003–2015.

Figure 9 shows a comparison between the RF and XGB
TWSAs and the in-situ soil moisture (0–50 cm) at 29 sites in
the study area during the period 1991–2002. The correlation
coefficients between the two models are shown in Figure 10.
Because several of the values for in-situ soil moisture are missing,
the number of records available for each site is also shown for
reference. According to Figure 10, the variation in the
reconstructed TWSA is well correlated with the in-situ soil
moisture at most of the sites assessed, and the overall
variations in the trends are concurrent. The R value at each
site ranged between 0.2 and 0.7, and the average R for all sites was

approximately 0.45 (Figures 10B,C). R is lower at all sites without
adequate records, such as Nos 53980 and 54705. However, the R
value also seems lower than 0.3 at some of the sites with more
than 80 records, such as No 53783 and No 57089. The
intercorrelations between TWS variations and subsurface water
contents have quite a lot to do with the root zone soil moisture
and the groundwater levels (Rodell et al., 2009; Tian et al., 2019),
and the groundwater amount occupies the majority of the TWS.
Although the variations in the sampled soil moisture partially
indicate the changes in the regional water storage, the connection
between the two parameters looks much weaker than that
between groundwater and TWS. In general, the TWSA
reconstructed using machine learning tools generally has good
agreement with the in situ soil moisture at most of the sites
examined in this study. Nevertheless, because a comparison was
conducted using soil moisture measurements at 0–50 cm, which
only indicates the variations in the water content of the shallow
soil layer, the explanation of the results is regarded as indirect
rather than validated.

5.3 Variables Importance Contribution
The relative contribution of each variable to the RF and XGB
models were also quantified. Figures 11A,B plot the variable
importance value (scaled to 0–100) for each variable in the RF and
XGB models. The precipitation for the previous one to 3 months
(PREt-1, PREt-2, and PREt-3) significantly contributed to the
results of both the RF and XGBmodels. This is in line with the lag
in the correlation between variation in the TWS and

FIGURE 7 | Basin level de-seasonalized TWSA time series for the period 1979–2015 from the RF, XGB, Catchment, Noah, and PCR-GLOBWB models in (A)
Yellow River Basin, (B) Huaihe River Basin, and (C) Haihe River Basin (P1, P2, and P3 are highlighted by different background colors).
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precipitation. Precipitation takes some time to infiltrate into the
root zone soil, after which some of it becomes groundwater,
accounting for the majority of the TWS (Sala et al., 1992; Milly,
1994; Andrew R. L. et al., 2017). Thus, the contribution from the
precipitation occurring in previous months is rationalized, and
the machine learning models effectively learned the close relation
between the TWSA and the variation in the precipitation of the
study area. The geolocations (LAT and LON) are equally as
important as precipitation, suggesting a significant spatial

variation in the TWSA of the basin. Latitude is much more
important than precipitation in the XGB model.

Figure 11C–F summarizes the variable importance of the
climate forcing, human withdrawal, latitude, longitude, elevation,
climate zone, and time variables. In the RF model, the
contribution of climate forcing accounts for 66.3–70.8%, and
the contribution of the human factor is 17.6–14.4%. The
contribution from climate forcing is lower (39.4–50.0%), and
the contribution of human factors increases (25.3–21.6%) in the

FIGURE 8 | (A) Correlation coefficient (R), (B)mean error (ME) between RF TWSA, the TWSA of the Catchment, Noah, and PCR-GLOBWBmodels over the three
sub-periods in the Yellow River Basin; (C) the correlation coefficient (R) and (D)mean error (ME) among he RF TWSA and the TWSA of the Catchment, Noah, and PCR-
GLOBWBmodels for the three sub-periods in Huaihe River Basin; (E) The correlation coefficient (R) and (F)mean error (ME) between the RF TWSA and the TWSA of the
Catchment, Noah, and PCR-GLOBWB models for the three sub-periods in Haihe River Basin.

TABLE 3 | The root mean square (RMS) of residuals (from STL analysis) for TWSA of different models and GRACE observations during the three sub-periods.

Basin Period RMS of Residuals (STL analysis) (cm)

Catchment Noah PCR-GLOBWB RF XGB GRACE

Yellow River P1 0.96 1.56 0.86 0.68 0.63 —

P2 1.13 1.60 1.04 0.63 0.59 —

P3 0.92 1.54 0.86 0.93 0.98 0.97

Huaihe River P1 2.10 2.77 2.43 1.82 1.34 —

P2 2.58 3.98 2.88 1.68 1.48 —

P3 2.55 3.72 3.01 2.23 2.33 2.11

Haihe River P1 1.13 2.15 1.05 1.16 1.01 —

P2 1.78 3.38 1.86 1.16 1.02 —

P3 1.24 2.18 1.34 1.87 2.01 1.52
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XGB model. Figure 12 illustrates the percentage of each
individual variable in terms of climate forcing and human
activity. Precipitation dominates the contribution of climate

forcing (~30%) to the models. In the case of human activity,
the contribution of nonpaddy irrigation (NPIR) is higher than
that of paddy irrigation (PIR) because nonpaddy crops (wheat

FIGURE 9 | The Comparison of TWSA of the RF and XGB models with in-situ soil moisture measurements during the period 1991–2002.

FIGURE 10 | (A)Correlation coefficients between RF/XGB TWSA and the in-situ soil moisture on each site, (B) boxplot of the correlation coefficients at all sites, and
(C) boxplot showing the of number of records at all sites.
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and maize) are major crops in the Yellow River Basin and Haihe
River Basin.

Generally, the contributions of water withdrawals for
domestic, industrial, and irrigation use in the models are
equal, and the importance value of livestock withdrawal
(LIST) is lower than that of the other sectors. Given the
dominance of the plains, crop-friendly temperatures, and
hours of sunshine, the middle-lower Yellow River basin,
Haihe River basin, and Huaihe River basin are considered
major bases for the production of grain in China. The

irrigation in these areas depends heavily on withdrawal
from the groundwater, main rivers, and tributaries (Zheng
et al., 2009; Zhao et al., 2014). Coal and iron industries
dominate in the middle-lower Yellow River Basin provinces
(Ningxia, Shaanxi, and Shanxi provinces) and the Haihe River
Basin (Hebei province) (Zhong et al., 2016; Shang et al., 2017).
According to Stats, the regional population of the Huang-
Huai-Hai River Basin accounts for approximately 35% of the
total population of China (Yuan et al., 2019), which gives rise
to a huge demand for domestic water. Therefore, the

FIGURE 11 | (A) Variable importance values for the RF model at each site, (B) variable significancevalues of the XGB model at each site; summary of variable
significance values for the RF model in (C) G1 and (D) G2, and summary of variable significance values for the XGB model in (E) G1 and (F) G2.

FIGURE 12 | (A) Percentage summary of the variable importance of climate variables, and (B) Percentage summary of the variable importance of sectoral
water use.
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importance contributions of irrigation, industry, and domestic
requirements can be expected to be equal, and these patterns
were learned well by the machine learning models.

6 DISCUSSION AND CONCLUSION

This study proposed a machine learning model for estimating
historical variations in the TWS in the Huang-Huai-Hai River
Basin. Random forest (RF) and Extreme Gradient Boost (XGB)
models were used to train a model that linked GRACE TWSA
observations with climate data and human withdrawal. The
past GRACE-consistent TWSA was reconstructed by applying
this model. The reconstructed TWSA results are compared
with the global land surface area and hydrological models, as
well as the in situ soil moisture measurements. In addition, the
contribution of every variable to the machine learning tool/
model was quantified.

In general, the presented approach reproduces spatial patterns
and temporal variations in the GRACE TWSA, thereby
outperforming a set of global models. The inclusion of human
intervention improved the performance of the machine learning
model. This is rational because groundwater has been
overexploited since the 1970s in the plains of North China,
and human activities have profound effects on the changes in
the TWS of this region (Kendy et al., 2004; Shi et al., 2011; Cao
et al., 2013; Huang et al., 2015; Min et al., 2015). The catchment
and Noah models, however, cannot consider human intervention
and underestimate the decrease in TWS relative to the GRACE
TWSA produced for the research area. These findings are in line
with previous research (Mo et al., 2016; Scanlon et al., 2018). The
catchment model includes groundwater simulation, enriching the
terrestrial water storage components compared with the Noah
model. However, the groundwater in the catchment is not directly
modeled, and the vertical distribution equilibrium of the soil
moisture comprises an implicit water table that is located at the
depth of the equilibrium saturation (Kumar et al., 2016).
Therefore, there are still many differences between the TWS
simulations performed using the catchment model and the
GRACE solution.

The PCR-GLOBWB model comprises all the terrestrial water
storage models, and because human activities are considered, the
TWSA from PCR-GLOBWB presents higher correlations with
GRACE TWSA at the basin level. However, the declining trend in
the TWS of the Haihe River Basin was overestimated by PCR-
GLOBWB relative to the GRACE solution. A similar
overestimation of the decline in TWS, which was produced by
the PCR-GLOBWB model in this region, was also revealed in
another study (Feng et al., 2018). The PCR-GLOBWB model
without human intervention underestimated the decrease in the
TWS of the Haihe River Basin, indicating that the overestimation
of the decline in the TWS by PCR-GLOBWB is a result of the
overestimation of human water use in the basin. The machine-
learning model used the same calculations that were used for
describing water withdrawals in the PCR-GLOBWB model and
produced consistent results with the GRACE solution. This
indicates that the pattern of climatic and human withdrawals

produced by the GRACE TWSA has been successfully calibrated
and predicted from the machine learning tool for both the present
and past records.

The contribution importance estimations provide an intuitive
perspective from which to interpret the ensemble learning models
used to estimate TWS changes in this study. Precipitation,
acknowledged as the major climatic driving force of variations in
theTWS in previous studies (Li et al., 2017;Meng et al., 2019; Xie et al.,
2019), is the climatic variable with the highest significance value in the
present model. The use of water by three sectors (irrigation, domestic,
and industry) has equally important contributions in the model,
though not livestock. Some individual variables are more
important in the models. In theory, the models consider that only
the most important variables would produce comparable results with
models that include a full set of variables. For this reason, theRFmodel
is used to select important features describing specific issues (Ham
et al., 2005; Chen et al., 2014; Ma et al., 2017). Thus, additional
experiments are required in the future to investigate the performance
of the models with variables of different sizes.

The variable importance rankings derived from the RF and XGB
models are generally similar, except that the human factors and
geolocation obtained higher importance values in the XGB model
than in the RF model. A possible explanation for this is that the
geolocation and human factor contributemore to the residuals of the
base learners because the simple learners recursively fit the residuals
of their predecessors in the boosting-based ensemble learning model
(Freund and Schapire, 1996; Friedman, 2002).

Not every tree in the RF and XGB models includes all the
characteristics or observations, which guarantees that the trees
are decorrelated and therefore less prone to overfitting. However,
correlated features will be issued equal or similar importance,
which may reduce the significance compared to the same trees
built without their correlated counterparts. In addition, it should
be mentioned that the significance value is merely a statistical
relative score that does not indicate the authentic contribution of
a variable to the TWS, although the RF and XGB models are
produced by random selection. The reliability of the results in
terms of ranking importance relies on the performance of a model
and the selection of the variables used. The notable variables used
in this study probably do not cover all types of human
intervention or the hydrological factors affecting the TWS
dynamics within the headwater of the Yellow River, the Loess
Plateau, and the surrounding areas, such as the Three Rivers
Source Region Reserve, the Grain for Green project, reservoir
operation, and the contribution from snowmelt in the
surrounding areas (Jin et al., 2017; Yi et al., 2017; Deng et al.,
2018; Lv et al., 2019; Meng et al., 2019; Xie et al., 2019). Therefore,
the variable importance results should be explained with
additional caution.

The era of big data and artificial intelligence is accelerating
the development of data-driven Earth system science. Many
machine learning techniques have provided tools and exciting
new opportunities for accurately predicting the evolution of
water cycles and expanding our understanding of the Earth
system from multisource data. We can learn from the results of
this study that machine learning and artificial intelligence have
the potential to elucidate much more from data than
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traditional land surface and hydrology models can. However,
respecting nature’s physical law is important for expanding
our knowledge of the Earth by using machine learning.
Therefore, the following key challenge is to develop a
hybrid model for coupling physical process models and
machine learning approaches.

Because the model input data is not exactly the same as the
ensemble learning model, in addition, the GLDAS model also
contains input data from other sources, such as land use, soil
type and texture, which can cause uncertainty in the GLDAS
model. The biases caused by these uncertainties cannot be
quantitatively analyzed and discussed in this paper, and the
comparison results of GLDAS land surface models need to be
further studied.

In summary, the models proposed in this study address how
both climate and human factors impact the dynamics of TWS
while performing as well as or better than a set of global models
in terms of describing areas with intense human activities.
Instead of modifying the physical models, the machine
learning model is a more flexible, and less expensive
alternative for directly reconstructing past changes in the
total TWS. The findings of this study enrich our
conceptions of the changes and driving forces in the TWS
over the Huang-Huai-Hai River Basin and have great potential
to be assimilated into hydrological models to improve TWS
simulations in the future.
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