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Dust in the atmosphere and snow on the Tibetan Plateau (TP) remarkably influence the
Asian climate, which can influence snow cover by changing radiative forcing. In this study,
we investigated the spatial and temporal distributions of dust and snow cover over the TP
from 2009 to 2018 and estimated the relative contributions of atmospheric dust and dust-
on-snow to the change in snow cover over the northern TP through the use of reanalysis
datasets and satellite retrievals. The results show that the high and low centers of aerosol
and dust aerosol optical depth (AOD) are roughly similar. Dust concentrations over the TP
generally decrease from north to south and from west to east, showing decreasing trends
in the winter half-year (December to May). The correlation coefficients between the dust
concentration and snow cover over the northern TP are −0.6 in spring. Dust in the
atmosphere and on snow over the TP could significantly influence snow cover by changing
the radiative forcing, and the influence of dust deposited on snow is greater than that in the
atmosphere. Atmospheric dust reduces the surface net solar radiation by −3.84Wm−2 by
absorbing shortwave radiation, decreasing the surface temperature by −2.27°C, and finally
increasing the snow cover by 1.04%. However, dust deposited on snow can decrease the
surface albedo by −0.004 by reducing the surface optical properties, induce surface
warming at 0.42°C, and reduce snow cover by −2.00% by rapid snowmelt in the
northern TP.
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1 INTRODUCTION

As the “sensitive area” of climate change (Wu et al., 2005; Xu et al., 2015a), snow/ice is the largest
seasonal variable of land cover over the Tibetan Plateau (TP) (Smith and Bookhagen, 2018; Lievens
et al., 2019). The snow and ice systems over the TP are very fragile, have experienced widespread
melting, and retreat in the last 20 years (Kang et al., 2015), besides the extent of ablation retreat being
still gradually increasing (Yao et al., 2012). In addition, the enhanced warming over the TP has also
caused widespread concern (Wu et al., 2017; Zhou and Zheng, 2021). The warming rate over the TP
in the last 50 years has reached 0.3–0.4°C/decade, which is twice the global average of the same period
(Shen et al., 2015). The Intergovernmental Panel on Climate Change (IPCC) (2021) pointed out that
even if global warming was to be controlled within 1.5°C by the end of this century, TP warming is
likely to exceed 2.1°C (Duan and Xiao, 2015). The surface albedo of glaciers over the TP has declined
significantly in recent decades (Liu and Chen, 2000;Wang et al., 2014; Zhang et al., 2021). In addition
to the notably rapid warming over the TP (Qin et al., 2006; Wang et al., 2008; Kang et al., 2010; Bolch
et al., 2012), factors such as land use change, water vapor feedback, cloud properties, and the
radiation forcing of light-absorbing aerosols (LAAs) can also significantly influence warming (Kang
et al., 2000; Flanner et al., 2009; Xu et al., 2009).
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Dust aerosols are mainly emitted from drylands through
wind erosion (Chen et al., 2014; Huang et al., 2016; Wang et al.,
2012; Bi et al., 2016). The atmosphere, hydrosphere, and
cryosphere are closely related to the physical process of dust
aerosols, including dust emission, transport, and wet/dry
deposition (Niemand et al., 2012). Through direct and
indirect effects, dust has a significant regulating effect on the
Earth’s radiative budget and hydrological cycle. Due to human
activities, the aggravation of desertification, and vegetation
degradation in recent years, the TP has become a new source
of dust emissions that cannot be ignored (Ma et al., 2014).
Moreover, sufficient evidence has proved that in addition to
local dust emissions, a large quantity of dust particles over the
TP come from external transport (Mao et al., 2019). Feng et al.
(2020) found that the atmospheric dust in the top of the
troposphere above the TP in spring of the 2000s increased by
34% compared with that in the 1990s, which is related to
increasing dust aerosols from East Asia, South Asia, and the
Middle East since the 2000s. Moreover, the results of the MISR
retrievals showed that the correlation between the TP and
Taklimakan Desert (TD) aerosol optical depth (AOD) is
lower in spring than in summer (Xia et al., 2008). Chen et al.
(2013), Chen et al. (2014) and Yuan et al. (2019) investigated the
dynamic and thermal transport mechanisms of dust aerosols
from the TD to the northern TP. By the weakening and
northward movement of the East Asian westerly jet and the
increase in surface-sensible heat over the TD in summer,
abundant TD dust particles are transported to the northern
slope of the TP. These results were also supported by ice cores
and aerosol products from the total ozone mapping
spectrometer (TOMS), as well as the coupled model
intercomparison project (Phase 6) (CMIP6) and community
earth system model (CESM) (Feng et al., 2020). As a crucial
natural aerosol, the TP dust deposited on ice and snow is much
larger than black carbon (BC). Dust can lead to significant
climate effects by influencing slight initial changes in snow
albedo, with rapid subsequent adjustment and feedback (Cong
et al., 2015; Ji et al., 2016; Xie et al., 2018; Shi et al., 2019). The
magnitude of dust deposition and its spatial distributions over
the TP diverge from BC (Flanner et al., 2009), which causes the
climate effect of dust-on-snow in spring to be more complex.
For example, dust deposited on snow and ice could reduce snow
depths by 5–25 mm in the Himalayas and western TP (Zhang
et al., 2017). Qu et al. (2014) found that dust is an important
factor in Zhadang Glacier melting, with an average radiative
forcing weakened by dust-on-snow of 1.1–8.6 Wm−2. Dust
deposited on snow in the Himalaya–TP also increases the
surface temperature and the lower atmospheric temperature
over the TP and strengthens the southwest wind in the lower
layer through reducing snow albedo during the premonsoon,
which, in turn, increases dust over the Indo-Gangetic Plain-
Himalayas (Lau and Kim, 2018).

In this study, we used satellite retrievals and reanalysis
datasets to obtain the spatial distributions of aerosols,
especially dust aerosols and snow cover over the TP, and
analyzed the correlation between dust and snow cover. This
study mainly evaluates the relative impacts of atmospheric

dust and dust-on-snow over the TP in spring and winter from
2009 to 2018. We hope to provide a reference and basis for the
causes of ice and snow melting and regional warming over the
TP. The datasets used in the study are presented in Section 2.
Section 3.1 analyzes the spatial and temporal distributions of
aerosols over the TP. Section 3.2 focuses on spatial and
temporal distributions of snow cover over the TP. In
Section 3.3, the influence mechanism of dust aerosols on
snow over the TP is discussed. Section 4 shows the
conclusion and discussion.

2 DATASETS AND METHODS

2.1 MODIS
The Moderate-Resolution Imaging Spectroradiometer (MODIS)
installed on the Terra and Aqua satellites is one of the most widely
used remote sensing platforms in earth science research
(Parkinson, 2003). The Terra and Aqua satellites feature 5-min
temporal and 36-channel spectral resolutions, 2330-km viewing
swath widths, wide spectral ranges (0.412–14.24 μm), and near-
global coverage every 1–2 days. Thus, MODIS not only provides
reliable and extensive retrieval data products on aerosols and
clouds but also offers an ideal solution for aerosol model
development and validation, dynamic analysis of atmospheric
pollution, and air quality monitoring with a spatial resolution of
1–10 km (Levy et al., 2007; Remer et al., 2008). Dark target (DT)
and deep blue (DB) are the two major algorithms applied to the
MODIS instrument for retrieving AOD. DT manifests its excellent
performance over high vegetation coverage regions such as
farmlands or forests, while DB was developed to retrieve the
aerosol properties over Gobi, deserts, or snow-covered areas.
The retrieval deviation can be reduced in the estimation of
surface albedo and further in AOD over the regions of bright
surface with a weaker blue-band reflectance (Hsu et al., 2006). In
this study, snow cover and AOD at 550 nm were derived from
MODIS-Aqua version 6.1. The resolution of snow cover is 0.05° ×
0.05° (lat x lon), and the AOD at 550 nm is 1° × 1° (lat x lon).

2.2 MISR
The Multiangle Imaging SpectroRadiometer (MISR) onboard
Terra was launched on 18 December 1999. The sensors can
measure particles with medium spatial resolution and can
cover almost the whole world. MISR products have made
significant progress in retrieving aerosols. However, the
predictability of MISR aerosol products for PM2.5

concentrations has not improved (Liu et al., 2007). Both
MISR and MODIS are onboard the Terra satellite. Statistical
comparisons were made with coincident AOD retrieved by
MODIS and MISR. The correlation coefficient between MISR
and MODIS is approximately 0.9 over the ocean and
approximately 0.7 over land (Kahn et al., 2009). Compared
to AERONET, marine stations have the highest correlation
coefficient (0.9), and dusty sites have the lowest correlation
coefficient (0.7) (Kahn et al., 2005). Although MISR has these
biases, MISR can still represent the spatial and temporal
variations in aerosols. In this study, 550 nm AOD at 550 nm
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with a horizontal resolution of 0.5° × 0.5° (lat x lon) was derived
from the MISR Level 3 Data.

2.3 MERRA-2 Reanalysis Data
The Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2) is produced by the NASA
Global Modeling and Assimilation Office (GMAO), which
provides datasets dating back to 1980 (Gelaro et al., 2017).
Previous studies have evaluated MERRA-2. Compared with
models and observations, the MERRA-2 AOD is larger than
the simulated AOD, but observations are larger than the
MERRA-2 AOD (Randles et al., 2017). Furthermore, previous
studies compared observed AOD based on AERONET and found
that the MERRA-2 AOD better matches that of AERONET
(Randles et al., 2017). Liu et al. (2019) combined the AAI and
several satellite datasets to check the reliability of long-term
changes in the MERRA-2 dust concentration. Moreover,
MERRA-2 underestimates the daily temperature and
overestimates the latent heat flux in summer (Draper et al.,
2017). Although MERRA-2 still presented these biases,
MERRA2 could represent the spatial and temporal variations
in aerosols. In this study, we used AOD, dust aerosol optical depth
(DAOD), and surface albedo with a horizontal resolution of 0.5° ×
0.625°(lat x lon) to analyze the impacts of dust over the TP.

2.4 ERA5 Reanalysis Data
The European Centre for Medium-range Weather Forecasting
Reanalysis V5 (ERA5) is a global atmospheric reanalysis dataset
(Hersbach et al., 2019) dating back to 1950, with a horizontal
resolution of 0.25° × 0.25° (Hersbach et al., 2018). Compared with
ERA-Interim, ERA5 was significantly improved. The assimilation
method uses the ensemble 4DVar data assimilation schemewith 10
ensemble members, with a horizontal resolution of 31 km × 31 km
and a vertical stratification of 137 layers with a top pressure of 1 Pa.
The integrated forecast system version was upgraded to Cy41r2,
the radiative transfer mode was upgraded to RTTOV-v11, and the
temporal resolution was improved to 1 h. The ERA5 reanalysis
datasets are better than MERRA-2 in estimating solar irradiance,
but there are some biases in cloudy conditions. ERA5 overestimates
solar radiation, while MERRA-2 underestimates solar radiation in
most areas. In terms of wind speed, ERA5 is superior to MERRA-2
compared to the observation data. In terms of precipitation, ERA-5
performs better on the monthly scale, followed by JRA-55,
MERRA-2, and CFS-2 (Taszarek et al., 2021) in terms of
thermodynamic theoretical parameters, low-altitude decrement
rate, low-altitude wind shear, etc. (Maa et al., 2021). Both ERA5
andMERRA-2 data better represent variables such as temperature,
moderateness, mid-tropospheric decrement rate, and mean wind.
However, ERA5 has a higher correlation and lower mean error
compared toMERRA-2 (Taszarek et al., 2021). In general, ERA5 is
better than MERRA-2 data in terms of solar radiation,
precipitation, temperature, and wind speed. However, ERA5
excludes aerosol data; we use MERRA-2 data for analyzing
aerosols in this article. For the analysis of temperature and
radiation, ERA5 data are used. In this study, we used surface
temperature and surface net solar radiation (clear) with a
horizontal resolution of 0.25° × 0.25° (lat x lon).

2.5 Correlation Analysis Method
By using the correlation analysis method, this article analyzes the
correlation relationship between MERRA-2 AOD and MODIS,
MISR AOD, verifying the feasibility of MERRA-2 AOD in the
study area. The correlation coefficient as defined by Pearson can
be used to characterize the correlation between two different
variables. Assuming a sample size of n for variables x and y, the
correlation coefficient formula is as follows:

r � ∑n
i�1[(xi − �x)(yi − �y)]������������������������∑n

i�1(xi − �x)2 × ∑n
i�1(yi − �y)2√ (1)

where �x and �y represent the average of x and y, respectively.
The significance test for the correlation coefficient r can be

performed using the t-test method, assuming that the two
variables are not correlated, with the statistic t:

t � r

�����
n − 2
1 − r2

√
(2)

n is the sample size and n-2 is the degree of freedom. The
significance level is assumed to be α. If t < tα, the linear
correlation is insignificant. If t > tα, the linear correlation is
significant.

2.6 Climate Trends
Assuming a sample size of n for a certain climate variable xi, and
ti represents the time corresponding to xi, establishing a one-
dimensional linear regression equation between xi and ti:

x̂i � a + bti, i � 1, 2,/, n (3)
In Eq. 3, a is the regression constant and b is the regression

coefficient. For the observed data xi and the time ti, the least-
squares estimates of the regression coefficient b and the constant
a are:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b �

∑n

i�1xiti − 1
n
(∑n

i�1xi)(∑n

i�1ti)∑n

i�1t
2
i −

1
n
(∑n

i�1ti)2
a � �x − b�t

(4)

where

�x � 1
n
∑n
i�1
xi, �t � 1

n
∑n
i�1
ti

Using the relationship between the regression coefficient b and
the correlation coefficient a, finding the correlation coefficient
between time ti and the variable xi:

r �

����������������∑n
i�1t

2
i − 1

n(∑n
i�1ti)2∑n

i�1x
2
i − 1

n(∑n
i�1xi)2

√√
(5)

The correlation coefficient r indicates the closeness of the
linear correlation between the variable x and time t. When r = 0,
the regression coefficient b is 0, and the regression line
determined by the least-squares estimation is parallel to the
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x-axis, indicating that the change of x is independent of time t;
when r > 0, b > 0, indicating an upward trend of x with time t;
when r < 0, b < 0, indicating a downward trend of x with time t. In
this article, wemainly use this method to calculate the linear trend
of snow and dust aerosols.

2.7 Rate of Dust Change
This article focuses on calculating the rate of dust change by using
statistical methods. The difference between the dust
concentrations of two adjacent days (the latter-day minus the
previous day) is calculated using dust concentration data from
MERRA-2 reanalysis datasets, and the rate of dust change
concentration is obtained by dividing the difference by the
dust concentration of the day. The main calculation formula is
as follows:

Dustrate(i) � Dust(i + 1) −Dust(i)
Dust(i) (6)

where Dust is the atmospheric dust concentration and Dustrate is
the diurnal rate of atmospheric dust concentration. i represents
the time series, i represents the current day, and i+1 represents the
next day.

The dust concentration is influenced by the season; the effect
of seasonal variability of dust concentration needs to be removed
for a clearer analysis of the effect of dust on snow. We use the
difference transform to remove the seasonal variability. To
specifically analyze the effect of high and low values of dust
variability on snow, the rates of dust change data from 2009 to
2018 were arranged from smallest to largest in spring, and the
high and low values were selected using the 5% and 95% quartiles.
In this article, we calculated the 5% and 95% quartiles as
−0.63 mg m−3 d−1 and 0.65 mg m−3 d−1. Therefore, all dates
greater than 0.65 mg m−3 d−1 are identified as high-value days,
while dates less than −0.63 mg m−3 d−1 are identified as low-value
days. Furthermore, the highest diurnal rates of atmospheric dust
concentration and the lowest diurnal rates of atmospheric dust
concentration are usually located next to each other. When the
diurnal rate of atmospheric dust is high, the dust concentration in
the atmosphere gradually increases at this time, mainly because
most of dust is released into the atmosphere. When the diurnal
rate of atmospheric dust is low, the dust deposits on snow at this
time. Thus, the high values represent the atmospheric dust and
the low values represent dust-on-snow. High and low-value days
are analyzed separately for radiation, temperature, and snow
distribution to comprehend the mechanism of the effect of
dust to snow.

3 RESULTS

3.1 Spatial and Temporal Distributions of
Aerosols Over the Tibetan Plateau
As a major aerosol over the TP, dust in the atmosphere and snow
on the TP remarkably influence the Asian climate. In this article,
we choose the most dominant absorbing aerosols (dust aerosols)
to estimate the relative contributions of atmospheric dust and

dust-on-snow to the change in snow cover over the TP through
the use of reanalysis datasets and satellite retrievals. We use three
aerosol-related datasets, MERRA-2 reanalysis datasets, MODIS,
and MISR retrievals. The MERRA-2 reanalysis datasets include
dust-related variables, which are used to investigate the
association between dust aerosols and snow cover, and they
further analyze the influence of atmospheric dust and dust-on-
snow to the change in snow cover over the TP. Due to differences
in models and emissions, MERRA-2 AOD shows specific
uncertainties in different regions and should be evaluated
before use. We need to analyze the applicability of MERRA-2
reanalysis datasets on the TP. To evaluate the feasibility of
MERRA-2 reanalysis datasets over the TP, the aerosol
products from MERRA-2 are compared with those derived
from MODIS and MISR retrievals. Overall, MERRA-2
captures the spatial and temporal distributions of 550 nm
AOD over the TP for 2009–2018. The monthly mean AOD
distribution from MERRA-2 is similar to that from the
MODIS and MISR retrievals. The TP AOD from MERRA-2,
MODIS, and MISR has the largest values in April (0.31 ± 0.03,
0.36 ± 0.04, and 0.23 ± 0.03), and December (0.09 ± 0.01, 0.08 ±
0.01, and 0.06 ± 0.01) has the smallest (Figures 1A–C). The
MERRA-2 AOD, MODIS AOD, and MISR AOD have the largest
values in the northern TP (0.25 ± 0.1, 0.30 ± 0.12, and 0.20 ± 0.08)
and gradually decrease from the periphery of the TP to the inside
and from north to south over the TP. Meanwhile, the TP AOD
from MERRA-2 has been found to be greater than that from
MODIS and MISR retrievals. The differences between MERRA-2
and MODIS may be related to cloud contamination effects and
emission uncertainty in each model system (Liu and Chen, 2020)
(Figures 1D–F). The cloud contamination effects are a source of
bias in the MODIS retrieval of AOD, and the emission
uncertainty refers to the MERRA-2 reanalysis.

Moreover, the MERRA-2 reanalysis datasets are consistent
with the MODIS and MISR retrievals, which could reflect the
seasonal and monthly variations in the TP AOD during
2009–2018 (Figure 2). Figure 2 shows that the values of the
TP AOD from the MERRA-2 reanalysis datasets, MODIS, and
MISR retrievals are 0.20 ± 0.08, 0.16 ± 0.09, and 0.14 ± 0.07 from
2009 to 2018, respectively. The TP AOD from the MERRA-2
reanalysis datasets has the largest values of 0.29 ± 0.03 in spring,
followed by 0.23 ± 0.03 in summer, and the lowest AOD of 0.12 ±
0.02 in winter, which are consistent with the MODIS AOD values
(0.31 ± 0.05, 0.15 ± 0.04, and 0.12 ± 0.02) and MISR AOD values
(0.21 ± 0.02, 0.19 ± 0.03, and 0.08 ± 0.01) (Figure 2A). Although
MERRA-2 AOD has been found to be greater than that from
MODIS and MISR retrievals, the seasonal and monthly variation
characteristics of three datasets are basically consistent. MERRA-
2 AOD data can be used to reflect the variation characteristics of
AOD in the TP. Figures 2B,C show the comparison between
monthly MERRA-2 AOD and MISR AOD, MODIS AOD from
2009 to 2018. The comparison results show better correlations
and smaller errors among the MERRA-2 reanalysis datasets,
MISR, and MODIS retrievals, with correlation coefficients (R)
of 0.90 and 0.76 and root-mean-square errors (RMSEs) of 0.03
and 0.06 (Figures 2B,C). Overall, the MERRA-2 monthly average
AOD is in good agreement with MISR and MODIS.
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As the main type of aerosol over the TP, dust AOD has the
largest value of 0.15 ± 0.02 in spring and the lowest value of 0.03 ±
0.007 in winter, showing gradual decreases from the northern to
southern regions of the TP (Figure 3A). The temporal and spatial
distributions of DAOD (Figures 3A,C) and dust concentration
(Figures 3B,D) are similar to that of AOD over the TP (Figure 1).
DAOD (0.15 ± 0.02) and dust concentration (0.2 ± 0.06 mg m−3)
had the largest values from March to June, while DAOD (0.03 ±
0.007) and dust concentration (0.04 ± 0.01 mg m−3) had the
lowest values from October to February (Figures 3A,B). The
monthly variations in DAOD in the northern TP diverge from
those in the southern TP, with the DAOD in the northern TP
having the largest values in May (0.28 ± 0.03) and the DAOD in
the southern TP having the largest values in May (0.11 ± 0.016)
(Figure 3).

The dust occurrence frequency in the northern TP is higher
than that in the southern TP. The DAOD (0.25 ± 0.1) and dust
concentration (0.35 ± 0.2 mg m−3) in the Qaidam Basin are
higher than those in other regions over the TP. The difference
between the northern TP and southern TP is closely related to

the atmospheric circulation and aerosol emissions in the
surrounding areas (Figures 3C,F). The results are consistent
with those from Xu et al. (2015b), who showed the three-
dimensional structure of aerosols over the TP based on MISR
and Cloud-aerosol Lidar and Infrared Pathfinder Satellite
(CALIPSO) retrievals. They further found that the spatial
distribution of dust aerosols in the northern TP is
significantly different from that in the southern TP, which
can be seen clearly from 6 to 8 km above sea level, especially
in spring and summer. Chen et al. (2013) and Yuan et al. (2020)
also investigated the meridional transport path of dust from the
TD to the northern slope of the TP and found that the westerly
jet weakens and moves northward providing dynamic and
thermal conditions for meridional transport.

The spatial distribution of dust concentration in spring and
winter (Figures 4A,C) is similar to that of MERRA2 DAOD
(Figures 1D, 4B,D). The dust concentration in the northern TP
(0.5 ± 0.1 mgm−3) was higher than that in the southern TP (0.15 ±
0.05 mgm−3) in spring from 2009 to 2018. A large dust
concentration value (0.6 ± 0.1 mgm−3) occurred in the Qaidam

FIGURE 1 | Monthly variations in the TP AOD from the (A) MERRA-2, (B) MODIS, and (C) MISR retrievals during 2009–2018 and spatial distributions of the
averaged AOD over the TP from the (D)MERRA-2, (E)MODIS, and (F)MISR retrievals during 2009–2018. Note that the error bars represent the standard deviation of the
corresponding variables.

FIGURE 2 | (A) Seasonal variations in the TP AOD from theMERRA-2. MODIS andMISR retrievals during 2009–2018 and comparison of MERRA-2 AOD, (B)MISR
AOD, and (C) MODIS AOD over the TP (70–110°E, 25–45°N) for 2009–2018. The red line is the fit line.
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Basin, and a small ±value (0.05 ± 0.01 mgm−3) was located east of
95°E and south of 30°N on the TP based on MERRA-2 reanalysis
datasets (Figure 4A). The spatial distribution in winter is similar to
that in spring; due to the frequent dust storms in spring, the dust
concentration in winter (0.15 ± 0.02mgm−3) is smaller than that in
spring (Figure 4B). In addition, based on Eq. 3, the regression
coefficients of monthly data with time series were calculated for
spring and winter from 2009 to 2018 to obtain the long-term trend

of dust concentration. The long-term trend of dust concentration
shows a decreasing trend over the TP, with domain-mean values
of −0.012 mgm−3month−1 in spring and −0.003 mgm−3 month−1

in winter at the 95% significance level. The maximum values of
−0.015mgm−3 month−1 in spring and −0.006 mgm−3 month−1 in
winter are located in the northern TP, which was related to the
reduction of dust storms over the TD and Gobi Desert (GD) in
recent years (Figures 4C,D).

FIGURE 3 | (A)Monthly dust AOD (DAOD), (B) spatial distributions of DAOD, and (C)monthly dust AOD in the north and south over the TP for 2009–2018 from the
MERRA-2 reanalysis datasets. (D) Monthly dust concentration (units: mg m−3), (E) spatial distributions of dust concentration (units: mg m−3), and (F) monthly dust
concentration (units: mg m−3) in the north and south over the TP for 2009–2018 from the MERRA-2 reanalysis datasets. The error bars represent the standard deviation
of the corresponding variables.

FIGURE 4 | Spatial distributions of dust concentration over the TP in (A) MAM and (B) DJF for 2009–2018 derived from MERRA-2 reanalysis datasets; spatial
distributions of dust concentration linear trends (units: mg m−3 month−1) over the TP in (C) MAM and (D) DJF for 2009–2018 from MERRA-2 reanalysis datasets.
Regions passing the 95% significance level are highlighted by stipple. Significance is assessed through the t value of the ensemble trend.
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3.2 Spatial and Temporal Distributions of
Snow Cover Over the Tibetan Plateau
Snow cover is mainly located in the western TP (Kunlun
Mountains) southeast of the TP, especially in the Hengduan
Mountains, the Himalayas, and Qilian Mountains, and snow
cover is difficult to melt due to the complex terrain. The snow
cover in the hinterland of the TP and the Qaidam Basin with a dry
climate and scarce precipitation belongs to instantaneous snow,
and the snow cover is lower (10% ± 2) (Figure 5C). Both the
fraction of coverage and duration of snow cover over the TP are
lower than those at high latitudes, which leads to rapid changes in
seasonal snow cover over the TP. Due to the influence of local
temperature and precipitation, the changes in snow cover are
more active in the cold season (Figures 5A,C). The snow cover
accumulates gradually during the accumulation period from
October to January, which causes the snow cover to have the
highest values in January (30% ± 6) and lasts until spring
(Figure 5A).

The spatial distributions of surface temperature are opposite to
snow cover (Figures 5B,D). The monthly variability of snow on
the TP is opposite to surface temperature, with snow reaching
minimum values in July and August while surface temperature is
at a maximum and snow reaching a maximum in December and
January while surface temperature is at a minimum. With
increased surface temperature, snow cover will decrease. The
surface temperature has larger values in the northern TP,
especially the Qaidam Basin, with the maximum value being
11.4°C, and the lowest values mainly occur in the middle, west,

and southeast of the TP (−6.3°C ± 0.83, −8.8°C ± 1.15,
and −5.0°C ± 1.30, respectively) (Figure 5D). The surface
temperature over the TP has the highest value in summer
(10.2°C ± 0.69) and the lowest value in winter (−16.7°C ±
1.52), with the highest value in July (11.4°C ± 0.47) and the
lowest value in January (−18.6°C ± 1.58) (Figure 5B). The surface
temperature has a larger value over the TP in summer; thus, the
snow cover of only 15% indicates that most of the snow cover has
melted and supplied water to the lake (Zhang et al., 2012), and the
minimum snow cover appears in August (12.97% ± 3.92)
(Figures 5A,B).

To compare the snow with dust, the snow cover was
interpolated to a spatial resolution of 0.5° × 0.625° of
MERRA-2. With the lower surface temperature and higher
dust concentration over the TP in the winter half-year
(December to May), we further investigated the influence of
dust aerosols on snow cover over the TP. The distribution of
snow cover in spring and winter is consistent with the annual
snow cover (Figures 6A,B). In the eastern 90°E of the TP, snow
cover increases in spring and decreases in winter. In the western
90°E of the TP, snow cover increases in spring and winter
(Figures 6C,D), but the variation trend of dust concentration is
opposite to that of snow cover in spring (Figures 4C,D). May
dust lead to significant melting of snow in spring and winter,
causing most of them at risk of rapid mass loss? We will further
discuss the relationship between dust and snow cover.
However, due to the accumulation of snow, the relationship
between snow cover and dust concentration is not clear
(Figures 7C,D).

FIGURE 5 | (A)Monthly snow cover (units: %) and (C) spatial distributions of snow cover (units: %) over the TP for 2009–2018 derived from the MODIS retrievals.
(B) Monthly surface temperature (units: °C) and (D) spatial distributions of surface temperature (units: °C) over the TP for 2009–2018 derived from ERA5 reanalysis
datasets. The error bars represent the standard deviation of the corresponding variables.
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Snow cover has a larger value (80% ± 12) in the southeastern
TP in spring from 2009 to 2018, and the lower values (10% ± 1)
are mainly in the center of the TP, including the Kunlun

Mountains and Qaidam Basin (Figure 6A). The spatial
distribution of snow cover in winter is almost equal to that in
spring, while for the entire domain, snow cover in winter is lower

FIGURE 6 | Spatial distributions of snow cover (units: %) over the TP in (A)MAM and (B) DJF for 2009–2018 derived fromMODIS retrievals. Spatial distributions of
snow cover trends (units: % month−1) over the TP in (C) spring (MAM) and (D) winter (DJF) for 2009–2018 derived from MODIS retrievals. Regions passing the 95%
significance level are highlighted by stipple. Significance is assessed through the t value of the ensemble trend.

FIGURE 7 | Spatial distributions of correlation between dust concentration (units: mg m−3) and snow cover (units: %) over the TP in (A) MAM and (B) DJF for
2009–2018. Spatial distributions of correlation between precipitation (units: mm) and snow cover (units: %) over the TP in (C)MAM and (D) DJF for 2009–2018. Regions
passing the 85% significance level are highlighted by stipple. Significance is assessed through the t value of the ensemble trend.
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than that in spring, and the maximum values (70% ± 8) are
mainly located in the southeastern TP. The value of snow cover is
60% ± 4 in Qinghai Lake (Figure 6B). There is an obviously
increasing trend of snow cover in the southern TP in spring from
2009 to 2018. The maximum value was mainly located in the
southeastern TP, with a maximum value of up to 1.6% month−1;
the snow cover in the northeastern TP shows a decreasing trend
(−1.2% month−1). However, whether this change is due to dust
will be discussed further below. With the deposition of dust
aerosols from the TD in the northern TP, dust aerosols mainly
influence fresh snow in the northern TP (Figure 6C). The
variation trend of snow cover in winter is significantly
different from that in spring. Most areas of the TP show
decreasing trends and are mainly located in the west,
southeast, and northeast of the TP, with a maximum value of
up to −2%month−1. Could dust have caused the decrease in snow
cover in regions of maximum snow cover? We will use the rate of
dust to analyze. The snow cover shows an increasing trend in the
southwestern TP, which is mainly caused by the influence of
precipitation (Figure 7D).

Due to the influence of precipitation and temperature, the
correlation between snow and dust is uncertainty. Therefore,
positive correlation will occur in the case of low precipitation, and
inverse phase deposition of dust in snow will occur when the dust
concentration is large, while the influence of dust in the
atmosphere and dust in snow is different, so the correlation
results are different. Therefore, we cannot get an obvious signal
from the climatic state, so we use the rate of dust change to
analyze.

To explain the influence of dust on snow over the TP, this study
analyzed the temporal and spatial correlations between dust
concentration and snow cover. Dust has a significant correlation
with snow cover in most regions of the TP at an 85% significance
level of the t test. In particular, dust has a greater influence on snow
cover duration in the regions of maximum snow cover (Figure 7).
In spring, there is a significant negative correlation between dust
and snow cover in the northern 35°N and eastern 90°E of the TP,
with the highest correlation coefficients being −0.6. However, in
winter, there is a significant positive correlation between dust and
snow cover in the TP, with the highest correlation coefficients
being 0.5. In the northwest and the hinterland of the TP, there is a
significant positive correlation between dust and snow cover, with
values of 0.4 in spring and 0.5 in winter, which are mainly
influenced by precipitation more than dust aerosols
(Figures 7C,D).

In spring, there is a significant negative correlation between
dust and snow cover in the northern 35°N and eastern 90°E of the
TP. Surface temperature and precipitation are two direct factors
that can affect snow, while dust usually affect the snow by
affecting surface temperature. The influence of precipitation
will lead to a non-significant correlation in some areas.
Therefore, we select the northern region of the TP (35–40°N,
87–105°E) and calculate the rate of dust and the variability
characteristics of precipitation and select the high and low
values of dust rate in the case of precipitation less than
0.0049 mm, so as to reduce the influence of precipitation on

snow and then analyze the influence of dust on snow in the
northern region of the TP (35–40°N, 87–105°E).

3.3 The Influence of Dust in the Atmosphere
and Deposition in Snow Over the Tibetan
Plateau
We select the northern region of the TP (35–40°N, 87–105°E) and
calculate the rate of dust and the variability characteristics of
precipitation and select the high and low values of dust rate in the
case of precipitation less than 0.0049 mm, so as to reduce the
influence of precipitation on snow and then analyze the influence
of dust on snow in the northern region of the TP (35–40°N,
87–105°E). Dust physical processes, including dust emissions,
long-term transport, and dry/wet deposition, are closely related to
the climatic effects of dust aerosols. The study of the climate effect
of dust is always very complex. It is difficult to separately analyze
the effect of dust in the atmosphere and snow for observations,
which leads to the lack of observational facts in the climate effects
of dust aerosols over the TP. We distinguished between
atmospheric dust and dust-on-snow by calculating the diurnal
rate of dust concentration in the northern region of the TP
(35–40°N, 87–105°E) in this study (Figure 8). The highest (red
dots, >0.65 mg m−3 d−1) and the lowest diurnal rates of
atmospheric dust concentration (blue dots, <−0.63 mg m−3

d−1) are usually located next to each other in Figure 8. In
particular, the dust concentration is higher during high events
(red dots) due to local dust emissions and transport from other
sources. However, dust aerosols settle quickly to snow due to dry/
wet deposition, which leads to dust concentrations in the
atmosphere decreasing rapidly in low events (blue dots). The
pattern of surface dust concentration in high and low events is
almost the opposite in the northern TP (Figures 8, 9). Therefore,
the high and low values of the diurnal rates of atmospheric dust
represent atmospheric dust and dust-on-snow over the TP,
respectively. Furthermore, we investigate the influencing
mechanism of atmospheric dust and dust-on-snow on snow
cover over the TP based on high and low events.

Based on high and low values of dust variability, using
radiation data from MERRA-2 and meteorological element
data from ERA5, we analyze the characteristics of changes in
solar radiation, surface temperature, and snow cover. Through
analyzing the distribution characteristics of radiation, surface
temperature, and snow cover in the northern region of the TP
(35–40°N, 87–105°E) based on the high and low values of the rate
of dust, we can analyze the influence of atmospheric dust and
dust-on-snow on snow cover in the northern region of the TP
(35–40°N, 87–105°E). The solar radiation anomaly and surface
temperature anomaly are mainly obtained by calculating the
average values of solar radiation and surface temperature in
the high and low values to subtract the average values from
2009 to 2018 in spring. Dust can affect solar radiation directly,
while the variation of solar radiation directly affects surface
temperature. The radiation anomaly and surface temperature
anomaly can be interpreted as being caused by dust. The
precipitation is lower in the high and low events; thus, we can
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ignore the influence of precipitation on snow over the northern
TP (Figures 9C,D).

Atmospheric dust reduces the surface net solar radiation
(−3.84Wm−2) through absorbing shortwave radiation,
decreases the surface temperature (−2.27°C), and finally
increases the snow cover (−1.04%). The high events occur
mainly from March to May, which are mainly from local dust
emissions and external transport. During high events, surface
dust concentration anomaly has negative values (−0.026 mg m−3),
and the minimum value is −0.05 mg m−3. During this time,
surface dust aerosols are emitted to the atmosphere. As one of
the major LAAs, dust aerosols can significantly absorb solar
radiation. Due to the influence of atmospheric dust, the
surface net solar radiation anomaly has lower values of
−3.84Wm−2 in the northern TP (Figure 10C), which caused

a negative surface temperature anomaly of −2.27°C in the
northern TP during the high events (Figure 11A). The surface
temperature can significantly influence snow cover, and the snow
cover anomaly shows higher values of 3% in the eastern 90°E of
the north TP and lower values of 2% in the western 90°E of the
north TP. The spatial distribution of surface albedo is similar to
that of snow cover; a positive surface albedo anomaly mainly
occurs in the northern TP (0.0004).

The dust deposited on snow reduces the surface albedo by −0.004,
induces surface warming (0.42°C), and reduces snow cover (−2.00%)
by rapid snowmelt in the northern TP. The positive surface dust
concentration anomaly is high over the northern TP (0.057mgm−3),
and the negative values of −0.01mgm−3 are located on the southern
37°N and eastern 98°E of the northern TP during low events
(Figure 9B). Dust deposited on snow can reduce surface albedo;

FIGURE 8 | Time variation of dust concentration (units: mg m−3 d−1) over the TP in spring for 2009–2018 and selected cases representing atmospheric dust (red
dots) and dust-on-snow (blue dots).
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thus, the surface albedo anomaly has lower values of −0.004 in the
northern TP, with minimum values down to −0.016. (Figure 10B).
The spatial distribution of the surface net solar radiation anomaly is
contrary to that of the surface albedo, and the larger values of
3Wm−2 are located in the south of northern TP (Figure 10D).
The surface temperature has a larger value of 2°C, mainly in the west
of the northern TP (Figure 11B). The spatial distribution of snow
cover is almost opposite to that of surface temperature, while for the
entire snow cover domain, the lower values of snow cover of −2.00%
are mainly located north of the TP (Figure 11D). The significant
decreasing snow cover over the TP is induced due to the snow
darkening effect. Dust-on-snow increases the surface solar shortwave
radiation by decreasing the surface albedo, which further strengthens
the surface temperature, weakens the snow cover, and further

increases dust emissions. Hence, TP dust can create a positive
feedback loop, which decreases snow cover. In the same period,
snow cover can partially block the upward longwave radiation from
the ground and affect the ground thermal regime. When the snow
cover decreases, the upward longwave radiation from the ground
increases, which weakens the surface temperature. The effect of snow
darkening is higher than the thermal regime of snow cover, which
finally increases surface temperature and decreases snow cover.
Figure 12B shows the significant increase in the surface latent
heat flux by the dust-on-snow. This is due to the increased soil
moisture induced by a rise in the amount of snowmelt over the
northern TP in spring. The warming of the northern TP also
increases the regional surface sensible heat flux in Figure 12C.
The total surface heat flux (latent + sensible heat flux) shows a

FIGURE 9 | Spatial distributions of (A,B) surface dust concentration (units: mg m−3) and (C,D) precipitation (units: mm) on (first column) the difference between high
and normal days and (second column) the difference between low and normal days.

FIGURE 10 | Spatial distribution of (A,B) surface albedo and (C,D) surface net solar radiation (units: W m−2) on (first column) the difference between high and
normal days and (second column) the difference between low and normal days.
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larger value over the northern TP (4.29Wm−2). Hence, dust-on-
snow over the TP canwarm the TP and enhance its thermal effects by
increasing the surface latent heat flux and sensible heat flux, thereby
affecting the Asian climate.

4 DISCUSSION AND CONCLUSION

In addition to local dust emissions, a large number of dust
particles over the TP come from external transport.
Furthermore, both atmospheric dust and dust-on-snow over
the TP affect snow over the TP by influencing the net surface
radiation. Previous studies have mainly analyzed the effect of
absorbing aerosols in the atmosphere and snow on snow cover
from simulationmodels. This study evaluated the relative impacts
of atmospheric dust and dust-on-snow over the TP in spring from

2009 to 2018 based on satellite data (MODIS) and reanalysis data
(MERRA-2, ERA5).

The results showed that MERRA-2 captures the spatial and
temporal distributions of aerosols over the TP well during
2009–2018. The seasonal distributions of AOD from the
MERRA-2 reanalysis datasets are similar to those from
MODIS and MISR retrievals. The climatic effects of dust on
the energy budget and water cycle of the TP and surrounding
areas cannot be ignored. Dust aerosols show decreasing trends
over the TP from December to May, and snow cover shows
increasing trends. Dust can absorb shortwave radiation, which
can further affect snow cover over the TP.

By calculating the diurnal rate of dust concentration over the
northern TP in the case of precipitation less than 0.049 mm, the
extreme values of dust concentration were used to analyze the
influencing mechanism of atmospheric dust and dust-on-snow

FIGURE 11 | Spatial distribution of (A,B) skin temperature (units: °C) and (C,D) snow cover (units: %) on (first column) the difference between high and normal days
and (second column) the difference between low and normal days.

FIGURE 12 | Spatial distribution of (A) snow cover (units: %), (B) surface latent heat flux (units: W m−2), (C) surface sensible heat flux (units: W m−2), and (D) the
surface latent + sensible heat flux (units: W m−2) on the difference between low and normal days.
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over the TP. The results show that the influence mechanism of
atmospheric dust is different from that of dust-on-snow over the
TP. Atmospheric dust reduces the surface temperature (−2.27°C)
by weakening the net surface solar radiation (-3.84 W m-2) and
increases the snow cover (1.04%). Dust-on-snow reduces the
surface albedo (-0.004) and removes the snow cover (−2.00%) and
expands the dust source region area by increasing snowmelt,
resulting in an increase in dust emissions, which creates a
significant positive feedback loop.

However, we ignore the effects of dry/wet deposition of dust on
snow over the TP; as the influence of dry/wet deposition of dust on
snow cover is different, the results might not be accurate.
Additionally, we analyzed only dust aerosols and other types of
aerosols mixed with dust aerosols in the atmosphere, which will
result in different radiative characteristics (Bauer et al., 2007). We
will discuss this in subsequent studies (Herman et al., 1997; Torres
et al., 1998; Diner et al., 2002; Levelt et al., 2006a; Levelt et al.,
2006b; Yao et al., 2010; Olauson, 2018; Tian et al., 2018; Kang et al.,
2019; Sun et al., 2020; Allan et al., 2021; Liu et al., 2021).
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