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Air pollution forecasting plays a pivotal role in environmental governance, so a large
number of scholars have devoted themselves to the study of air pollution forecasting
models. Although numerous studies have focused on this field, they failed to consider fully
the linear feature, non-linear feature, and fuzzy features contained in the original series. To
fill this gap, a new combined system is built to consider features in the original series and
accurately forecast PM2.5 concentration, which incorporates an efficient data
decomposition strategy to extract the primary features of the PM2.5 concentration
series and remove the noise component, and five forecasting models selected from
three types of models to obtain the preliminary forecasting results, and a multi-objective
optimization algorithm to combine the prediction results to produce the final prediction
values. Empirical studies results indicated that in terms of RMSE the developed combined
system achieves 0.652 6%, 0.810 1%, and 0.775 0% in three study cities, respectively.
Compared to other prediction models, the RMSE improved by 60% on average in the
study cities.

Keywords: combined forecasting model, air pollution forecasting, improved extreme learning machine, data
decomposition, multi-objective optimization approach, fuzzy computation and forecasting

1 INTRODUCTION

Atmosphere pollutants can cause a variety of diseases (Organization, 2014, March 25; Glencross
et al., 2020), and cause other environmental problems (Grennfelt et al., 2020; Manisalidis et al., 2020),
endangering human survival. To alleviate the impacts of atmosphere pollution, support
environmental management, more scholars are focusing on air pollution forecasting.

Air pollution forecasting is a complex task since there are multiple influences on pollutant
concentrations, such as weather, wind speed and direction, geographic location, pollution emission
and absorption, and policies, etc. Therefore, the concentration series are chaotic and usually contain
both linear and non-linear features (Niska et al., 2004). In the past decades, the forecasting of air
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pollution has attracted wide academic interest, and much effort
has been made to forecast concentration using various
approaches. Generally speaking, these approaches can be
divided into four categories: individual models, hybrid models,
combined models, and meteorological models. The
meteorological models are based on the physical and chemical
processes of pollutants in the atmosphere. This type of model is
the subject of atmospheric research. For individual methods, the
concentration series are modeled and forecast by one type of
model, such as the traditional statistical model, Auto-Regressive
Integrated Moving-Average (ARima), neuron network model,
Back-propagation Neural Network (BPnn), etc. Research on this
type of model was mainly concentrated before 2010. Such as
Niska et al. (2004) used a parallel genetic algorithm to select the
inputs for the multi-layer perceptron model to forecast hourly
concentrations of nitrogen dioxide. Goyal et al. (2006) compared
the performance of three statistical models for forecasting the
concentration of respirable suspended particulate matter. These
three models are multiple linear regression, ARima, and the
combination of ARima and Multiple linear regression. The
prediction results show that the combination of ARima and
Multiple linear regression performs better. Kurt et al. (2008)
built an online forecasting system by utilizing BPnn to predict the
concentrations of SO2, PM10 and CO.

With the development of forecasting methods, a new type of
forecasting method, the hybrid model, has been proposed and
widely used. The hybrid models can advance forecasting by
combining different forecasting techniques, such as combining
statistical models and machine learning methods. This
combination can compensate for the limitations of individual
methods by taking advantage of different methods. Zhu et al.
(2017) decomposed the original data into several intrinsic mode
functions (IMFs, containing the important information) and
noise series. Then, they built two hybrid forecasting models to
forecast the daily air quality index, including least square support
vector regression, Holt-Winters additive model, Grey model, and
seasonal ARima. By combining the Hampel identifier, empirical
wavelet transform, Elman neural network, and Outlier-robust
extreme learning machine, a novel hybrid algorithm was
proposed in (Liu et al., 2019), which improved the forecasting
accuracy of fine particle concentrations. Similarly, using a data
preprocessing module and an optimal forecasting module, Wang
et al. (2020a) proposed a new well-performing hybrid model to
forecast daily air quality, which combines Hampel identifier,
Variational mode decomposition, Sine cosine algorithm, and
Extreme learning machine to forecast daily air quality.

With the development of different forecasting techniques,
combined forecasting has gradually become the research focus
of scholars. The main idea of the combined models is to combine
the forecasting results of several individual models. Yang et al.
(2020) proposed a combined forecasting system combining
Complementary ensemble empirical mode decomposition
(CEEMD), BPnn, Extreme learning machine, and Double
Exponential Smoothing, then used fuzzy theory and Cuckoo
search algorithm to determine aggregation weights to obtain
final results. Based on the wavelet transform and neural
networks, Liu et al. (2021) constructed a new combined

model. In their study, discrete Wavelet transform was used to
decompose the NO2 concentration series. Next to the Long short-
term memory neural network (LSTM), Gated recurrent units and
Bi-directional LSTM were utilized to forecast NO2 concentration.
Finally, they applied two numerical weighting methods
combining the three single forecasting results.

However, these forecasting models have various problems.
Because of their simple structure and convenient calculation,
statistical models have been widely used, but the linear
mapping and poor extrapolation limit the forecasting
performance of such models (Wang et al., 2020c). Artificial
intelligence methods are widely used own to their strong
learning ability and ability to handle nonlinear features, but
such methods tend to fall into local optima and overfitting.
Moreover, their performance is dependent on artificially set
hyperparameters (Niu and Wang, 2019). To avoid the defects
of the individual models, several hybrid models have been
developed. However, hybrid models still do not always
perform best using only one single predictor, since the
single model cannot capture various features contained in
the series (Yang et al., 2020). Therefore, the combination
models gradually developed. However, previous combined
models usually combine a certain type of model. This
combination can only continuously extract one type of
feature in the series, and still cannot analyze the multiple
features contained in the series. This paper summarizes the
above-mentioned types of models in Table 1. To fill this gap, a
novel combined model containing a data decomposition
module, a forecasting module consisting of different types
of forecasting models, and a combination module weighted
by multi-objective optimization algorithms is proposed in this
paper. More specifically, the complete ensemble empirical
mode decomposition with adaptive noise (cEEMDan)
strategy is used for data decomposition to reduce the
influence of the noise in the original series. Whereafter, five
predictors from three types of models are introduced to
construct the forecasting module. These five predictors are
one statistical model, three neuron networks, and a hesitant
fuzzy forecasting model. The multi-optimization algorithm is
utilized to aggregate the forecasting results of five individual
models to obtain the final forecasting results.

Based on the above content, the main contributions and
innovations of this research are summarized as follows:

1) A novel combined forecasting system is proposed by combining
with data decomposition strategy, forecasting models, and
multi-objective optimization algorithm. To obtain better
forecasting performance, the strategy of “decomposition and
ensemble” is introduced to capture different features and
remove the noise of the original data, five individual models
are used to forecast the decomposed data, and a multi-objective
optimization algorithm is utilized to obtain the optimal weights
of individual models and integrate them. The empirical
experiments demonstrated that the proposed combined
forecasting system can provide accurate prediction results for
PM2.5 concentration forecasting, and can provide data support
for decision-making.
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TABLE 1 | Summary of the different types of models.

Models References Variables Results Advantages Dis-advantages

Meteorological Models

ADMS-Urban Dėdelė and
Miškinytė
(2019)

PM10 According to the analysis of PM10 in
the study cities, the ADMS-Urban
model takes into account the different
characteristics of the sites and can be
applied to the exposure estimates in
the cohort studies

AERMOD Mousavi et al.
(2021)

CO,
CO2, SO2

According to the experimental
results, the CO concentration of 8 h
and the SO2 concentration of 1 h in
the cold season may aggravate the
impact on the breathing air of
residents around the studied refinery

No historical weather data is
required, the accuracy is high, and
the causal relationship between the
input and output in the model is
clear, which makes the model more
readable

The models are very computationally
intensive and time-consuming, and
the quality of the input data has a
significant impact on the prediction
results, as even small data deviations
can lead to large differences in the
results

CRTM and WRF-
Chem

Cheng et al.
(2019)

PM10 The results show that assimilation of
Lidar data can effectively improve the
prediction effect. The predicted PM2.5

concentration of the constructed
model is closer to the observed value,
and the low deviation of the model is
significantly reduced

Statistical models

ARima Zhang et al.
(2018)

PM2.5 The trend of fluctuations in PM2.5
concentrations in the forecast period
is similar to the trend in the first two of
the forecast period, which is a
seasonal fluctuation

The structure of the statistical
model is simple, so it is easy to
implement and easy to calculate

This kind of models need a large
amount of historical data. The
statistical models cannot analyze non-
linear series, and have poor
extrapolation

MLR and ARima
and MLR-ARima

Goyal et al.
(2006)

PM According to the experimental
results, the prediction performance of
the combination of ARima and
multiple regression is better

Neuron networks

MLP and GA Niska et al.
(2004)

NO2 The results show that the GA is able
to reduce computation by eliminating
irrelevant inputs and search for
feasible high-level architectures

The neuron networks have strong
learning ability and can handle non-
linear features in the data

This kind of models need a large
amount of historical data. And may fall
into the local optima and overfitting.
Moreover, their performance is
dependent on artificially set hyper-
parameters

BPnn Kurt et al. (2008) SO2,
PM10, CO

Experiments show that quite
accurate predictions of air pollutant
indicator levels are possible with
proposed online air pollution
forecasting system

Hybrid models

EMD-SVR-
SARima and
EMD-HW/GM-
SARima

Zhu et al. (2017) AQI The proposed hybrid model can be
used as an effective and simple tool
for air pollution early warning and
management, and can be applied to
predict other pollution indices

HI-IEWT-Enn-
ORelm

Liu et al. (2019) PM2.5 The performance of the proposed
model is improved in multi-step
forecasting, while the reconstruction
method solves the overfitting problem
and improves the stability of the
hybrid model

Hybrid models can integrate the
advantages of individual models, so
that the forecasting more accuracy

This kind of models not always
perform best using only one type of
models, since they cannot capture
various features contained in the
series

HI-VMD-
SCA-ELM

Wang et al.
(2020a)

AQI The proposed hybrid model gives a
new feasible method for air pollution
forecasting, which is beneficial to air
quality management
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2) Three types of forecasting models are introduced to establish
the robust forecasting module. In order to fully analyze the
various features contained in the series, three types of
forecasting models are combined. Since there are multiple
influences on air pollution, the pollutant concentration series
are chaotic and usually contain linear and non-linear features.
The utilized three different types of models can analyze
different features in the series, the statistical model can
deal with linear features, neuron networks can cope with
non-linear features, and the hesitant fuzzy forecasting
model is used to analyze the fuzzy features. This ensures
the diversity of the system and avoids that the combined
model focuses on a certain type of specific model while
ignoring other features in the series.

3) A multi-objective optimization algorithm is used to weight
the individual forecasting models. In this study, the final
forecasting results are equal to the weighted sum of
individual model forecasting results, so the weight of each
model is a key to ensuring forecasting accuracy. Most
previous studies used numerical weighting methods, so
this paper compares several numerical weighting methods
with optimization algorithms. In addition, the idea of some
feature selection methods can also be regarded as a kind of
weighting, so this paper also chooses two feature selection
methods, Max-Relevance and Min-Redundancy (MRMR)
and ReliefF, as weighting methods to participate in the
comparison of weighting methods. However, after the
comparison in this study, the multi-objective optimization
algorithm is proven to be the best weighting method,
outperforming not only numerical methods but also
feature selection methods.

For the convenience of the readers, all abbreviation words are
listed in Table 2. The remainder of this paper is organized as
follows: the basic methodology of utilized methods and the
system design is introduced in Section 2. The experimental
design, the experiment results, and the analysis of the results
are presented in Section 3. The significance test and stability test
are discussed in Section 4. Finally, Section 5 provides the
conclusion of this study.

2 FRAMEWORK OF THE DEVELOPED
COMBINED FORECASTING SYSTEM

In this section, the utilized methodologies of the combined
system are introduced. These methodologies include the
cEEMDan, ARima, BPnn, ℓ2,1-norm and Random Fourier
Mapping-Based Extreme Learning Machine (ℓ2,1RFelm), Echo
state network (ESn), Fuzzy time series forecasting based on
hesitant fuzzy sets (HFs) and Multi-objective salp swarm
algorithm (mSSa).

2.1 Data Decomposition
Due to various factors, the monitoring data, especially the air
pollutant concentration data, will have fluctuations and noise,
which will affect the further analysis of the data. Therefore, to

extract the characteristics of the series, cEEMDan is used to
decompose the original series.

cEEMDan is an improved method based on the Empirical
Mode Decomposition (EMD) method, which adds adaptive noise
series at each stage of the EMD decomposition to make the
decomposition more perfect while avoiding mode mixing
problem (Torres et al., 2011). EMD-series methods can
decompose any complicated series into a finite of intrinsic
mode functions (IMFs), and each IMF represents the implicit
characteristics of the original series.

The decomposition results of EMD are some IMFs and
residuals, and the decomposition process is the process of
finding the IMFs. Assume the original PM2.5 concentration
series X (t), t = 1, . . . , n is decomposed into k IMFs, the
EMD process can be summarized as follows:

Let a0(t) = X(t) be the signal being analyzed, find all the local
maximum andminimum of a0, and interpolate to form upper and
lower envelopes, denoted as amax

0 and amin
0 , respectively. Calculate

the mean of upper and lower envelopes as
m11(t) � [amax

0 (t) + amin
0 (t)]/2. Next, extract the first detailed

component as �χ�11(t) � a0(t) −m11(t). If �χ�11(t) satisfies the two
conditions of IMFs, �χ�11(t) is the first IMF, denoted as IMF1; else,
�χ�11(t) is considered as the signal, and repeat the Step 1-Step 3
until the decomposition result �χ�1j satisfies the conditions at j-th
decomposition, IMF1(t) � a0(t) −∑r

i�1m1j(t). And the first
residue is γ̂1(t) � ∑r

i�1m1j(t). Set γ̂1 as the signal to be
decomposed, and keep repeating the Step 1-Step 4 until the
final residual γ̂k becomes a monotonic function. At the end of
this decomposition, the original series can be represented as
X(t) � ∑k

i�1IMFk(t) + γ̂k(t).
Since the EMD method is subject to mode mixing, the

ensemble EMD (EEMD) method is proposed to alleviate this
problem by adding white noise to the original signal. However,
EEMD with high computational cost and the number of
decomposed IMFs varies with the added noise. To overcome
the aforementioned problem, an improved EEMD method is
proposed (Wang et al., 2020b). Let wi, i = 1, . . . , I be white noise
with standard deviation εj. Based on the EMD, the process of
cEEMDan can be described as following. Add white noise into the
original signal, then the signals being analyzed are
~ai0(t) � X(t) + ε0wi(t), i � 1, . . . , I. Using EMD decompose ~ai0
to obtain its first IMF, denoted as ĨMF

i
1. Then, the first IMF

after cEEMDan of X (t) is IMF1(t) � 1
I∑I

i�1ĨMF
i
1(t). And the

residual after first decomposition is ~r1(t) � X(t) − IMF1(t). Let
~r1 as the signal need further decomposition, construct the signal
by the ~ai1(t) � ~r1(t) + ε1E1[wi(t)], i � 1, . . . , I, where E1 (·)
represents the first IMF obtained by EMD method. The
second IMF can be calculated as IMF2(t) � ∑I

i�1E1[~ai1(t)]/I.
For k = 2, . . . , K, calculate the k-th residue by
~rk(t) � ~rk−1(t) − IMFk(t), and decompose ~aik(t) � ~rk(t)+
εkEk[wi(t)], then (k + 1)-th IMF can be computed as
IMFk+1(t) � 1

I∑I
i�1E1[~aik(t)], where Ek (·) is the k-th IMF

obtained by EMD. Repeat the decomposition processes until
the residue cannot be further decomposed. After
decomposition, the given signal X (t) can be expressed as
X(t) � ∑K

k�1IMFk(t) + ~rK(t), where ~rK(t) is the final residue
that is no longer feasible to be decomposed. Compared with

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 8333744

Bai et al. Fine Particulate Matter Prediction

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


cEEMD, cEEMDan has reduced the computational cost (Torres
et al., 2011), and Wang et al. (2014) has proved that the
computational complexity of EEMD is equivalent to
KO(TlogT), where T is the number of the sample. Therefore,
the computational complexity of cEEMDan is less than
KO(TlogT).

2.2 Individual Forecasting Methods
In this study, three different types of methods are utilized to
predict the concentration of PM2.5. More details are introduced in
the following subsections.

2.2.1 Conventional Statistical Method
This kind of method is based on statistics, with the advantages of
low complexity and fast computational speed, and has a strong
model interpretation. One of the most popular and important
models is the Auto-regressive Integrated Moving Average
(ARima), which has been widely used in time series
forecasting (Pai and Lin, 2005; Ariyo et al., 2014; Benvenuto
et al., 2020).

For the ARima model, future values are considered as a linear
combination of past values and errors, and the mathematical
form of the model for predicting is expressed as follows (Pai and
Lin, 2005):

X(t) � �Ψ�
0 + �Ψ�

1
X(t − 1) + �Ψ�

2
X(t − 2) +/ + �Ψ�

p
X(t − p) + �Ψ

t

− �θ�
1
t−1 − �θ�

2
t−2 −/ − �θ�

q
t−q,

(1)
cwhere X(t), . . ., X (t−p) are actual values, t, . . . ,t−q are
random errors, �Ψ�

0
is the trend component, p and q are the

order of the auto-regressive model (AR) and moving average
model (MA), respectively. For ARima, the complexity is
depended on the order of AR p and the order of MA q.
When the number of sample is T, the computational
complexity of ARima is O((T − p)p2 + (T − q)q2)
(Gavirangaswamy et al., 2013).

2.2.2 Fuzzy Computation and Forecasting
The fuzzy time series forecasting method was first proposed by
Song et al. (Song and Chissom, 1993) based on the fuzzy set
theory (Zadeh, 1996). It has been continuously developed in
recent decades and has been widely applied for forecasting in
many fields (Singh, 2007; Cheng et al., 2016; Wang et al., 2021a).
As an extension of the fuzzy sets, Torra et al. introduced the
concept of hesitant fuzzy sets in 2009 (Torra and Narukawa,
2009). The specific operation steps of HFs are described as
follows (Bisht and Kumar, 2016; Cheng et al., 2016; Wang et al.,
2021a).

Define the universe of discourse as U = (Xmin−σ, Xmax + σ).
Here Xmin and Xmax are the minimum and maximum of the
training set, σ is the standard deviation of X. Next, using equal
and unequal intervals, and triangular membership function to
fuzzify the universe of discourse. The length of equal intervals is
determined by the distance between the maximum and
minimum values in the time series, and the length of
unequal intervals is determined by using the cumulative
probability distribution approach (Lu et al., 2015; Bisht and
Kumar, 2016). Suppose it is divided into J intervals, each
interval defined by three parameters, x

�lj
and x

�rj
for feet of

intervals, and �x�mj for the tip of intervals. Two expresses
mathematical formula of the triangular membership function
(Wang et al., 2021a):

TABLE 2 | List of nomenclature.

ADMS Atmospheric dispersion modelling system LSTM Long short-term memory neural network
AERMOD American meteorological society environmental policy agency regulatory

model
ℓ2,1RFelm ℓ2,1-norm and Random fourier mapping-based extreme learning

machine
AIC Akaike information criterion MA Moving average model
AR Auto-regressive model MAE The mean absolute error
ARima Auto-regressive integrated moving average MAPE The mean absolute percentage error
BPnn Back-propagation neural network MLP Multi-layer perceptron model
CEEMD Complementary ensemble empirical mode decomposition MLR Multiple linear regression
cEEMDan Complete ensemble empirical mode decomposition with adaptive noise MRMR Max-relevance and min-redundancy
CRTM Community radiative transfer model mSSa Multi-objective salp swarm algorithm
DM Diebold-mariano test ORelm Outlier-robustness extreme learning machine
EEMD Ensemble empirical Mode decomposition PM Particulate matters
EMD Empirical mode decomposition PRD The pearl river delta in China
Enn Elman neural network QD Quartile deviation
ESn Echo state network RMSE The root mean squared error
GA Genetic algorithm SARima Seasonal ARima
GM Grey model SCA Sine cosine algorithm
GZ Guangzhou SD Standard deviation
HFs Fuzzy time series forecasting based on hesitant fuzzy sets SVR Support vector regression
HI Hample Identifier SZ Shenzhen
HW Holt-winters VMD Variational mode decomposition
IEWT Inverse empirical wavelets transform VR Variance ratio
IMFs Intrinsic mode functions WRF-

Chem
Weather research and forecasting model coupled to chemistry

LA Lichtenberg algorithm ZH Zhuhai
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f(x) �

0 x< x
lj
,

x − x
lj

�x�mj − x
lj

x
lj
≤x≤ �x�mj,

x
rj
− x

x
rj
− �x�mj

�x�mj <x≤ x rj
,

0 x> x
rj
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

After this step, the membership degrees of xi to equal intervals
and the unequal intervals can be obtained, denoted as mde and
mdu, respectively. Then, compute the weights of equal intervals
and unequal intervals using the following formula (Bisht and
Kumar, 2016),

wj
e �

dèj

dèj + dùj
,

wj
u � 1 − wej,

⎧⎪⎪⎨⎪⎪⎩ (3)

where dej and duj are the lengths of j-th equal and unequal
intervals, wj

e and wj
u are the weights of j-th equal and unequal

intervals, respectively. Determine the membership of every
element by using aggregate hesitant fuzzy elements, and build
a fuzzy set using a novel aggregation operator, which is defined as
follows (Wang et al., 2021a):

O(x1, x2, . . . , xn) � 1 − (1 −mdij
e )w

j
e(1 −mdij

u)w
j
u , i � 1, . . . , n; j

� 1, . . . , J,

(4)
where mdij

e is the membership degree of xi to j-th equal interval,
so asmdij

u is the membership degree of xi to j-th unequal interval,
wj

e represents the weight of j-th equal interval and wj
u represents

the weight of j-th unequal interval. Specifically, wj
e ∈ [0, 1],∑J

j�1w
j
e � 1.

Following example introduces the specific aggregation process
for aggregation:

Let X = {x1, x2, x3} be a reference set. H �
{<x1, {0.2, 0.4}> , < x2, {0.5, 0.25}> , < x3, {0.3, 0.4}> } is a
hesitant fuzzy set on X, and taking w = (0.4, 0.6). Applying
the aggregation method motioned above, the fuzzy elements can
be obtained as follows:

h(x1) � 1 − (1 − 0.2)25(1 − 0.4)35 ≈ 0.33
h(x2) � 1 − (1 − 0.5)25(1 − 0.25)35 ≈ 0.41
h(x3) � 1 − (1 − 0.3)25(1 − 0.4)35 ≈ 0.64

Therefore, the fuzzy set A is established
as A � {<x1, 0.33> , <x2, 0.41> , <x3, 0.64> }.

After determining the membership of every element,
establish fuzzy logical relationships and fuzzy logical
relationship groups. The fuzzy logical relationships are
established by the rule: If Ai and Ai+1 are the fuzzy values
at time t and t + 1 respectively, the fuzzy logical relation is
denoted as Ai → Ai+1. Here, Ai is called the current state and
Ai+1 is the next state. Then, the same left-hand side of the fuzzy

logical relationships is classified to form several fuzzy logical
relationship groups. The main idea of forecasting is to infer
the next state based on the current state. Based on the fuzzy
logical relationship groups, a matrix Pm×m can be generated,
each element in P represents the frequency of Ai → Ai+1 that
with the same fuzzy logical relationship. According to the
max-min composition operations on fuzzy logical
relationship, the fuzzy output can be obtained and
defuzzify by Γ̂i � PiM, here M is the combined midpoint of
the triangular membership functions for equal and unequal
intervals respectively, calculated as follows (Bisht and
Kumar, 2016):

M � Mewe +Muwu

we + wu
, (5)

where Me and Mu is the mid points of the equal and unequal
intervals. As the introduction above, the computational
complexity of HFs is O(Jn), J is the number of the interval
and n represents the number of sample.

Summarizing all this activity, Table 3 is given to show the
implementation of the HFs.

2.2.3 Machine Learning Technique
The methods based on machine learning have strong learning
ability and can handle the non-linear components in the time
series, so they have been widely used in some fields (Gündüz
et al., 2019; Henrique et al., 2019; Volk et al., 2020; Wang et al.,
2021b). In this study, three different networks were selected
to analyze the series, since the features of the series are
uncertain.

(A) Back-Propagation Neural Network
Back-propagation neural network (BPnn) is a three-layer
feed-forward network with an input layer, a hidden layer,
and an output layer. Each layer takes inputs only from the
previous layer and sends the outputs only to the next layer.
Define the input vector as X � {X1,X2, . . . ,XN }, and the
output vector as Y � {Y1,Y2, . . . ,YN }. Assume the input
layer has I neurons, the hidden layer has H neurons, and
the output layer has one neuron, the network can be
constructed as Figure 1B, and the training processes are
described as follows.

TABLE 3 | The process of the HFs.
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Calculate outputs of all neurons in hidden layer (Hecht-
Nielsen, 1992; Wang Y. et al., 2021):

hih � ∑I

i�1wihxn + �[h, h � 1, 2, . . . , H,

hoh � f(hih), h � 1, 2, . . . , H,

⎧⎨⎩ (6)

Where, hih is the activation value of the h-th node of hidden layer,
hoh represents the output value of h-th hidden neuron, wih denotes
the connection weight between i-th input neuron and h-th hidden
neuron, �[h represents the bias of h-th hidden neuron, and f (·) is
the activation function. Then, determine the output of the
network as Oo � g(∑H

h�1whh
o
h + �[�), where Oo is the output

value of output neuron, wh is the weight between h-th hidden
neuron and output neuron, �[� represents the bias of output
neuron, and g (·) is the activation function. Obtain the
minimum global error by the “error feedback” training
mechanism. The global error is E � ∑N

n�1(Oo
n − Yn)2/2, Oo

n
represents n-th output of network. For more details, please
refer to (Hecht-Nielsen, 1992). For each iteration, the
computational complexity of both the forward propagation
process and the backward propagation process is
O(N(H + 1)(F + 1) +N(H + 1)(O + 1)), where F is the
dimension of the input set and O represents the dimension of
the output set. In this study, F = 4, O = 1, so the computational

complexity of the algorithm is TbpnnO(NH), here Tbpnn is the
number of iterations.

(B) ℓ2,1-Norm and Random Fourier Mapping-Based Extreme
Learning Machine
ℓ2,1RFelm is an improved feed-forward neural network with a
single hidden layer, which was proposed by Zhou et al. (2016). In this
method, Random Fourier Mapping is used to improve the
extendibility of the network by approximating the activation
function in ELM. And ℓ2,1-norm is used to make the hidden
layermore compact and discriminative by cutting irrelevant neurons.

To predict the PM2.5 concentration of the day, the PM2.5

concentrations of the past 4 days are used. So, the original
concentration series X = {x1, x2, . . . , xT} is reconstructed as follows:

X � [X1,X2, . . . ,XN ] �
x1 x2 / xT−4
x2 x3 / xT−3
x3 x4 / xT−2
x4 x5 / xT−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
Y � [Y1,Y2, . . . ,YN ] � [x5, x6, . . . , xT−1, xT].

(7)

Then, the main processes of this method can be introduced as
follows:

Randomly initialize the connection weights W between the
input layer and hidden layer and the bias B of the hidden layer,

FIGURE 1 | (A) is the flowchart of the proposed combined system; (B) and (C) are the structures of the neural networks used in this paper, where BPnn and
ℓ2,1RFelm have the same structure and different solution processes.
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assume the hidden layer has H neurons, these two matrix are
represented as follows:

W � W1, . . . ,Wh, . . . ,WH[ ]T �
w11 w12 w13 w14

w21 w22 w23 w24

..

. ..
. ..

. ..
.

wH1 wH2 wH3 wH4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
B � [b1, . . . , bh, . . . , bH], h � 1, 2, . . . , H,

(8)
herewH1 represents the weight between the first input neuron and
H-th hidden neuron, bh represents the bias of h-th hidden
neuron. Then the output matrix of the hidden layer is

H �
g(W1X1 + b1) g(W1X2 + b1) / g(W1XN + b1)
g(W2X1 + b2) g(W2X2 + b2) / g(W2XN + b2)

..

. ..
.

1 ..
.

g(WHX1 + bH) g(WHX2 + bH) / g(WHXN + bH)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
(9)

In this method, the Random Fourier Mapping g (·) is used to
approximate the kernel function, so WX + B can be mapped
into a Random Fourier feature space. The specific mapping is
defined as below (Rahimi and Recht, 2007):

g(x) � 1��
N

√ [cos(wT
1x), . . . , cos(wT

Nx), sin(wT
1x), . . . , sin(wT

Nx)]T.
(10)

Then, calculate the output of the network and solve parameter.
Let the connection weight between the hidden layer and the
output layer is β � [β1, β2, . . . , βH]T, then the output function of
this network is ∑H

h�1βhg(WhXn + �[h) � Oi, n � 1, 2, . . . , N. In
ℓ2,1RFelm, the only parameter need to solve is β. Based on the
given data and the initial parameters, the objective function of
this network is

Min
β, ε

1
2
‖β‖2,1 + 1

2
~C∑N

i�1‖ϒi‖2,
s.t.g(Xi)β � yi − ϒi, i � 1, 2, . . . ,N,

(11)

chere ε represents the training error, ~C is the penalty coefficient,
and ‖βT‖2,1 is ℓ2,1-norm of β, ‖β‖2,1 �

������∑H
h�1β

2
h

√
. Finally, β can be

obtained β̂ � (D/~C +HTH)−1HTYT, where D is a diagonal
matrix with Dhh = 1/(2‖β‖2), and at the beginning of the
iterative, D is an identity matrix. For more details of solve
process, please refer to (Zhou et al., 2016). In this study, the
computational complexity of ℓ2,1RFelm is mainly contributed by
the process of computing (D/~C +HTH)−1. Thus the
computational complexity of ℓ2,1RFelm is TrfelmO(H3), Trfelm
is the number of the iterations.

(C) Echo State Network
Echo state network (ESn) is an improved recurrent neural
network and was proposed in 2004 (Jaeger and Haas, 2004).
Without output feedback connections, an ESn consists of an
input layer with I neurons, L internal neurons possessing internal

states, and one output neuron. The structure of ESn is shown in
Figure 1C. Given a training set [X ,Y] the main steps of ESn are
as follows (Qiao et al., 2016; Wang et al., 2019). Randomly
generate a reservoir weight matrix W with the predefined
sparsity and size. In order for the reservoir to have echo-state
property, the singular values of reservoir weight matrix of the
reservoir must be scaled to within 1, so scaledW as ~W � (α/Ψ)W,
here 0 < α < 1 and Ψ is the spectral radius ofW. Next, randomly
generate the weight matrix between input layer and reservoir,
denoted asWin. And initialize the reservoir states £ (0). Calculate
the state of reservoir by using dynamic equation, £ (n+1) =F( ~W
£ (n)+W inXn+1), here £ (n) and £ (n+1) are reservoir states,F(·)
is activation function, Xn+1 represent (n + 1)-th sample input.
Finally, calculate the network output ŷn+1 � G(Wout£ (n+1)),
where Wout represents weight matrix between reservoir and
output layer, G(·) is activation function. The only trainable
part of the ESn is the output weight matrix Wout, and can be
commonly obtained asWout � (XTX )−1XTY. As shown above,
the computational complexity of ESn is largely proportional to
the state updating process, the complexity of this process is equal
to O(LT), where T is the number of sample.

2.3 Optimization of Combination Weights
Mirjalili et al. proposed a novel swarm intelligence optimization
algorithm in 2017, which was inspired by the behavior of salps
looking for food (Mirjalili et al., 2017a). Their study has shown that
thismethod can approximate the Pareto optimal solution with high
convergence and coverage. It has merits among the current
optimization algorithms and is worth applying to different
problems (Mirjalili et al., 2017a). Therefore, this method (mSSa)
is used to find the optimal combined weight of different forecasting
models in this study. More details are introduced as follows.

2.3.1 Multi-Objective Optimization
Multi-objective optimization is concerned with mathematical
optimization problems involving more than one objective
function to be optimized simultaneously (Haimes et al., 2011).
The multi-objective optimization problem can represent as
follows:

Minimize [Obf1(x),Obf2(x), . . . ,Obfo(x)],
subject to x ∈ S,{ (12)

where S is the feasible search space, o is the number of objective
function, and Obfi is i-th objective function.

The purpose of multi-objective optimization is to find the set
of acceptable solutions (Ngatchou et al., 2005). Hence, the
definitions related to the Pareto-optimal solutions are introduced.

Definition 1. Pareto domination Given two vectors �X �
(x1, x2, . . . , xn) and �Y � (y1, y2, . . . , yn), vector �Y dominates
�X or called vector �X is dominated by vector �Y denoted as
�Y ≺ �X if and only if ∀ i ∈ [1, o], [Obf i( �Y)≤ Obf i( �X)] ∧
∃ i ∈ [1, o], [Obf i( �Y)<Obf i( �X)], where Obfi (·) represents
i-th objective function.

Definition 2. Pareto optimal set A set including all the non-
dominated solutions is called Pareto optimal set. The
mathematical description is Ps ≔ x, z ∈ �X | e z ≺ x{ }.
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2.3.2 Process of Multi-Objective Salp Swarm
Algorithm
The individuals in a salp chain are divided into two groups: the front of
the chain is the leader, the others are followers. AssumeO indicates the
dimension of search space,N denotes the number of salp chains, then
the location of all the salps can be defined as a matrix:

Pt �
p1
1(t) p1

2(t) . . . p1
O(t)

p2
1(t) p2

2(t) . . . p2
O(t)

..

. ..
.

. . . ..
.

pN
1 (t) pN

2 (t) . . . pN
O(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

here t represents t-th iteration. The position of each salp is a
candidate solution. Next, calculate fitness of each salp chain

Fit [ �pj(t)] � obf1[ �pj(t)],{ obf2[ �pj(t)], . . . , obfO[ �pj(t)]},

j � 1, 2, . . . , N, where Fit[ �pj(t)] represents the fitness of j-th
salp chain at t-th iteration, obfo[ �pj(t)] is the value of o-th
objective function of j-th salp chain at t-th iteration. Then,
determine the non-dominated salp chains according to
Definition 1, and update the archive (Pareto optimal set,
Definition 2). Select a salp chain as a food source from the
archive, denoted as F. After that, leaders p1 guides the salp
swarm toward the food source in an O-dimensional search
space. The positions of the leaders are updated as follows
(Mirjalili et al., 2017a):

pi
1(t + 1) �

Fi(t) + τ1 p1 − p 1( )τ2 + p 1[ ], τ3 ≥ 0,

Fi(t) − τ1 p1 − p 1( )τ2 + p 1[ ], τ3 < 0,

⎧⎪⎪⎨⎪⎪⎩ (14)

TABLE 5 | Experimental parameter settings of different individual models.

Method Meaning Value

cEEMDan Noise standard deviation 0.5
Number of realizations 200
Maximum number of sifting iterations allowed 10

ARima The lag order 10 (GZ), 8 (SZ), 8 (ZH)
The degree of differencing 1 (GZ), 1 (SZ), 1 (ZH)
The order of the moving average 7 (GZ), 10 (SZ), 10 (ZH)

HTS Number of interval 23 (GZ), 24 (SZ), 23 (ZH)
BPnn Maximum number of iteration times 100

Learning rate 0.1
Training accuracy goal 0.000 01
Neuron number of input layer 4
Neuron number of hidden layer 9
Neuron number of output layer 1

ℓ2,1RFelm Penalty coefficient 5
Maximum iterations 50
Number of neurons in hidden layer 15

ESn Reservoir dimension 20
Spectral radius 0.2
Leaking rate 0.5
Connectivity 0.2
Readout regularization 0.05

mSSa Size of archive 100
Size of population 30
Maximum iterations 50
Individual value range [−5,5]

TABLE 4 | Descriptive statistics of data sets.

Study areas Data sets (number of
obs)

Central tendency Variability Distribution

Mean Median Mode SD Range QD Kurt Skew

GZ All (3,600) 16.032 7 12.741 9 2.174 6 11.266 6 60.566 3 11.538 2 5.341 5 1.570 0
Training (2,522) 14.150 6 10.196 0 2.174 6 11.561 9 60.566 3 9.107 9 7.125 8 2.077 9
Test (1,078) 20.435 8 17.870 1 5.978 0 9.142 0 42.083 8 13.389 5 2.750 5 0.758 1

SZ All (3,600) 12.562 1 8.560 5 1.951 5 11.187 9 70.718 5 10.637 4 7.197 1 1.983 4
Training (2,522) 9.942 4 6.761 4 1.951 5 10.228 2 70.718 5 6.068 8 12.981 9 3.001 5
Test (1,078) 18.690 8 16.489 5 2.886 7 10.942 2 53.130 8 13.574 4 3.671 8 0.991 9

ZH All (3,600) 13.887 2 10.585 2 1.857 4 72.293 2 70.435 9 10.193 8 6.782 1 1.832 5
Training (2,522) 11.636 6 8.895 4 1.857 4 72.293 2 70.435 9 6.397 2 10.645 8 2.588 2
Test (1,078) 19.152 4 17.081 3 4.335 2 62.078 1 57.742 9 11.922 8 4.704 9 1.155 1

Note SD: standard deviation; QD: quartile deviation; Kurt. kurtosis; Skew. skewness.
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where pi
1(t + 1) is the position of leader in the i-th chain at (t +

1)-th iteration, Fi(t) represents the food source position in the i-th
dimension at t-th iteration. p 1 and p1 are the lower bound and
the upper bound of p1.

In Eq. 14, τ1 is a parameter that controls the balance of
exploration and exploitation, τ2 is a random number in (0, 1) that
determines the distance to move, and τ3 is also a random number
in (0, 1) that determines the direction of movement. The
coefficient τ1 is defined as τ1 � 2e−(4t/TmSSa)2 , where t is the
number of the current iteration and TmSSa represents the
number of maximum iteration. Whereafter, the positions of
the followers are mathematically updated as
pi
j(t + 1) � 1

2 [pi
j(t) + pi−1

j (t)], ∀2≤ j, i � 1, 2, . . . , N. Finally,
repeat the processes of calculating fitness, updating the
archive, selecting food source and updating the salps location
until satisfied with the end condition.

If the archive is not full, the non-dominated solutions are
saved to the archive after comparison according to Definition 1,
otherwise, before storage deletes some solutions (Mirjalili et al.,
2017a). According to the principle of improving the distributivity
of solutions in the archive, use the Roulette Wheel mechanism to
remove the densest solutions. The probability of the solution

being removed can be calculated as Pr = Nl/c, where Nl is the
number of l-th solution in the archive, and c is a constant greater
than 1 (Mirjalili et al., 2017b).

According to the introduction of mSSa, the computational
complexity of this method isO(O × N + cof × N + 2N2) at one
iteration, where cof is the computational complexity of the
objective function. In this study, the Mean Square Error and
the Standard deviation of the error are set as objective function.
The complexity of the first objective functions is O(T2) and the
second objective function is O(T). Therefore, the complexity of
one iteration of mSSa is O(O × N + (T2 + T) × N + 2N2), here
T is the number of samples.

2.4 The Proposed Combined Forecasting
System
Using the aforementioned methods and strategy, a novel
combined pollutant concentration forecasting system based on
the data decomposition strategy, several individual forecasting
models, and a multi-objective optimization algorithm is designed.

Assume there are M models to predict the pollutant
concentration, the forecasting results are denoted as

TABLE 6 | Forecasting results of individual models and combined systems based on the original data and decomposed data.

GZ SZ ZH

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

(a1) Individual models without cEEMDan

ARima 1.362 8 1.871 4 7.479 2 1.838 4 2.686 2 12.058 9 1.697 4 2.369 2 10.212 0
BPnn 2.118 4 2.931 3 11.366 4 3.092 7 4.414 2 19.387 5 2.676 5 3.814 4 15.744 8
ℓ2,1RFelm 2.144 6 2.975 3 11.435 4 2.996 9 4.287 1 18.920 9 2.616 0 3.708 8 15.439 4
ESn 2.133 3 2.994 4 11.406 6 2.957 0 4.199 0 18.759 8 2.627 7 3.726 8 15.473 9
HFs 1.761 7 2.290 5 9.684 9 1.652 5 2.092 8 10.796 1 2.102 8 3.003 2 11.420 3

(a2) Individual models combined with cEEMDan

C-ARima 0.483 4 0.649 5 2.666 1 0.619 6 0.959 0 4.050 4 0.590 7 0.830 5 3.591 6
C-BPnn 1.078 3 1.447 3 5.896 8 1.552 5 2.148 6 9.990 0 1.401 1 1.884 2 8.332 2
C-ℓ2,1RFelm 0.954 8 1.303 3 5.109 5 1.378 6 1.882 3 8.877 7 1.226 6 1.666 3 7.106 5
C-ESn 1.030 1 1.478 2 5.623 4 1.392 3 1.931 3 9.252 7 1.267 5 1.813 0 7.440 9

(b1) Combined system without ceemdan

FIX 1.464 1 2.024 2 6.894 2 1.837 0 2.383 1 8.294 7 1.848 3 2.544 5 8.392 9
MAX 14.724 6 15.953 4 63.339 1 16.577 1 17.784 7 71.460 0 18.127 7 19.490 4 80.842 1
MIN 1.573 7 2.218 4 7.335 3 1.810 9 2.394 6 8.250 7 1.700 3 2.317 1 7.992 0
MIX 10.679 5 11.662 2 45.676 9 2.731 9 3.515 7 11.574 8 6.301 1 7.179 3 27.436 7
MRMR 1.459 9 2.024 4 6.827 7 1.754 1 2.298 7 7.983 5 1.800 7 2.464 4 8.302 3
ReliefF 1.297 7 1.744 3 6.487 6 1.430 9 1.838 0 6.374 9 1.670 5 2.366 4 7.311 6
LA 1.394 2 2.346 7 6.861 9 1.665 9 2.077 6 7.903 4 1.478 9 2.247 7 6.326 3
mSSa 1.123 2 1.515 7 5.899 2 1.222 7 1.539 0 6.430 5 1.177 2 1.671 2 5.261 2

(b2) Combined system includes cEEMDan

C-FIX 0.776 4 1.085 9 3.730 1 0.930 7 1.195 4 4.283 4 0.969 0 1.361 4 4.414 1
C-MAX 3.371 1 3.770 5 14.280 8 9.856 4 10.582 4 42.521 7 11.970 1 12.874 4 53.448 9
C-MIN 0.738 3 0.994 3 3.469 6 0.770 9 1.049 5 3.617 9 1.217 1 1.605 6 5.650 1
C-MIX 16.058 5 17.348 2 69.318 9 11.826 6 12.687 0 51.030 1 13.502 7 14.510 1 60.356 4
C-MRMR 0.659 8 0.930 0 3.134 4 0.795 1 1.048 1 3.688 7 0.820 3 1.125 2 3.776 8
C-ReliefF 0.772 3 1.053 1 3.883 1 0.944 8 1.197 4 4.182 9 0.883 3 1.248 5 3.994 5
C-LA 0.502 7 0.687 4 2.416 8 0.583 7 0.836 1 2.836 6 0.576 0 0.790 0 2.769 2
C-mSSa 0.477 6 0.652 6 2.357 6 0.567 0 0.810 1 2.787 9 0.564 2 0.775 0 2.740 4

“C-” represents the forecasting models combined with cEEMDan.
The bold numbers indicate the optimal value of the indicators.
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Ŷm, (m � 1, 2, . . . ,M), and the weight coefficients of each
forecasting result are ω1, ω2, . . . , ωM, then the combined
system can be expressed in mathematical form as

F � ∑M

m�1ωmŶm,∑M

m�1 Ωm � 1,

⎧⎪⎨⎪⎩ (15)

here F is the final forecasting result.
The main steps of this proposed system are listed as

follows, and the flowchart of this study is described in
Figure 1.

Pre-processing of original data. Since the original series are
fluctuating, it is difficult to analyze its features. Therefore, the
strategy of “decomposition and ensemble” is utilized to
distinguish different characteristics and noise in the original
series. And then, the noise is filtered out to reconstruct a more
stable series. The parameters of this method are shown in Table 5.

Forecasting by individual models. Since the features hidden in
the series are not certain, three types of methods were used to
analyze the series and implement forecasting. These methods
contain a traditional statistical model (ARima), a hesitant fuzzy
time series forecasting model, and machine learning models
(BPnn, ℓ2,1RFelm, ESn). In the three machine learning models,
BPnn and ℓ2,1RFelm have the same network structure but different
solving strategies, BPnn and ESn have different network structures

but the same solving strategy, and ℓ2,1RFelm andESn have different
network structures and solving strategies.

Construction of the combined system. In order to obtain more
accurate forecasting results, use mSSa to conduce the optimal
combined weights of the individual models. More specifically,
take the predicted values obtained by each individual model as
input and the true concentration values as output to form a training
set. Then, the optimization algorithm is trained based on this set and
finally obtains the optimal weight vector. Afterward, the forecasting
results of such individual models are combined together by using
optimal weight to obtain the final forecasting value.

3 EMPIRICAL ANALYSIS

In this study, the concentration of PM2.5 is forecast by
the proposed combined system. This section mainly
introduces the experimental process and analyzes the
forecasting results.

3.1 Data Description
Three PM2.5 concentration data sets collected from the Pearl
River Delta (PRD) region in China are selected as illustrative
examples to verify the effectiveness of the proposed combined
prediction system, including Guangzhou (GZ), Shenzhen (SZ),

FIGURE 2 | The forecasting results of the different models, where “C-” represents the forecasting models combined with cEEMDan.
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and Zhuhai (ZH). There are few missing data in these series,
and the moving median method with a window length of 10 is
used to fill in the missing data. Some statistical indicators for
these three data sets are presented in Table 4. Considering the
availability of data, the hourly concentrations were collected
from 2020.04.29 to 2020.09.25, and these data were divided
twice. In the forecasting module, the original data sets were
divided into training sets and test sets, and the train to test
ratio of each study city is Tr1:Te1 = 7 : 3. And in the
combination module, Te1 was divided into training set Tr2
and test set Te2, the division ratio is 7:3.

3.2 Evaluation Metrics
In previous studies, numerous metrics have been utilized to
evaluate model performance. To scientifically assess the
proposed system, three metrics are selected as evaluation
criteria, including two scale-dependent indicators and a
percentage indicator. Details are as follows.

3.2.1 Scale-dependent Indicators
The unit of this type of indicator is the same as the unit of original
data, so it can not be used to compare two series with different
units. Two commonly used scale-dependent measures are Mean
absolute error and Root mean squared error, they are based on
absolute errors and squared errors, respectively (Hyndman and
Athanasopoulos, 2018).

A. Mean Absolute Error
The mean absolute error (MAE) is a commonly used indicator to
evaluate the deviation between forecast values and true values
(Khair et al., 2017):

MAE � 1
N

∑N
n−1

|An − Fn|, (16)

where N is the sample size, An represents the actual value of n-th
sample, and Fn indicates the n-th forecast value. This metric
can avoid the cancellation of the positive and negative

FIGURE 3 | The forecasting results of the different combined methods. (A) is the results of evaluation indicators of three study cities. (B) is the forecasting results of
C-LA and C-mSSa, where “C-” represents the cEEMDan.

Frontiers in Environmental Science | www.frontiersin.org February 2022 | Volume 10 | Article 83337412

Bai et al. Fine Particulate Matter Prediction

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


predicted errors. The lower the value ofMAE, the better the model is.
MAE = 0 indicates that there is no error in the forecasting.

B. Root Mean Squared Error
The root mean squared error (RMSE) is a commonly used
measure of the forecasting results of machine learning models.
Its equation is shown in (Eq. 17) (Wang Y. et al., 2021)

RMSE �

��������������
1
N

∑N
n�1

(An − Fn)2
√√

. (17)

Same to the MAE, the lower the value of RMSE, the better the
prediction. But RMSE is more sensitive to extreme values.
Therefore, if the difference between RMSE and MAE is large,
the greater the possibility of large errors existing in forecasting.

3.2.2 Percentage Indicator
The frequently used percentage indicator is the mean absolute
percentage error (MAPE). It is often used in practice since it is a
very intuitive explanation in terms of relative error and is unit-
free. Its equation is shown as follows (Khair et al., 2017):

MAPE � 1
N

∑N
n�1

An − Fn

An
× 100%. (18)

Compared to MAE, this indicator is normalized by actual
value, and useful when the size or size of a prediction variable is
significant in evaluating the accuracy of forecasting (Khair et al.,
2017). However, when there is 0 in the actual value, this indicator
can not be used. MAPE = 0% indicates a perfect model, while
MAPE = 100% indicates a poor model.

3.3 Parameter Settings
Different parameters of the model will lead to different results, so
the analysis of the predicted results should be based on the
parameters used. The model parameters used in this paper are
shown in Table 5. For ARima, the optimal lag order, the optimal
degree of difference, and the optimal order of the moving average
are determined based on the Akaike Information Criterion (AIC).
And all the empirical experiments are implemented on MATLAB
R2020a, run on the Windows 10 professional operating system.

3.4 Experiments and Results Analysis
In this study, three comparisons are implemented based on the
data from GZ, SZ, and ZH in China. The first comparison is
implemented to verify the effectiveness of the data decomposition
strategy, the second comparison compares the different
combination methods, and the last comparison compares the
individual forecasting methods with the combined forecasting
system. The forecasting performance lists in Table 6 and the
specific results are analyzed as follows.

3.4.1 Comparison I
This comparison is set to compare the forecasting accuracy
between the models combining the cEEMDan and models
without combining cEEMDan. The comparisons are divided

into two categories, one for individual models and one for the
combined system. The first category contains comparisons of
ARiam vs. C-ARima, BPnn vs. C-BPnn, ℓ2,1RFelm vs. C-
ℓ2,1RFelm, and ESn vs. C-ESn. Here, the hesitant fuzzy time
series forecasting method has fuzzed the original series and
constructed a transition matrix based on the fuzzy logic
relationship group to forecast pollution concentration. These
operations have compressed and filtered the information of
the original series, so the hesitant fuzzy time series forecasting
experiment based on the composed data is no longer carried out.
The second category contains comparisons of FIX vs. C-FIX,
MAX vs. C-MAX, MIN vs. C-MIN, MRMR vs. C-MRMR, ReliefF
vs. C-ReliefF, LA vs. C-LA, and mSSa vs. C-mSSa.

1) From the results inTable 6 (a1) and (a2), it can be found that the
forecasts based on the decomposed data are more accurate than
based on the original data. Take the results from Guangzhou as
an example. The maximum MAPE of the forecasts based on
decomposed data (MAPEC−BPnnGZ = 5.896 8%) is lower than the
minimum MAPE of the forecasts based on the original data
(MAPEARima

GZ = 7.479 2%). And the MAE values of the forecasts
based on the original data are all greater than 1.1 (MAEGZ > 1.1),
but the MAE values of the forecasts based on the decomposed
data are all less than 1.1 (MAECGZ < 1.1), especially the
(MAEC−ARima

GZ < 0.5), which is the best performance among
all the forecasting models. The value of RMSE also shows
the same result. The values of RMSE for the forecasts based on
the original data are all greater than the values of RMSE for the
forecasts based on the decomposed data (RMSEGZ >RMSEC

GZ),
which indicates that the forecasting values based on the
decomposed data are closer to the true values. The sub-
figures in Figure 2 show the predicted results of these models.

2) The strategy of “decomposition and ensemble” to remove noise
contributes to improving the forecasting accuracy. The figures in
Table 6 (b1) and (b2) show the forecasting results of combined
systems. Take ZH as an example, the values of the indicators of
the mSSa combination method are (1.177 2, 1.6712,
5.2612%)MAE, RMSE, MAPE. But, the results obtained by the
proposed cEEMDan-mSSa based method are (0.564 2, 0.775 0,
2.7404%)MAE, RMSE,MAPE, these three values are lower compared
to the index results of mSSa based combined method. The same
relationship can be found in the indicator results for GZ and SZ.

Then, by comparing the remaining figures, it can be found that
the values of indicators for systems without combining data
decomposition strategy are smaller than the values of
combining data decomposition strategy except for the MIX
combined method. Take GZ as an example, all the values of
MAE are greater than 1 of the method without combining
cEEMDan (MAEGZ > 1), but the values of these indicators are
less than 1 for the method combining cEEMDan except for MAX
and MIX combined methods (MAEC

GZ < 1). So as the values of
RMSE and MAPE, the figures for the methods without
combining cEEMDan are greater than the figures for methods
combining cEEMDan. Therefore, it can be considered that no
matter which combination method, the forecasting based on the
decomposed data is more accurate.
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Remark: Through the comparisons between the models
combining the cEEMDan and models without combining
cEEMDan, what can be found is that the data decomposition
strategy can effectively improve the prediction ability of the model.

3.4.2 Comparison II
This comparison is set to compare the combination methods.
These methods contain four numerical methods (FIX1, MAX2,
MIN3, MIX4), two feature selection methods (MRMR, ReliefF),
and two optimization algorithms, the Lichtenberg algorithm (LA)
and mSSa. The results in Table 6 (b1) and (b2), and Figure 3
demonstrate that after data decomposition, the forecasting
accuracy is improved. Moreover, the proposed combined
model performance is best. The detailed analyses are as follows.

1) The multi-objective optimization method is the best weighting
method. For the results in Table 6 (b1), it can be seen that the
indicators’ values ofmSSa are the smallest. TakeGZ as an example,
the indicators’ values of mSSa are (1.1232, 1.5157, 5.8992%)MAE,
RMSE, MAPE, the minimum indicators’ values of the numerical
methods areMAEFIXGZ = 1.4641, RMSEFIX

GZ = 2.0242,MAPEFIXGZ =
6.8942, and theminimum indicators’ values of the feature selected
methods are MAEReliefFGZ = 1.2977, RMSEReliefF

GZ = 1.7443,
MAPEReliefF

GZ = 6.4876. Based on these indicators’ values, it can
be seen that themSSamethod has the best forecasting results. So as
the results in SZ and ZH, the indicators’ values obtained by mSSa
method are smaller than the value of other methods.

2) Check the results in Table 6 (b2), take SZ as an example, the
MAE of numerical methods are (0.9307, 9.8564,0.7709,
11.8266)FIX, MAX, MIN, MIX, MAE of feature selected
methods are (0.7951, 0.9448)MRMR, ReliefF, and for the
optimization methods are (0.5837, 0.5670)LA, mSSa. And
min(MAE) � MAEC−mSSa

SZ = 0.5670. The same result can be
obtained in GZ and ZH. Based on the results shown in the
tables, it can be considered that the mSSa optimization
algorithm is optimal as a weighting method.

3) The forecasts of the proposed combined system are more
accurate than the mSSa based system. As the forecasting
results shown in Table 6 (b1) and (b2), the MAE values of
the proposed combined system in the three study cities are
MAEC−mSSa = (0.477 6, 0.567 0, 0.564 2)GZ,SZ,ZH, these values
are less than 0.6, but the MAE values of the system based on
the original data are greater than 1.1 for three study cites
(MAEmSSa = (1.123 2, 1.222 7, 1.177 2)GZ,SZ,ZH). Moreover,

the MAPE values of the proposed system are MAPEC−mSSa =
(2.357 6%, 2.787 9%, 2.740 4%)GZ,SZ,ZH, compared to the
mSSa-based system they are improved by (60.04, 56.65,
47.91%)GZ,SZ,ZH

5. Since the smaller the values of the three
metrics, the better the forecasting. Therefore, the results of
these metrics indicate that the proposed combined system is
performing better than the other system. The same conclusion
can be drawn from the values of RMSE.

Remark: The optimization algorithm combination methods are
performing better than the other combination methods, especially
better than the numerical combination methods. The weights
determined by the numerical methods only consider part of the
samples, so when the data fluctuates greatly, this type of method
cannot get good forecasting results. And the weights determined by
the feature selection methods and the optimization algorithms
consider all the samples, including samples with large
fluctuations, so the impact of large fluctuations can be reduced
during the forecasting process.

3.4.3 Comparison III
This experiment compares the forecasting performance of the
individual forecasting models and the combined forecasting
system. The proposed forecasting system performs better than
the individual forecasting models. Almost all the indicators’
values in the Table 6 (b1) and (b2) are smaller than those in
the Table 6 (a1) and (a2), except for the MAX combination
method and MIX combination method. Based on the data of SZ,
themin(MAPESZ) � MAPEC−ARima

SZ = 4.0504, but this value is still
greater than the MAPEC−mSSa

SZ = 2.7879%. The results of the other
twometrics of SZ also show the same relationship. The min(MAESZ)
and min(RMSESZ) are (0.5670, 0.8101), and all are obtained by the
proposed forecasting system. These results indicate that the proposed
combined forecasting system outperforms the individual forecasting
models. The metric results of ZH can also draw the same conclusion
as SZ. The results in GZ are a little different. The min(RMSEGZ) =
RMSEC−ARima

GZ = 0.6495, and RMSEC−mSSa
GZ = 0.652 6, which is only

0.0031 different from the result of C-ARima. Therefore, the
performance of the combined forecasting system can be regarded
as better than the performance of the individual models.

In summary, the following conclusions can be drawn. The data
decomposition strategy can significantly improve forecasting
accuracy. These experimental results show that the forecasting
results of all methods combined with cEEMDan, except MIX, are
more accurate than the methods not combined with cEEMDan.
In addition, the mSSa method has the best forecasting results
among these combined methods, thus proving the forecasting
performance of the proposed system is best.

Remark: For forecasting, data preprocessing is important. In this
study, a powerful data decomposition strategy was used to
decompose the original data series, and then discarded the noise
component of the series. This processing improves the accuracy of the

1FIX represents a weighting method with fixed weights, and the weight of each
forecasting model is 0.2.
2MAX represents the method of using the maximum forecasting error to assign
weights, and the weight of each forecasting model is the reciprocal of the maximum
forecasting error obtained by each model in the training set.
3MIN is opposite toMAX, using the minimum value of the forecasting error is used
as the basis for weighting, the weight of wach methode is caluculated as
wi � ei/∑5

i�1ei, ei � 1/mei, i � 1, . . . , 5, where mei represents minimum error of
i-th model.
4For MIX weighting method, the weight of each model is obtained by following
equation: wi = mean(|ein|/An), i = 1, . . . , 5; n = 1./ , N, here the ein is forecasting
errors of i-th model, An is the actual value of PM2.5 concentration.

5The improved percentage is calculated as follows:
Pmetric � (VModel1

m − VModel2
m )/VModel1

m . Such as the improved percentage of GZ’s
MAPE is ((5.899 2–2.357 6)/5.899 2) × 100%.
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forecasting, and this conclusion is reached in two experiments. For
combination, the multi-objective optimization method works better,
and the numerical methods are the worst, and the performance is
unstable. When the results of other methods become better, the
numerical method performs worse.

4 TEST OF FORECASTING SYSTEM

In order to verify the significance and stability of the
proposed forecasting system, the Diebold-Mariano test (DM)
(Francis and Roberto, 1995) and the variance ratio (VR) are

introduced in this study. The related details and results are
described in this section.

4.1 Diebold-Mariano Test
DM is a hypothesis testing method to analyze the difference in
prediction accuracy. According to the constructed DM statistics,
it can be judged whether the difference of the prediction method
is significant. In this test, the null hypothesis (H0) and the
alternative hypothesis (H1) are as follows:

H0: �E�[ ~L(�δt1)] � �E�[ ~L(�δt2)]
H1: �E�[ ~L(�δt1)] ≠ �E�[ ~L(�δt2)]

(19)

TABLE 7 | DM test results of different models.

Based on the original data — Based on the decomposed data

GZ SZ ZH GZ SZ ZH

(a) Forecasting models

ARima 5.0977* 8.6243* 6.3830* C-ARima 1.8092** 1.1831*** 1.2560***
BPnn 6.8607* 10.4830* 8.5372* C-BPnn 7.2128* 8.3443* 9.5224*
ℓ2,1RFelm 7.0826* 9.5058* 9.0820* C-ℓ2,1RFelm 6.6667* 7.9443* 8.2492*
ESn 5.9861* 9.2922* 8.1848* C-ESn 2.1994** 7.8597* 2.5456**
HFs 8.5816* 11.6504* 5.2527* — — — —

(b) Combined systems

FIX 7.2134* 9.0465* 7.7204* C-FIX 4.5435* 5.3059* 11.5207*
MAX 22.7947* 21.5754* 20.7482* C-MAX 16.9403* 21.2405* 14.4119*
MIN 6.3787* 6.1052* 5.9078* C-MIN 5.1935* 4.8392* 12.5494*
MIX 21.4592* 10.6720* 14.4818* C-MIX 23.2960* 21.4463* 16.1001*
MRMR 6.7769* 9.0465* 8.4095* C-MRMR 3.9308* 4.1445* 11.9718*
ReliefF 8.2291* 8.4603* 4.9277* C-ReliefF 5.2545* 5.4203* 10.6837*
LA 2.2041** 9.7650* 5.5175* C-LA 1.6563** 2.2618** 0.5763***
mSSa 6.7769* 8.6787* 5.8400* C-mSSa — — —

* indicates the 1% significance level Z0.01/2 = 2.58; ** indicates the 5% significance level Z0.05/2 = 1.96; *** indicates the 10% significance level Z0.10/2 = 1.64.
“C-” represents the forecasting models combined with cEEMDan.
Indicates that the DM test has not been performed. Since HFs have compressed the original series, the forecasting based on the decomposed data has not been performed. And the
C-mSSa is the system proposed in this paper, so the DM test has not been performed on itself.

TABLE 8 | Results of the model stability test.

Based on the original data — Based on the decomposed data

GZ SZ ZH GZ SZ ZH

(a) Forecasting models

ARima 0.966 4 0.965 8 0.898 1 C-ARima 0.984 1 0.988 1 0.972 1
BPnn 0.990 2 0.984 1 0.991 5 C-BPnn 0.997 1 0.993 6 0.964 4
ℓ2,1RFelm 0.964 3 0.994 3 0.926 2 C-ℓ2,1RFelm 0.997 9 0.957 7 0.993 5
ESn 0.928 8 0.912 6 0.837 6 C-ESn 0.956 4 0.993 2 0.914 4
HFs 0.796 8 0.802 8 0.895 1 — — — —

(b) Combined systems

FIX 0.899 6 0.894 7 0.862 5 C-FIX 0.931 8 0.952 1 0.942 0
MAX 0.117 9 0.073 4 0.032 9 C-MAX 0.700 9 0.322 5 0.212 2
MIN 0.935 0 0.923 4 0.879 4 C-MIN 0.990 9 0.986 3 0.999 5
MIX 0.270 1 0.773 3 0.478 9 C-MIX 0.085 2 0.232 5 0.155 7
MRMR 0.925 4 0.917 9 0.875 5 C-MRMR 0.952 6 0.967 6 0.954 5
ReliefF 0.830 0 0.839 1 0.852 7 C-ReliefF 0.897 2 0.897 2 0.934 8
LA 0.837 4 0.859 9 0.939 3 C-LA 0.938 9 0.975 6 0.879 4
mSSa 0.946 0 0.992 1 0.990 6 C-mSSa 0.986 1 0.998 6 0.985 9

“C-” represents the forecasting models combined with cEEMDan, that is the forecasting models based on the decomposed data.
Indicates that the stability test has not been performed. Since HFs have compressed the original series, the forecasting based on the decomposed data has not been performed. And the
C-mSSa is the system proposed in this paper, so the stability test has not been performed on itself.
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here �δ
t
1 and �δ

t
2 represent the forecasting errors of forecasting

model 1 and forecasting model 2 at t-th, ~L(·) represents the loss
function. Then, the DM statistic is constructed as follows (Huang
et al., 2021):

DM �
∑n

t�1[ ~L(�δt1) − ~L(�δt2)]/n����
S2/n√ (20)

where S2 denotes the variance estimation of �δ
t
1 − �δ

t
2.

Given a certain significance level α, the critical value Zα/2 can
get, if the absolute value of DM statistic is greater than the Zα/2,
the null hypothesis H0 is rejected, and the result that two
forecasting methods have significant differences.

Table 7 gives the DM test results of different forecasting models.
This study compares 24 forecasting models or systems with the
proposed system. Compared with the forecasting model without
cEEMDan, the proposed forecasting system is significantly better,
since the values of DM statistic are greater than the critical value of
1% significance level. After combined with cEEMDan, the forecasting
ability of individual forecasting models has been improved, but the
DM test results show that their predictive ability is still inferior to the
proposed forecasting system, since the lowest value of DM test is
between the critical value of 10% significance level and the critical
value of 15% significance level. The DM values of Table 7 (b) also
show that the proposed forecasting system is significantly superior
than the other combined forecasting system, especially the system
without data decomposition strategy.

4.1.1 Stability Test
In order to validate the stability of models, the variance ratio (Vr)
is introduced. Vr combines the variances of the forecasting value
and the true value to illustrate the stability of the forecasting
model. The greater the value of Vr, the higher the forecasting
stability of the method (Huang et al., 2021).

Vr � min(Varf orecasting/Varactual,Varactual/Varf orecasting),
(21)

here, Varforecasting and Varactual are the variances of the
forecasting values and actual values.

The Vr results are shown in Table 8. The Vr values of the
proposed system in the three cities are (0.986 1, 0.998 6,
0.9859)GZ,SZ,ZH. Although the Vr values of the proposed system
are not the largest among all forecasting models and systems, these
three values are all greater than 0.98, while theVr values ofmost other
forecasting models and systems are less than 0.98, indicating that the
proposed forecasting system is relatively stable. Combined with the
results of the forecasting evaluation metric shown in section 3, it
shows that the proposed forecasting system has high prediction
accuracy and relatively high stability.

5 CONCLUSION

Based on the multi-objective optimization algorithm and data
decomposition strategy, an effective combined forecasting system is

proposed to forecast the PM2.5 concentration from Guangzhou,
Shenzhen, and Zhuhai in China. The proposed system mainly
contains three modules, the data preprocessing module, the
individual model forecasting module, and the combination
forecasting module. In the first module, the strategy of
“decomposition and ensemble” is applied to remove the noise in the
original series. In the individual model forecasting module, ARima,
BPnn, ℓ2,1RFelm, ESn, and HFs are applied to forecast PM2.5

concentration respectively. These five models are from different
kinds of forecasting models and are used to analyze different
features in the PM2.5 concentration series. ARima is a classical
traditional statistical forecasting method; BPnn, ℓ2,1RFelm, and ESn
are neural networks with different characteristics; hesitant fuzzy time
series model is a fuzzy-based forecasting model. By comparing eight
weightingmethods from three categories, the best combinationmethod
is found as a multi-objective optimization weighting method.

The developed combined forecasting system has been
successfully applied in PM2.5 concentration forecasting. Based
on the forecasting evaluation indicators, the forecasting
performance of the proposed system is validated. Specifically,
compared the models forecasting results based on data before and
after the preprocessing of cEEMDan in Comparison I. In
Comparison II, compare the system employing diverse
combination methods. Compere between the individual
models and the combined models in Comparison III. After
these comparative experiments, it can be observed that the
MAE and MAPE values of the proposed system are always
lower than the values of individual models and other
combination methods. For RMSE in Guangzhou, the value of
the proposed system is slightly higher than the minimum RMSE
value, but overall, the forecasting performance of the proposed
system is still the best. Therefore, the proposed combined
forecasting system, which combines different types of
individual forecasting models, has high practical application
potential in air pollution concentration forecasting.
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