AUTHOR=Bussmann Ingeborg , Koedel Uta , Schütze Claudia , Kamjunke Norbert , Koschorreck Matthias TITLE=Spatial Variability and Hotspots of Methane Concentrations in a Large Temperate River JOURNAL=Frontiers in Environmental Science VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2022.833936 DOI=10.3389/fenvs.2022.833936 ISSN=2296-665X ABSTRACT=

Rivers are significant sources of greenhouse gases (GHGs; e.g., CH4 and CO2); however, our understanding of the large-scale longitudinal patterns of GHG emissions from rivers remains incomplete, representing a major challenge in upscaling. Local hotspots and moderate heterogeneities may be overlooked by conventional sampling schemes. In August 2020 and for the first time, we performed continuous (once per minute) CH4 measurements of surface water during a 584-km-long river cruise along the German Elbe to explore heterogeneities in CH4 concentration at different spatial scales and identify CH4 hotspots along the river. The median concentration of dissolved CH4 in the Elbe was 112 nmol L−1, ranging from 40 to 1,456 nmol L−1 The highest CH4 concentrations were recorded at known potential hotspots, such as weirs and harbors. These hotspots were also notable in terms of atmospheric CH4 concentrations, indicating that measurements in the atmosphere above the water are useful for hotspot detection. The median atmospheric CH4 concentration was 2,033 ppb, ranging from 1,821 to 2,796 ppb. We observed only moderate changes and fluctuations in values along the river. Tributaries did not obviously affect CH4 concentrations in the main river. The median CH4 emission was 251 μmol m−2 d−1, resulting in a total of 28,640 mol d−1 from the entire German Elbe. Similar numbers were obtained using a conventional sampling approach, indicating that continuous measurements are not essential for a large-scale budget. However, we observed considerable lateral heterogeneity, with significantly higher concentrations near the shore only in reaches with groins. Sedimentation and organic matter mineralization in groin fields evidently increase CH4 concentrations in the river, leading to considerable lateral heterogeneity. Thus, river morphology and structures determine the variability of dissolved CH4 in large rivers, resulting in smooth concentrations at the beginning of the Elbe versus a strong variability in its lower parts. In conclusion, groin construction is an additional anthropogenic modification following dam building that can significantly increase GHG emissions from rivers.