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Lakes are of significant importance in regulating floods and providing water sources. The
seasonal water storage variations for the plain lake group in the Yangtze–Huai River Basin
(YHRB) are significant for alleviating flood pressure and regulating runoff. However, to date,
the seasonal amplitude of lake water storage variations and its capacity of buffering
floodwater in the YHRB is not quantified well and remains to be investigated
comprehensively. To advance the understanding of such a critical scientific issue, the
water level data of the plain lake group (area>100 km2, 29 lakes) in the YHRB is collected
frommulti-source data between 1990 and 2020. Using lake inundation area obtained from
Global Surface Water and water level variations, water storage dynamics for the plain lake
group are quantified. Furthermore, this study also uses the Gravity Recovery and Climate
Experiment (GRACE) products to analyze the terrestrial water storage anomalies (TWSA) in
the whole basin. The results indicate that the seasonal amplitude of water level change and
water storage variation of the plain lake group are 2.80 ± 0.71 m and 37.38 ± 14.19 Gt,
respectively. Poyang and Dongting Lakes, two lakes that maintain the natural connection
with the Yangtze River, have the most substantial seasonal amplitude in the hydrological
situation. The amplitude in water level and water storage in Poyang Lake is 9.53 ± 2.02 m
and 14.13 ± 5.54 Gt respectively, and that in Dongting Lake is 7.39 ± 1.29 m and 7.31 ±
3.42 Gt respectively. The contribution of seasonal variation of water storage for large plain
lakes to TWSA in the YHRB is approximately 33.25%, fully reflecting these lake’s
imperative position in the YHRB. This study is expected to enhance the scientific
understanding of the seasonal hydrologic regime for the large lakes in the YHRB and
contribute to the management of flood risks and water resources in East China.
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INTRODUCTION

As a proportion of the earth’s hydrosphere, lakes play an imperative role in maintaining ecological
balance, providing freshwater resources, and preventing floods (Verpoorter et al., 2014; Yang et al.,
2015; Wang et al., 2018; Zhu et al., 2020; Cooley et al., 2021). With the significant climate change and
increased anthropogenic intervention in the past few decades, extreme natural disasters have
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occurred frequently (e.g., floods or droughts) (Messager et al.,
2016; Marsooli et al., 2019; Bloschl et al., 2020). The most serious
floods in the world usually occur near rivers and coastal regions
(such as China, the United States, and India) (Xie et al., 2018;
Marsooli et al., 2019; Yang et al., 2021). According to statistics,
from 2000 to 2019, the losses caused by global flood disasters
reached about 651 billion (USD) dollars, with the proportion of
the world’s population exposed to flooding increasing (UN Office
for Disaster Risk Reduction, 2020; Tellman et al., 2021).
Therefore, it is necessary to accurately quantify and assess the
flood storage capacity of lakes for water resources management.

The Yangtze–Huai River Basin (YHRB) is located in East
China, with flat terrain, interlaced rivers, and numerous lakes
(Liu, 2018; Yao et al., 2020). On account of the impact of the East
Asian summer monsoon, the YHRB suffers frequent rainfalls
from June to August, which makes it vulnerable to form flood
disasters (Ye and Glantz, 2005; Liu & Li, 2014; Xie et al., 2018;
Wang et al., 2021b). The seasonal amplitude of water storage,
which reflects the seasonal variation of the hydrological regime of
lakes, is an imperative element in the regional water budget (Ye
and Glantz, 2005; Klein et al., 2021). The water storage variation
of lakes in the YHRB has vast seasonal fluctuations, which is
significant for regulating river runoff, reducing flood disasters,
and maintaining human wealth and biodiversity.

Given the ecological and socioeconomic importance of the
lake, several studies have been carried out on the lake water
dynamics in the YHRB. For instance, the inter-annual and
seasonal fluctuation in the water area and water level of
certain large lakes in the YHRB have been estimated using
middle and high-resolution satellite image and altimetry
satellite data. These lakes are mainly targeted in the top largest
lakes, such as Poyang Lake (Song and Ke, 2014; Mei et al., 2015;
Zeng et al., 2017; Wang et al., 2019b; Mu et al., 2020), Dongting
Lake (Huang et al., 2011; Hu et al., 2015; Xing et al., 2018; Long
et al., 2019; Wang et al., 2021a), Taihu Lake (Hu andWang, 2009;
Zhao et al., 2012; Wang et al., 2019c; Xu et al., 2020b), Hongze
Lake (Yin et al., 2013; Cai et al., 2020; Mei et al., 2021) and
Chaohu Lake (Chen et al., 2013; Lin et al., 2021), which have a
significant impact on the surrounding ecological environment. At
present, research related to water storage mostly exists in Poyang
Lake (the largest freshwater lake in China) (Liu H. et al., 2020; Xu
et al., 2020a; Song et al., 2021), while the estimate on seasonal
water storage changes of other lakes in the YHRB still remains
poorly quantified. In addition, most of the existing researches also
have concentrated on monitoring the lake water dynamics in the
sub-basins of the YHRB [including the Middle and Lower
Reaches of Yangtze River Basin (MLRYRB) and the Huai
River Basin (HRB)] (Sun et al., 2014; Wang et al., 2014; Li L.
et al., 2015; Cai et al., 2016; Ye et al., 2017; Xia et al., 2019; Li P.
et al., 2020). For instance, Cai et al. (2016) utilized area-based
water storage estimation models to quantify the water storage
dynamics of large lakes and reservoirs in the Yangtze River Basin
from 2000 to 2014. Various efforts have improved our
understanding of the lake’s hydrologic budget in the YHRB.
However, comprehensive quantification of the seasonal
amplitude of water storage variations in the YHRB plain lake
group has not yet been well addressed due to the difficulty of

obtaining the full-covered water level records or lake bathymetry
on a regional scale.

Stimulated by the urgent requirement for precise information
about seasonal lake water storage variations in the YHRB, the
primary objective aim of this research is to quantify the seasonal
amplitude of water storage variations in the YHRB plain lake
group for better understanding their flood regulation and storage
capacity. Here, we quantify the lake water storage variations using
the lake area change based on the Global Surface Water (GSW)
datasets and multi-source water level data. In addition, this study
also analyzes the seasonal amplitude of terrestrial water storage
(TWS) derived from the Gravity Recovery and Climate
Experiment (GRACE) and the contribution of lakes to TWS in
the YHRB. A comprehensive investigation of lake flood
regulation and control capacity is expected to inform scientific
guidance and policy initiatives for flood regulation and water
resources management in East China.

STUDY AREA

The YHRB includes the Middle and Lower Reaches of the
Yangtze River basin (MLRYRB) and the Huai River Basin
(HRB), which roughly covers an area of 1,064,156 km2

(28°–35°N, 111°–121°E, presented in Figure 1). The YHRB is a
low-lying alluvial plain generally below 50 m in elevation and is
composed of abundant lakes and rivers (Liu, 2018; Li P. et al.,
2020). From June to August, the YHRB experiences frequent
rainfall because of the affection of East Asian summer monsoon,
called “plum rain” or “Mei-yu” season. The average annual
precipitation in the YHRB is between 900 and 1,400 mm, and
50–75% of the rainfall is concentrated in the East Asian summer
monsoon season (Wang et al., 2016; Song et al., 2020). Therefore,
the plain lake group consisting of 29 lakes with an inundation
area of more than 100 km2 is selected in the YHRB. Among these
lakes, China’s five largest freshwater lakes (including Poyang,
Dongting, Taihu, Hongze, and Chaohu Lakes) are all located in
this basin, which constitutes an essential proportion of the YHRB
lake system. Lakes in the YHRB are the vital water sources in
China and play a critical part in various economic and ecological
functions, such as irrigation, hydropower, and flood storage.

MATERIALS AND METHODS

Lake Area Derived From Global Surface
Water Data
The Global Surface Water (GSW, https://global-surface-water.
appspot.com/) dataset generated from Landsat 5, 7, and 8
scenarios (4,453,989 images) with a high spatial resolution of
30 m, used to depict the dynamics of global surface water (Pekel
et al., 2016). The dataset applies a dedicated expert system for
water extraction and detection, continuously updated to the
present (since 16 March 1984). The surface water occurrence
map (varying from 0 to 100%) refers to the frequency of surface
water in each pixel. The GSW surface water occurrence data is
used for this study. The lake water bodies with water frequency
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(WF) less than or equal 10, 25, 50, 75, and 90% are extracted to
calculate the lake area in different wet-to-dry periods. We need to
convert the vector data into equal-area projection before
calculating the areas.

Water Level Derived From Multi-Source
Satellite Altimetry or Gauging Station Data
The water levels of the targeted lakes are derived from five different
data sources, including the satellite altimetry data accessed in the
Hydroweb from the Laboratoire d’Etudes en Géophysique et
Océanographie Spatiales (LEGOS) and the database for
Hydrological Time Series of Inland Waters (DAHITI), and
gauging station data from hydrological station websites, literature,
and government public report. Many lakes have hydrological
stations around them, but obtaining water level data from in situ
records is a challenging task. In this research, the in-situ measured
daily water level time series of Poyang Lake (1990–2017) and Taihu
Lake (1990–2020) are obtained from Jiangxi Provincial Hydrology
Monitoring Center (http://www.jxssw.gov.cn/) and Taihu Lake
Basin Administration bureau of the Ministry of Water Resources
(http://www.tba.gov.cn/), respectively. In addition, Hydroweb
(Crétaux et al., 2011) and DAHITI (Schwatke et al., 2015)
provide multi-mission satellite altimetry of water level time series
for lakes, which has been broadly utilized in hydrological research
(Liu et al., 2019; Zhan et al., 2020; Zhang X. et al., 2021; Fan et al.,
2021). The lake water level records are provided by combining
several altimetry satellite products, including Ocean Topography

Experiment/Poseidon Mission (TOPEX/Poseidon), European
Remote-Sensing Satellite (ERS), Jason-1/2/3 Ocean Surface
Topography Mission, Cryosphere Satellite (CryoSat),
Environmental Satellite (ENVISAT), Satellite for ARgos and
ALtika (SARAL), and Sentinel-3 Satellite. The water level
products of three lakes (Dongting, Hongze, and Hong Lakes) are
gained from the Hydroweb (http://hydroweb.theia-land.fr/). Water
level time series of four lakes (Poyang, Dongting, Chaohu, and
Junshan Lakes) are attained from the DAHITI (https://dahiti.dgfi.
tum.de/en/). The water level time series of 16 lakes are collected from
different types of literature (shown in Table 1).

In addition, ten lakes failed to gather the time series of water
levels. According to the statistical data of the local water
resources bureau, the difference between the normal water
level (NWL) and the warning water level (WWL) is considered
as the annual water level change for seven lakes (Wabu, Nanyi,
Nvshan, Futou, Baima, Chengxi, and Xiliang Lakes). The
average of the annual minimum water level change
(Min_WLC) and maximum water level change (Max_WLC)
is regarded as the annual water level change for three lakes
(Luoma, Shijiu, and Yangcheng Lakes). The seasonal water
level amplitude uncertainty for these lakes is replaced by the
average standard deviation of lake water level change in the
sub-basins. The specific data sources for each lake are
described in Table 1.

In order to evaluate the accuracy of lake water level data, this
paper cross-validates the lake water level data that can be obtained
from multi-source data. Due to data limitations, only the water level

FIGURE 1 | The geographic distribution of the plain lake group (29 studied lakes) in the Yangtze–Huai River Basin (YHRB).
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data of Poyang, Dongting, and Hong Lakes are verified in this paper
(the results are presented in Figure 2). Correlation analysis shows
that the fitting relationship between water levels from different
sources of Poyang, Dongting, and Hong Lakes are significant
(p < 0.01), the R2 is 0.97, 0.98, and 0.84, respectively. To reduce
the error between water level data obtained from different data
sources for the lakes (including, Dongting, Hongze, Longgan,
Chaohu, and Hong Lakes), the average value of water level

variation calculated by each water level data source is used as the
seasonal amplitude of water level change.

Estimation of the Seasonal Amplitude of
Water Storage Variations
The seasonal amplitude of water storage variations of 27 lakes is
estimated by combining the lake area and water level (except

TABLE 1 |Geographic location and water level data source of 29 lakes in the YHRB (rank lakes by lake water area, NWL indicates the normal water level, WWL indicates the
warning water level, Min_WLC indicates the annual minimum water level change, and Max_WLC indicates the maximum water level change).

Lake name Lat (°N) Lon (°E) Area (km2) Data source (s) Duration

Poyang Lake 29.10 116.28 3,066.82 Hydrological station; DAHITI 1990–2020
Taihu Lake 31.20 120.20 2,474.24 Hydrological station 1990–2020
Dongting Lake 29.06 112.74 2,421.99 DAHITI; Hydroweb; Han et al. (2016); Liu et al. (2020b) 1993–2020
Hongze Lake 33.31 118.58 1,748.81 Hydroweb; Mei et al. (2021) 1990–2020
Gaoyou Lake 32.83 119.31 935.75 Chen et al. (2017) 1990–2013
Chaohu Lake 31.57 117.54 826.22 DAHITI; Li et al. (2015a) 2002–2020
Weishan Lake 34.96 116.89 675.03 Liu et al. (2019) 2010–2015
Longgan Lake 29.95 116.14 475.14 Tan et al. (2020); Zeng et al. (2020) 1990–2018
Hong Lake 29.85 113.33 453.50 Hydroweb; Deng et al. (2020) 2011–2020
Liangzi Lake 30.23 114.52 407.27 Xu et al. (2018) 2007–2016
Huangda Lake 30.02 116.39 339.69 Wang et al. (2020) 2008–2016
Wabu Lake 32.38 116.88 295.63 NWL:18.00 m; WWL:24.00 m —

Luoma Lake 34.10 118.18 285.40 Min_WLC:1.90 m; Max_WLC:5.73 m —

Caizi Lake 30.83 117.08 249.18 An et al. (2021) 1990–2018
Nanyi Lake 31.10 118.97 214.72 NWL:8.60 m; WWL:11.85 m —

Shijiu Lake 31.47 118.88 213.98 Min_WLC:2.50 m; Max_WLC:6.80 m —

Po Lake 30.17 116.44 212.31 Wang et al. (2020) 2013–2016
Ge Lake 31.58 119.81 208.43 Ji et al. (2021) 1990–2019
Nvshan Lake 32.93 118.13 207.24 NWL:12.00 m; WWL:15.00 m —

Futou Lake 30.03 114.22 176.41 NWL:21.50 m; WWL:22.80 m —

Junshan Lake 28.53 116.34 169.65 DAHITI 2016–2020
Shengjin Lake 30.37 117.08 155.42 Li et al. (2018) 2011–2016
Chengdong Lake 32.28 116.36 148.08 Chen and Liao (2020) 2016–2019
Chang Lake 30.44 112.40 143.97 Ni Ni (2018) 1990–2012
Yangcheng Lake 31.43 120.77 136.24 Min_WLC:0.74 m; Max_WLC:1.73 m —

Baima Lake 33.24 119.13 118.50 NWL:5.70 m; WWL:7.50 m —

Chengxi Lake 32.31 116.20 114.63 NWL:19.75 m; WWL:23.00 m —

Changdang Lake 31.60 119.54 111.87 Fu (2020) 2013–2017
Xiliang Lake 29.95 114.07 104.72 NWL:21.50 m; WWL:22.80 m —

FIGURE 2 | Scatter plots of water level obtained from Hydroweb or DAHITI against in-situ gauge measurements. (A) Poyang Lake; (B) Dongting Lake; and (C)
Hong Lake.
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Poyang and Dongting Lakes). This paper uses the empirical
formula (1) to estimate water storage change (Crétaux et al.,
2016; Zhang et al., 2019; Luo et al., 2021).

ΔV � 1
3
(H2 −H1) × (A1 + A2 +

�������
A1 × A2

√ ) (1)

where ΔV represents the water storage variation;H1,H2 (m)mean
the water levels at different times, respectively; A1, A2 (km2)
represent the lake areas at the corresponding stages. Multiply by a
factor of 0.001 to convert the unit of the output result to km3. It
should be noted that 1 km3 of water has a mass of one Gigatonne
(1 Gt), so this article uses Gt as the ΔV unit.

In our study, the intra-annual water level variation is used as
the fluctuation from H1 to H2 to estimate the storage variations.
We divided the WF fluctuation into three combinations of
10–90%, 25–75% as the lake area change to quantify the
seasonal amplitudes of water storage variation at different
stages. The lake water body area with WF less than or equal
to 50% is calculated as the average lake area. This variability in
water level may be converted to an approximate storage change
by multiplying the height change by the average lake area.

In addition, combined with the monthly water level data of
Poyang and Dongting Lakes, the seasonal amplitude of water
storage variations in Poyang and Dongting Lakes is estimated
respectively by using the hypsometric curve between water level
and water storage proposed by Li et al. (2019) and Kameyama
(2004), respectively. Furthermore, we collected bathymetric DEM
of Poyang Lake (the Hydrological Bureau of Jiangxi Province,
http://www.jxssw.gov.cn/) and Dongting Lake (the Hydrological
Bureau of Hunan Province, http://slt.hunan.gov.cn/hnsw/),
which is applied to display their complex terrain and lake forms.

TWSChanges FromGRACE andGRACE-FO
Products
The GRACE and GRACE-FO satellites, which are designed to
measure the gravity field over time, are used to evaluate spatial-
temporal variability in TWS (including surface water, snow water,
groundwater, soil moisture, and biomass) (Song et al., 2015; Yin
et al., 2020; Sun et al., 2021). The service period of the GRACE
satellites was from March 2002 to June 2017. Its follow-on
satellite is GRACE-FO, launched in May 2018 and continues
to collect data until now. GRACE satellites consisted of two
satellites with a distance of 220 km and an orbital altitude of
300–500 km. GRACE-FO satellites operate at lower orbits and
shorter inter-satellite distances than GRACE satellites, improving
the resolution accuracy of global gravity field products. The
official GRACE products are managed and released by three
data processing agencies, namely, the Centre for Space Research
(CSR), GeoForschungsZentrum Potsdam (GFZ), and Jet
Propulsion Laboratory (JPL). The current Release-06 monthly
gridded GRACE product (RL06) has consisted of a set of the
spherical harmonic coefficients (SHC) data and mass
concentration (mascon) data.

To minimize the uncertainty in solving the original data, we
averaged the three RL06 spherical harmonic solutions from CSR,
JPL, and GFZ for this study, with a spatial resolution of 1 × 1°.

Calculate the standard deviation of the three solutions to
represent the uncertainty in the different GRACE products.
Utilizing the same equal-area projection, the equivalent water
thickness (averaged_SH/cm) is transformed into water mass
change (GRACE_SHC/Gt) to compare better the difference
between TWS changes and water storage variation from water
level and area. All monthly TWS anomalies (TWSA) data are
displayed as anomalies relative to the time-mean baseline from
January 2004 to December 2009 (Tapley et al., 2004; Dahle, 2018;
Kornfeld et al., 2019). Due to satellite sensors and other aspects,
data of some months are missing. The missing data are filled with
linear interpolation using observation month data before and
after the missingmonth. Themethod of using linear interpolation
to fill the gap of GRACE products has also been widely applied in
other studies (Ramillien et al., 2006; Long et al., 2015; Song et al.,
2015). We derived the seasonal amplitudes of GRACE TWS for
each grid square in the YHRB by calculating the multi-year
average of time-series annual difference of the maximum and
minimum monthly TWS values within each year during
2003–2020 (except for 2017 and 2018). Besides, the monthly
time series of TWSA for the two units HRB and MLRYRB were
calculated by spatial averaging of the GRACE grids within the
basin extent.

Accuracy Evaluation Metrics
The correlation of water level data from the different sources is
evaluated with the determinate coefficient R2 (R2) value. In the
unary regression analysis, the range of R2 values is both [−1, 1].
For the R2 value, the value of 1 figures the perfect fit (Fan et al.,
2021). Besides, the standard deviation (Std) is utilized to quantify
the fluctuation range in the lakes’ water level and storage
variations. Specifically, the formula of R2 and Std are shown as
follows:

�y � 1
n
∑n
i�1
yi (2)

R2 � 1 − ∑(yi − fi)2∑(yi − �y)2 (3)

Std �
�������(y − �y)2

n

√
(4)

where, yi and fi are the ith observed and predicted value,
respectively; ‾y is the mean value of y; n represents the total
number of observations.

RESULTS AND ANALYSES

Analysis of Seasonal Amplitude of Water
Level Variations for the Plain Lake Group
Based on water levels from the hydrological station and multi-
source altimetry data, the water level changes in the YHRB for the
last 30 years are analyzed. The result of the lake level changes for
the plain lake group is shown in Figure 3. The seasonal variation
amplitude of lake level in the YHRB presents a heterogeneous
pattern. The seasonal water level changes are significantly more
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substantial for lakes directly connected with the mainstreams of
the Yangtze River or Huai River than closed lakes. The mean
seasonal amplitude of water level variations for the plain lake
group is approximately 2.80 ± 0.71 m. There are 12 lakes with
seasonal water level change exceeding the average amplitude,
accounting for 41% of the total examined lakes. Poyang and
Dongting Lakes are still naturally connected with the Yangtze
River (Zhang et al., 2014; Zhang C. et al., 2021), with complex
river-lake interaction and considerable seasonal amplitude in the
water level cycle, which are 9.53 ± 2.02 m and 7.39 ± 1.29 m,
respectively. On the other hand, Taihu Lake has the slightest
seasonal dynamic change of water level (0.76 ± 0.42 m), mainly
caused by artificial management such as the construction of
embankments and dams (Wang J. et al., 2019;Wang et al., 2019c).

Analysis of Seasonal Amplitude of Water
Storage Variations for the Plain Lake Group
The variation of lake areas varies with different water frequencies,
and the three scenarios of WF changes (water area of 10–90%,
25–75%, and 50% WF) for 27 lakes are indicated in Figure 4C. In
this section, the lake surface water area estimated at 50% WF is
selected as the average area to quantify the seasonal amplitude of
water storage variation of 27 lakes, except for Poyang and Dongting
Lakes. Poyang and Dongting Lakes show too strong spatial
heterogeneity in inundation area dynamics and thus are
estimated directly according to the hypsometric curve. The total
water storage regulation value of the plain lake group in the YHRB is
approximately 37.38 ± 14.19 Gt. The water storage variation of

twenty lakes in the MLRYRB is 31.01 ± 13.07 Gt, 4.87 times that
of the nine lakes in the HRB (6.37 ± 1.12 Gt). Figure 4A and
Figure 4B display the lake bathymetry of Poyang and Dongting
Lakes, respectively. Poyang and Dongting Lakes have considerable
water storage changes, which are 14.13 ± 5.54 Gt and 7.31 ± 3.42 Gt,
respectively, accounting for 57% of the seasonal amplitude of water
storage variations in the YHRB. Other large lakes, including Taihu,
Hongze, Gaoyou, andChaohu Lakes, which all exceed 800 km2, have
seasonal storage variations of 1.80 ± 0.98 Gt, 1.56 ± 0.30 Gt, 0.85 ±
0.31 Gt, and 1.23 ± 0.81 Gt, respectively.

Assessment of Floodwater Storage
Potential of Large Lakes in the Extreme
Flood Year
Poyang and Dongting Lakes are directly connected with the
mainstream of Yangtze River with large seasonal fluctuations,
effectively alleviating the flood threat in the surrounding areas
(Yao et al., 2018; Wang et al., 2019b; Li et al., 2021). Figure 5
shows the time series of the water storage and the relative change
percentage of water storage (RCPWS) for Poyang and Dongting
Lakes spanning 1990 to 2020. The RCPWS is calculated with the
long-term mean value as the reference, and the long-term mean
values of Poyang Lake and Dongting Lake are 6.00 Gt and 5.82 Gt
respectively. The water storage of Poyang and Dongting Lakes has
substantial inter-annual and seasonal amplitudes. The strongest
seasonal fluctuations in water storage can be observed in 1998
and 2020 (as the extreme flood year), the water storage variations
in Poyang Lake are 26.80 Gt and 24.35 Gt in 1998 and 2020,

FIGURE 3 | The spatial distribution of seasonal amplitudes of lake water level variations in the YHRB.
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FIGURE 4 | The seasonal amplitude of water storage variations for the plain lake group. (A) Bathymetry of Poyang Lake; (B) Bathymetry of Dongting Lake; and (C)
The seasonal amplitude of water storage variations for 27 lakes (ranking by lake water inundation area, with the exclusion of Poyang and Dongting Lakes).

FIGURE 5 | Time series of the water storage and the relative change percentage of water storage (RCPWS) for Poyang and Dongting Lakes during 1990–2020.
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respectively, and that in Dongting Lake is 12.96 Gt and 11.04 Gt.
Compared with the seasonal amplitude of multi-year average water
storage variations, the water storage variations in Poyang and
Dongting Lakes increased by approximately 81 and 68%,
respectively. In actual situations, the surrounding areas of Poyang
and Dongting Lakes have been damaged by floods (Zong and Chen,
2000; Ye and Glantz, 2005; Wang et al., 2021b; Chen et al., 2021).
Besides, Taihu, Gaoyou,Hongze, Chaohu, and other lakes are related
to the Yangtze River through tributaries, and their outlet is far from
the Yangtze River, resulting in small seasonal fluctuations and
relatively weaker flood regulation capacity. Owing to the scarcity

of long-timewater level data for other lakes, this section onlymakes a
specific analysis of the long-term water storage changes of Poyang
and Dongting Lakes from 1990 to 2020.

Comparison of the Seasonal Amplitude of
Lake Water Storage and GRACE TWS in
YHRB
Figure 6 illustrates the spatial-temporal patterns of seasonal amplitude
and the linear trends for TWS in the YHRB derived from the GRACE
observations between 2003 and 2020, except for 2017 and 2018. The

FIGURE 6 | Spatial-temporal patterns of seasonal amplitude and the linear trends for TWS in the YHRB derived from the GRACE observations between 2003 and
2020, except for 2017 and 2018. (A) Spatial distribution of the seasonal amplitude of TWS in the YHRB; (B) Long-term variation characteristics of GRACE TWSA in the
HRB; and (C) Long-term variation characteristics of GRACE TWSA in the MLRYRB.
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seasonal variation amplitude of TWS in the YHRB exhibits an uneven
distribution, and the variation range of TWS in the MLRYRB (mostly
blue) is significantly greater than that in the HRB (mainly orange). The
seasonal TWS amplitudes of the MLRYRB and HRB are 90.47 ±
21.95Gt and 27.42 ± 6.40Gt, respectively. The GRACE TWSA
increased significantly in the MLRYRB, with a change rate of 2.66 ±
0.46Gt/yr, p < 0.01. The annual TWSA in the MLRYRB showed a
noticeable periodicfluctuation,mostly reaching thepeak in summerdue
to the influence of monsoonal rain. The seasonal amplitude for TWS in
HRB also has obvious periodic changes (mostly reaches the peak in
autumn) and shows a distinct downward trend (with a change rate of
−1.72 ± 0.14Gt/yr, p < 0.01), which is mainly due to the continuous
improvement of urbanization level and the increase of groundwater
consumption in the HRB (Yi et al., 2016; Su et al., 2020). The seasonal
water storage changes of the plain lake group contributed approximately
33.25% to theTWSA(inmass) in theYHRB,whichperfectly reflects the
important position of these lakes in the YHRB.

DISCUSSION

Estimation of the Seasonal Amplitude of
water Storage Variations Water Storage of
Unrecorded Lakes in YHRB
One hundred forty-four lakes with an area between 10 and 100 km2

are distributed in the YHRB, with a gross surface water area of

4,060.74 km2. In compliance with the lakeWF extracted fromGSW,
most of these lakes are distributed near the Yangtze River and Huai
River, as shown in Figure 7. Since these lakes are relatively small, it is
challenging to obtain time series of water level data. Thus, the annual
water level change amplitude of YHRB large lakes (area>100 km2)
estimated in Analysis of Seasonal Amplitude of Water Level
Variations for the Plain Lake Group is used to estimate these
unrecorded lake’s seasonal amplitude roughly. This section uses
the area with the WF equaling 50% to calculate lake water storage
change. To gain the water storage variation of lakes (area>10 km2),
the water storage changes of lakes with an area of 10–100 km2 are
deduced based on the variation formula of water storage mentioned
in Estimation of the Seasonal Amplitude ofWater Storage Variations.
As a result, the total annual water storage change of all lakes is
44.81 ± 16.01 Gt, of which the total water storage change of the 144
unrecorded lakes is 7.43 ± 1.82 Gt, accounting for approximately
17% of the water storage variation in the YHRB. Limited by the
scope of lake water area, these small lakes are not as good as YHRB
large lakes in terms of water storage regulation. Nevertheless, they
remain critical players in local biophysical environments and
socioeconomic development.

Uncertainty for Quantifying Lake Water
Storage Variations in the YHRB
Ideally, the seasonal amplitude of lake water storage variations
should be quantified using their bathymetry data (Cai et al.,

FIGURE 7 | Map of WF for the plain lake group (area>10 km2) in the YHRB.
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2016; Jiang et al., 2017; Schwatke et al., 2020). However, it is
problematic to acquire the lake underwater topography for most
lakes in the YHRB, which hinders error-free estimation of water
storage variation. As a compromise, this study integrates the water
area extracted from GSW and the water level data collected from
multi-source altimetry or in-situ observations to quantify lake water
storage variation. The low revisit period (16 days) and high cloud
coverage probability of Landsat images make it hard to identify the
monthly lake inundation area in the YHRB precisely. Therefore,
using the surface water occurrence of GSW to extract lake area
changes at different stages can better represent the variations of lake
water bodies over the years. Previous studies have also demonstrated
that surface water occurrence can be used to characterize changes in
water area (Pekel et al., 2016; Fang et al., 2019; Luo et al., 2019).
According to the variation of water area with WF fluctuation of
10–90% and 25–75%, the seasonal amplitude of water storage
variations of 27 large lakes (except Poyang and Dongting Lakes)
is 14.10 ± 4.74 Gt and 15.42 ± 5.12 Gt, respectively. The relative
deviations between them and the estimated water storage variations
from the average area (15.85 ± 4.89 Gt) are 6 and 2%, respectively.
The exceptional case could be Chengxi Lake due to the severe
reclamation (De, 2016), and the relative deviation between the
seasonal amplitude of water storage variations estimated by
different water area fluctuation is the largest, which is 31.28 and
12.64%, respectively. In addition, the water level data applied in this
study are collected from various data sources.Wemade strict quality
control and inspection on the data source authority before
processing and analyses.

On the other hand, the lake’s main function is to absorb excess
floodwater during the flood season in the YHRB, but these floods
usually bring in many sediments. Sedimentation may lead to the
siltation of these lakes and ultimately reduce their storage capacity.
Yang et al. (2015) pointed out that the dramatic decreases in
sediment discharge from the Yangtze River are attributed to
decreased precipitation and the construction of reservoirs (e.g.,
Three Gorges Dam). Poyang and Dongting Lakes are the only
two lakes that are still naturally connected to the Yangtze River,
which are the most important regulation and storage lakes in the
YHRB. Therefore, the sediment deposition in these two lakes is
probably more obvious compared to other lakes. Ye et al. (2019)
indicated a total volume of 0.096 Gt/yr sediment in a net change of
lake bottom topography during 2000–2011, which did not suffer
radical changes for Poyang Lake. Previous studies have also shown
that Poyang Lake bathymetry in most areas is relatively stable, and
the storage estimation bias caused by deposition processes is
significantly less than 1% except for the dry season (Li Y. et al.,
2020; Yuan et al., 2021). Li et al. (2008) showed that the average
annual deposition of Dongting Lake is about 0.10 Gt, and the overall
sediment transport showed a decreasing trend. In terms of the
seasonal variation of siltation, siltation mainly occurred in wet
season, while the lake area was scoured in dry season.

CONCLUSION

Large lakes in the YHRB play a crucial part in the hydrologic
cycle, freshwater provision, and flood prevention. However,

comprehensive quantification of the seasonal amplitude of
water storage change in the plain lake group in the YHRB
remains unexplored. Thus, this study combined water area
gained from Global Surface Water and water level data
collected from satellite altimetry and in-situ observations of
multiple sources, including Hydroweb, DAHITI, hydrological
station, literature, and government statistics, to characterize
the seasonal water level and storage variations of the plain
lake group (29 lakes >100 km2) from 1990 to 2020, and
estimates the seasonal amplitude of TWS in the YHRB with
GRACE products.

This study quantified the seasonal amplitude of water storage
variations of the plain lake group in the YHRB and analyzed their
water storage potential in extreme flood years. The seasonal
amplitude of water storage variations for the plain lake group in
the YHRB is estimated using the empirical formula of water storage
change by combining the lake area and water level changes. The
results show that the average intra-annual water level variation of
the plain lake group in the YHRB is 2.81 ± 0.69 m. The water level
change of 12 lakes exceeded the annual average water level change,
accounting for 41% of the total observed lakes. Poyang and
Dongting Lakes with complex river-lake interactions are the two
lakes with enormous seasonal water level changes, 9.53 ± 2.02m
and 7.39 ± 1.29 m, respectively. The annual cycle of water level
change of Taihu Lake is the smallest (0.76 ± 0.42m) due to artificial
management. The plain lake group’s total water storage regulation
capacity is about 37.38 ± 14.19 Gt. The seasonal amplitude of water
storage variations in the twenty lakes in the MLRYRB (31.01 ±
13.07 Gt) is 4.87 times that of the nine lakes in the HRB (6.37 ±
1.12 Gt). The seasonal water storage changes of Poyang and
Dongting Lakes are 14.25 ± 5.40 Gt and 7.31 ± 3.42 Gt,
respectively, accounting for 57% of that of the YHRB. The two
lakes still maintain the natural connection with the Yangtze River
and play a crucial role in mitigating the flood during the flood
period. The seasonal amplitude of water storage variation in large
plain lakes contributes about 33.25% to the TWSA in the YHRB,
indicating that these lakes play a crucial role in TWS in the YHRB.

The seasonal amplitude of water storage variations of large lakes
is contributed to a critical reference for future flood control and
water resources management in the YHRB and East China. Future
research will focus on combining multi-source altimetry satellite
missions to estimate water storage changes for more small lakes
and further improve the accuracy of the research results.
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