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The manuscript endeavors to provide a perspective on the role of water bodies in the
spread of antimicrobial (antibiotic) resistance (AMR), antimicrobial resistant bacteria (ARB),
and antimicrobial resistance genes (ARGs) among pathogens, animals, and humans. We
briefly indicate how the AMR problem is globally affecting public health, along with
strategies and mechanisms to combat the dissemination of ARB and ARGs. A brief
systematic survey of the literature (2015-onwards) for the presence of antimicrobial
residues and the occurrence of ARGs and antimicrobial resistant microorganisms in
different water bodies/sources indicates the gravity of the situation and suggests their
important role in the occurrence and spread of AMR, ARB, and ARGs. The prevalent water
treatment methods which tend to reduce ARB and ARGs from water resources are unable
to remove them completely, allowing the problem of AMR to continue and spread to
organisms of concern. In this opinion article, we attempt to underline the key role of
controlling the release/discharge of antimicrobial contaminants in water bodies and their
buildup in checking the development and spread of AMR. The reduction in the release of
antibiotic residues in the environment, especially water bodies, combined with the
development of improved surveillance means and efficacious treatment/removal/
decomposition methods could help curb the menace of AMR effectively. We suggest
the expansion of the ambit of ‘One Health Approach to AMR crises proposed by the World
Bank, 2021 to include the ‘reduction of antimicrobial contamination of the environment’ as
the ‘seventh domain’ of activity to effectively achieve its objective.
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INTRODUCTION

Aquatic ecosystems are very important to maintain the high levels of biodiversity, livelihood, and
productivity of the biosphere (Hossain et al., 2018; Vilca and Angeles, 2018; Irfan and Alatawi, 2019;
Hassan et al., 2020). The presence of antimicrobials (antibiotics etc.), antimicrobialresistant bacteria
(ARB), and antimicrobial resistance genes (ARGs) in the aquatic environment is becoming a cause of
great concern as the possibility of development of antibiotic-resistant pathogens, even superbugs, is
increasingly posing problems to the environment and human health (Ma et al., 2015; Wang et al., 2020;
Zhuang et al., 2021). It is recognized that aquatic environments are one of the key reservoirs and
transmission routes for the spread of antimicrobial/antibiotic resistance (AMR/AR) (Amarasiri et al.,
2020). Antibiotics reach the environment via feces and urine of humans and animals, inappropriate
disposal of unused drugs, and direct environmental contamination by waste material from antibiotic
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production units (Amaya et al., 2012; World Health Organization,
2017a; United Nations Environment Programme, 2022).
Antimicrobials/antibiotics exert selection pressure, accelerating the
development of ARB resistant to the used antimicrobial and related
compounds (Kolář et al., 2001; Ayukekbong et al., 2017;
Serwecinska, 2020). All antibiotics put to use consistently end up
in the environment, further accelerating the pace of AMR
development (Larsson and Flach, 2021). Globally, AR has been
frequently reported from freshwater sources (Kumar et al., 2013;
Abdel Rahim et al., 2015; Jabbar Ibrahim and Kareem Hameed,
2015; Guzman-Otazo et al., 2019; Singh et al., 2020; Subbiah et al.,
2020), wastewater systems including but not limited to
pharmaceutical industries, and wastewater treatment plants
(WWTPs) (Ferreira Da Silva et al., 2007; Tesfaye et al., 2019;
Adegoke et al., 2020; Obayiuwana and Ibekwe, 2020;
Praveenkumarreddy et al., 2020). AMR has emerged as one of
the key public health problems of the 21st century that
overshadows the efficacy of available effective treatments against
a large number of pathogens which are increasingly no longer
susceptible to common antimicrobials (Prestinaci et al., 2015).
The AMR problem is increasing rapidly and becoming more
critical with each passing day. Pathogens causing different
common infections have been consistently acquiring and
displaying a varying degree of resistance to most of the new
antibiotics within <5–10 years of their introduction into the
market (Supplementary Table S1). AMR is observed in bacteria,
fungi, viruses, and parasites as they get adapted to multiply in the
presence of antimicrobials (Founou et al., 2017; Dadgostar, 2019).
The infection with AMR pathogens is supposed to escalate
healthcare costs and treatment failures and cause up to 10million
more deaths annually by 2050 (Dadgostar, 2019; Amarasiri et al.,

2020). The World Health Organization (WHO) has declared that
due to increasing AR, we are almost out of treatment options (World
Health Organization, 2017b; World Health Organization, 2021).
Seeing the growing threat of AMR, the WHO has proposed a six-
point plan, that is, “One Health Approach” (OHA) (World Bank
Group, 2018; Mazimba et al., 2021). The OHA is envisaged as
“involvement of human health, animal health, and environmental
health and focus on those infectious disease-related issues (including
AMR) that undermine overall health and well-being” (World Bank
Group, 2018; Mazimba et al., 2021).

Numerous studies across the globe have reported the
prevalence of ARB in different water bodies (Kumar et al.,
2013; Abdel Rahim et al., 2015; Jabbar Ibrahim and Kareem
Hameed, 2015; Guzman-Otazo et al., 2019; Singh et al., 2020;
Subbiah et al., 2020) and wastewater systems (Ferreira Da Silva
et al., 2007; Tesfaye et al., 2019; Adegoke et al., 2020; Obayiuwana
and Ibekwe, 2020; Praveenkumarreddy et al., 2020). The inability
of different drinking water treatments andWWTPs to completely
remove ARGs and ARBs from water allows for their buildup in
large water bodies (Alexander et al., 2020; Amarasiri et al., 2020).
Considering the central role of water bodies in the development
and spread of AMR (Figure 1A), the active monitoring of
antimicrobial residues in the environment and control of
disposal into the environment are suggested to help reduce the
rate of AMR emergence/development (Figure 1A, B).

ANTIMICROBIAL RESISTANCE
EMERGENCE AND SPREAD

Microbial genome plasticity supported by numerous genetic
mechanisms such as conjugation, transformation, and

FIGURE 1 | (A) Antimicrobial resistance development and transmission of ARGs and ARBs. (B) One health approach to AMR crises: Seven domains and
activity for guiding the data collection, analyses, and action.
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transduction enables them to evolve, adapt, and survive in
environments contaminated with antibiotics. The development
of AMR in microbes results from selection pressure, mutation,
and gene transfer (Serwecinska, 2020; Larsson and Flach, 2021;
Michael et al., 2014; Caniça et al., 2019; Van Hoek et al., 2011;
Samreen et al., 2021; Kunhikannan et al., 2021; Amábile-Cuevas,
2021; Sriram et al., 2021; von Wintersdorff et al., 2016)
(Supplementary Table S2), whereas conjugation supposedly
remains the most frequently used mode of ARG transmission
(Figure 1A) (von Wintersdorff et al., 2016).

Selection pressure determines the occurrence, amplification, and
dissemination of ARGs in the environment and pathogens. Even low
concentrations of antimicrobials/antibiotics can result in the selection
of ARGs—making the establishment of a safe concentration of any
antimicrobial compound in the environment a challenging task
(Wang et al., 2020; Zhuang et al., 2021; Stanton et al., 2020; Yang
et al., 2018). Several culture-independent studies on animals, food,
humans, and environmental samples had shown the presence of huge
reservoirs of ARGs (i.e., resistome) that could be potentiallymobilized
and transferred to other organisms (Abdel Rahim et al., 2015; Subbiah
et al., 2020; Obayiuwana and Ibekwe, 2020; Adzitey, 2020; Forsberg
et al., 2012; Hu et al., 2016; Abdel-Rahman et al., 2020; Meng et al.,
2020;Morris and Cerceo, 2020; Balakrishna et al., 2017; D’Costa et al.,
2011). Aquatic environments are identified as ideal settings for the
acquisition and dissemination of AMR/AR. Human exposure to ARB
and ARGs from aquatic environments poses an additional health risk
(Karkman et al., 2018; Suzuki et al., 2017; Wellington et al., 2013;
Leonard et al., 2018; Søraas et al., 2013; Leonard et al., 2015;O’Flaherty
et al., 2018). Drinking water and wastewater treatment processes are
mostly inadequate to remove ARGs (Li et al., 2015; Rodriguez-Mozaz
et al., 2015; McGowan, 2007). The WWTP effluents, agriculture
runoffs, etc. comprising ARB and ARGs can end up in aquatic
environments such as lakes and rivers (Figure 1A). Usage of
domestic wastewater in agricultural irrigation and recreational
activities can introduce new ARB and ARGs to the specific
environment (Leonard et al., 2018; Søraas et al., 2013; Leonard
et al., 2015; O’Flaherty et al., 2018; Rodriguez-Mozaz et al., 2015;
McGowan, 2007; Ben et al., 2017). In addition to drinking water,
humans can be exposed to ARB andARGs via different activities such
as aquatic sports, bathing, occupational exposure during agricultural
irrigation, and consumption of food produce fromfields irrigatedwith
reclaimed water (Leonard et al., 2018; Søraas et al., 2013; Leonard
et al., 2015; O’Flaherty et al., 2018). However, the extent of human
health risk resulting from exposure to ARB and ARGs present in
aquatic environments remains poorly understood. It is primarily due
to specific information such as the dose–response curves and
exposure assessment data related to ARB and ARGs in different
water usage scenarios being a prerequisite to conducting a quantitative
microbial risk assessment (Ashbolt et al., 2013; Pepper et al., 2018).

ANTIMICROBIAL RESISTANCE IN WATER
BODIES: CAUSE AND IMPACT

Antimicrobial Resistance in Aquaculture
The aquaculture field heavily relies on the application of
antibiotics either directly in water or mixed with fish food to

control infections, causing explosive growth of ARGs in farmed
aquatic animals and environments (Heuer et al., 2009; Hinchliffe
et al., 2018; Preena et al., 2020). Many antibiotics used in
aquaculture are critically important for human treatment, for
example, tetracycline, macrolides, and aminoglycosides (World
Health Organization, 2021). Several studies indicated the indirect
transfer of ARGs from fish origin antibiotic-resistant microbes to
human pathogens such as E. coli, Salmonella spp., and Aeromonas
spp through culture-independent studies (West et al., 2008;
Heuer et al., 2009; Zou et al., 2012; Amarasiri et al., 2020).
The presence of ARGs in S. enterica serotype Typhimurium
DT104 isolates that caused salmonellosis outbreaks in Europe
and the United States is also suspected to originate from the
aquaculture system (Zou et al., 2012). The incidence of MDR in
Vibrio alginolyticus and Vibrio parahaemolyticus isolates from
farmed fishes in Korea further reaffirms the prevalent gene
transfer phenomenon (Oh et al., 2011). Metagenomics or
culture-independent studies have reported the occurrence of
ARGs of different classes in marine sediments, suggesting a
vital role for them in lateral gene transfer (Yang et al., 2013;
Jiang et al., 2017; Karkman et al., 2018; Lerminiaux and Cameron,
2019; Sun et al., 2019).

Antimicrobial Resistance in Fresh and
Wastewater
Freshwater bodies such as rivers, streams, springs, and lakes
continuously receive antimicrobials/antibiotics, ARBs, and
ARGs through different sources such as effluents from
WWTPs, chemical manufacturing plants, animal husbandry,
aquaculture, etc. Several studies had reported the presence of
different antibiotics and ARGs in surface and groundwater
sources (Liang et al., 2013; Shimizu et al., 2013; Ma et al.,
2015; Matongo et al., 2015; Deng et al., 2016; Fernando et al.,
2016; Madikizela et al., 2017; Danner et al., 2019)
(Supplementary Table S3A). Even the bacterial communities
of Pseudomonas, Acinetobacter, Bacillus, Arthrobacter,
Xanthomonas, and Flavobacterium isolated from Eastern
Siberian permafrost sediments had been shown to harbor
several ARBs and ARGs by culture-dependent methods
(Mindlin et al., 2008). Similarly, ARBs showing resistance to
different classes of antibiotics had also been reported from
freshwater samples of Antarctica and Siberian lakes (Lobova
et al., 2011; Jara et al., 2020).

Wastewater remains a major reservoir of AMR in the
environment as it allows ARBs with ARGs to persist and
transfer the ARGs in the environment via different
mechanisms (Rizzo et al., 2013; Fouz et al., 2020) (Figure 1A;
Supplementary Table S2). The prevalent wastewater treatment
methods that decrease the ARBs only have a limited impact on
ARGs present in the environment (Ben et al., 2017; Hiller et al.,
2019a; Singh, 2020). The ARGs present in the environment can
get transmitted through horizontal gene transfer (HGT) to
different organisms, including the medically important ones
(Singh, 2020; Woolhouse et al., 2015). The environment assists
the transfer of ARGs from one component to another, viz.,
animals, soil, water, sediments, and sewage (Figure 1A)
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(Wellington et al., 2013; Balcazar, 2014; Berglund, 2015; Fouz
et al., 2020). ARGs are supposedly ubiquitous. However, their
concentration may vary in different environments. The transfer
of ARGs is not only limited to closely related species or genera but
also occurs among phylogenetically distant species (Jiang et al.,
2017). It leads to the ceaseless emergence of new variants of AMR
organisms (Bouki et al., 2013; Hocquet et al., 2016; McKinney
et al., 2018). The presence of ARGs in the environment represents
a more complex and challenging problem concerning
containment as they are not degradable and can be easily
transmitted (Treangen and Rocha, 2011; Stecher et al., 2012;
Beceiro et al., 2013; Hiller et al., 2019b; Ibrahim et al., 2019;
Galhano et al., 2021; Koch et al., 2021; Zhuang et al., 2021;
Grenni, 2022).

The major source of ARB and ARGs are human and veterinary
clinical settings where intestinal bacteria encounter a high
concentration of antibiotics, along with the associated WWTPs
and land wastes (Karkman et al., 2018; Salyers et al., 2004;
Ishikawa et al., 2018; Hendriksen et al., 2019). Bacteria passing
via the intestinal tract can acquire AR through conjugation and
transformation before ending up in human and animal feces
(Figure 1A) (Salyers et al., 2004; Anderson et al., 2006). The
effluent discharges from WWTPs to different environments
where the environmental microorganisms can interact with
ARB and ARGs may act as primary places of AMR
development (Ben et al., 2017; Lee et al., 2017; Fouz et al.,
2020; Manoharan et al., 2021).

Antimicrobial Resistance in Marine
Environments
The mechanisms responsible for the occurrence of ARBs and
ARGs in marine environments can be different from those of
fresh water and wastewater. As per a report, marine
environments contain about 28% of the ARGs (Hatosy and
Martiny, 2015). The major source of increased AMR
occurrence in the marine environment is the coastal runoff
of the ARBs from the terrestrial environment (Hatosy and
Martiny, 2015). In addition, anthropogenic activities are
causing direct antibiotic residue outpourings into marine
systems, for example, Chilean marine salmonid farms alone
had used about 363.4 tons of antibiotics in 2016 that can act as
a selection pressure for the development of AR in marine
environments (Miranda et al., 2018). Metagenomics studies
had reported the same ARGs in the intestines of Baltic Sea farm
fishes and farm sediments; the possible reason suggested
behind the observation is the usage of antibiotics during the
hatching and rearing of juvenile fish or the acquisition of the
ARGs by fishes from marine microorganisms in the farms
(Rosenfeld and Zobell, 1947; Baam et al., 1966; Miranda et al.,
2018; Tortorella et al., 2018). The potential bidirectional
transfer of ARGs between these aquatic environments and
humans cannot be ruled out.

Studies using both culture-dependent and culture-
independent approaches suggest global contamination of the
water environments including open oceans and widespread
presence of ARBs (Shimizu et al., 2013; Hatosy and Martiny,

2015; Segura et al., 2015; Fekadu et al., 2019). In the natural
aquatic environment, bacteria can develop AR due to induced
mutagenesis at a low concentration of antibiotics (Kohanski et al.,
2010). Although the fraction of resistant mutants is very low, the
accelerated selection of ARBs could occur over generations
(Gullberg et al., 2011) due to continued antimicrobial
presence. Accordingly, attention should be paid to water
environments as a key to the origin and spread of ARBs
and ARGs.

ANTIMICROBIAL RESISTANCE IN WATER
AND PUBLIC HEALTH

It was observed that AMR, including multiresistance and pan-
resistance, is rapidly spreading in bacteria, leading to severe
infections untreatable with current antimicrobials (World
Health Organization, 2014; World Health Organization, 2015;
George, 2019). The spread of AMR in the environment had
received comparatively less attention as compared to the spread
of AMR pathogens in animals and humans (Baekkeskov et al.,
2020). There are two types of AMR in bacteria, that is, acquired
AMR and intrinsic AMR (World Health Organization, 2015;
Baekkeskov et al., 2020) (Supplementary Table S2). The release
of antimicrobial compounds into the environment allows it to
come in direct contact with the naturally occurring microbes and
act as a driving force for microbial evolution and the emergence
of more resistant strains (European Centre for Disease Prevention
and Control, 2019; Graham et al., 2019; Taneja and Sharma, 2019;
Singh, 2020).

AMR is beginning to endanger public health worldwide
(Prestinaci et al., 2015; Founou et al., 2017; Centers for
Disease Control and Prevention, 2019; World Health
Organization, 2021; The World Bank, 2021). Infection with
AMR pathogens causes serious illnesses requiring longer
hospital stays and increased healthcare costs due to the higher
cost of second-line drugs and sometimes treatment failure (Llor
and Bjerrum, 2014; Prestinaci et al., 2015; Centers for Disease
Control and Prevention, 2018; Shrestha et al., 2018; European
Centre for Disease Prevention and Control, 2019). AMR in
common infections heavily impacts immunocompromised
individuals and those undergoing treatments such as
chemotherapy, dialysis, joint replacement, surgery, etc.
(Centers for Disease Control and Prevention, 2018; Centres
for Disease Control and Prevention, 2021).

Globally, the frequent incidences of infection with multidrug-
resistant Gram-negative bacteria (MDR-GNB) and Gram-
Positive bacteria are posing treatment challenges (Llor and
Bjerrum, 2014; Bassetti et al., 2019; Ramírez-Castillo et al.,
2018; Annavajhala et al., 2019; Centers for Disease Control
and Prevention, 2019; World Health Organization, 2017a;
Viney et al., 2021). The MDR cases are projected to become a
serious issue by 2040 (Friedrich, 2017; Salvatore et al., 2019;
Viney et al., 2021). Common pathogens of concern, namely,
Enterococcus faecium, Helicobacter pylori, Neisseria gonorrhoeae,
Campylobacter spp, etc. are currently included in the list of
priority pathogens by the WHO for the development of new
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antibiotics due to rapid development of AMR in these pathogens
(World Health Organization, 2017b).

The municipal wastewaters contain a high concentration of
organic and inorganic matter that supports the growth of AMR
microorganisms, further promoting the spread of ARGs and
AMR (Da Silva et al., 2006; Baquero et al., 2008; Exner et al.,
2017; Karkman et al., 2018). Unrestricted discharge of untreated
urban waste had been contributing to an overall rise of ARBs and
ARGs in the environment (Da Silva et al., 2006; Moura et al.,
2009; Osińska et al., 2016). The WWTPs are the meeting point of
most of the ARBs, especially in those processes in which activated
sludge or percolator biological filter are used for biological
treatment (Baquero et al., 2008; Karkman et al., 2018; Kumar
and Pal, 2018). Some studies had shown a higher percentage of
MDR bacteria in the effluent than the effluent of treated
wastewater (Osińska et al., 2016; Exner et al., 2017). Generally,
wastewater treatment regulates the level of bacterial count, but
due to differences in treatment plant designs and operations, the
fate of ARBs and ARGs may remain unaffected or amplified.

The bacterial communities proliferate in drinking water
distribution system pipes even after chlorination
(Korzeniewska et al., 2013; Razavi et al., 2017). As the process
of chlorination initially lowers the total load of microbes, it may
significantly increase the level of ARBs. Expectedly, the effect of
chlorination on the secondary effluent of WWTPs had been
found to cause reactivation of ARBs (Zhang et al., 2009). The
plausible reason for ARB increase could be a decline of antibiotic-
susceptible bacteria or the selective rise of the ARB population in
wastewater. However, the potential threat to public health from
ARBs, whether from reactivation or regrowth, calls for more
intensive research on the phenomenon (Blasco et al., 2008;
Martinez, 2009; Munir et al., 2011; Huang et al., 2012;
Harnisz, 2013; Klanicova et al., 2013). A crucial point of
intervention for environmental AMR management could be
the removal of ARB and ARG contaminants from wastewater
effluents that pose a direct threat to negatively impact other water
resources. The enhancement of wastewater treatment
technologies and rational use of antibiotics should be
promoted to minimize the threat of pathogenic ARB
emergence and infection.

The regular uptake of antibiotics through several
environmental sources changes the composition of gut
microbiota composition and induces the growth of ARB in
human and animal gut (Cho and Blaser, 2012; Francino,
2016). This gut microbiota inequity leads to the growth of
several AR pathogenic and opportunistic bacteria with the
possibility of them evolving into superbugs whose infection
could not respond to treatments and lead to untimely death
(Cho and Blaser, 2012; Ben et al., 2019). There is a growing need
to understand the relationship between antimicrobial/antibiotic
exposure and the human microbiome, and its functional aspect
related to health (Ben et al., 2019).

The extent of the growing global AMR problem can be gaged
by a systematic search of the databases, viz., Web of Science,
JSTOR, and PubMed using a combination of pertinent keywords
such as antimicrobial, antibiotic resistance gene, water,
environmental factors, antibiotics, heavy metals, water bodies,

pollutants, etc. for the original research article and review articles.
A brief systematic literature search performed for the antibiotic
levels, ARBs, and ARGs in fresh and marine water on 17th
February 2022 for articles published 2015 onwards
(Supplementary Table S3B, S4) indicates the widespread
presence of the residues of different antimicrobials
(amoxicillin, penicillin tetracycline, ofloxacin, ciprofloxacin,
etc.), a large number of ARGs (tetA, tetB, sulI, qnr, aadA,
tetO, ampC, etc), and ARBs of concern (E. coli, Enterococcus,
Salmonella, Shigella, Aeromonas, Vibrio, etc) in the water bodies
(aquaculture, freshwater, wastewater, marine water) as presented
in tabular form in Supplementary Table S3A, highlighting the
severity of the AMR problem in water bodies.

The infections caused by ARBs increase the economic burden
in terms of healthcare and associated costs. The infection caused
by ARBs drastically inflates the cost of treatment and increases
the chances of adverse outcomes, as compared to that caused by
antibiotic-susceptible bacteria (World Health Organization,
2014; Centers for Disease Control and Prevention, 2018). The
estimated deaths caused by AMR could rise from the current rate
of about 0.7 million to 10 million annually by 2050, if
comprehensive actions are not taken (World Health
Organization, 2019; Samreen et al., 2021). It would further
cause a 3–4% reduction in the annual gross domestic product
(GDP) globally—translating into an economic cost of 1–6 trillion
yearly from 2030–2050 onwards, based upon AMR (low to high)
scenarios encountered and depending upon the measures
undertaken now (World Bank, 2017).

CONTROL OF ANTIMICROBIAL
RESISTANCE EMERGENCE AND
DISSEMINATION IN WATER BODIES
Removal of Antimicrobial Resistant
Bacteria and Antimicrobial Resistance
Genes From Water Supply Systems and
Wastewater Treatment Units
The WWTPs were designed for the removal of organic matter,
nutrients, and solids, but now they need to be able to remove
antimicrobials/antibiotics, ARBs, and ARGs as well. So far, very
little is known about the effectiveness of the treatments in the
removal of ARB and ARGs. Research is needed to fill a huge
knowledge gap in this area to help improve the design ofWWTPs
and the used methodologies. Water supply systems and WWTPs
use a single or a combination of different treatment processes to
achieve many log reductions in the number of specific target
microbes which show intra- and inter-process variations (Sano
et al., 2016; Amarasiri et al., 2017). Specific comprehensive
guidelines suggesting minimum reductions for antibiotics,
ARB, and ARGs in water/wastewater are desired (Hong et al.,
2018).

The membrane bioreactor treatment plants had achieved
significantly higher reductions of ARB and ARGs (log
reduction range: 2.57–7.06) than conventional treatment
methods such as sand filtration, sedimentation, activated
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sludge, and rotating biological contactor or oxidation ditch (log
reduction range: 2.37–4.56; p < 0.05) (Munir et al., 2011;
O’Flaherty and Cummins, 2017; Su et al., 2018). The retention
in the sand filter medium with low nutrient conditions is
supposed to cause ARB starvation, leading to plasmid
degradation and permanent loss of antibiotic resistance
(Griffiths et al., 1990; Tan et al., 2019). Drinking water
treatment by conventional methods had achieved variable
ARG log reductions (0.03–2.4) that differed with the types of
ARGs evaluated (Hu et al., 2019; Zhang et al., 2019).
Sulfamethoxazole had killed ARBs immediately, but a delay in
ARGs reduction was reported, possibly resulting from a
competitive consumption of free radicals by sulfamethoxazole
and ARGs (Hu et al., 2019).

Several studies indicate the inability of the water treatment
processes to eliminate ARB and ARGs. There had been
increased incidences of specific ARGs in the WWTP
effluents (Rizzo et al., 2013; Xu et al., 2015; Chu et al.,
2018; Karkman et al., 2018). A study revealed no
significant differences in the ARGs present in potable
source water and treated water, indicating the nonremoval
of ARGs during the process (Garner et al., 2018). The
activated granular carbon filtration method even enhanced
the abundance of ARGs in the filtered water due to the
formation of biofilms on the biological activated carbon
surfaces where ARB can adhere and grow (Xu et al., 2016;
Su et al., 2018; Hu et al., 2019; Tan et al., 2019). The significant
correlations (p < 0.05) between the effluent ARG
concentration (2 μg/l) and residual antibiotic concentration
(0.5–0.22 μg/l) suggest a role for selection pressure on ARG
enrichment (Mao et al., 2015; Hu et al., 2019).

The search for local solutions to avoid environmental
dissemination of these pollutants requires prior information
on the specific residues and the AR determinants present in
wastewater. There is an urgent need for public health research to
increase its pace to keep up with water sustainability technologies
and even go beyond. In addition, more research work is essential
for the application of effective treatment and disinfection
approaches for the complete removal of ARB in WWTPs as
the associated immediate environmental and public health risks
are high.

Tracking the Sources of Antimicrobial
Resistance in Organisms
The modern molecular techniques for the characterization of
bacterial organisms can readily increase our ability to track the
source of AMR and ARGs. These could provide useful insights,
including but not limited to a comprehensive understanding of
the population biology of organisms and the genetic diversity
of organisms entering water (Olivas and Faulkner, 2008).
These techniques could provide fast and accurate AMR
source tracking and other genetic mobile platforms involved
in AMR dissemination, providing a much more accurate image
of the real diversity and complexity of AR in water-borne
bacteria, unlike cultivation-dependent approaches (Henriques
et al., 2006).

Revision of Domains of “One Health
Approach” for Tackling Antimicrobial
Resistance
The “One Health Approach” suggested by the WHO that currently
focuses on activities to reduce the contamination and usage of
antimicrobials and ways to minimize the development and
spread of AMR pathogens (World Bank Group, 2018; Mazimba
et al., 2021) should consider including active pursuance of the
reduction of antimicrobial contamination of the environment as
the seventh domain of the OHA for AMR crises to curb the
development and spread of AMR (See Figure 1B).

DISCUSSION

Antimicrobials/antibiotics are used as both preventive and
therapeutic agents in the treatment of animal diseases, human
infections, aquaculture, agriculture, and the livestock industry
(Baquero et al., 2008; Forsberg et al., 2012; Ben et al., 2019;
Dadgostar, 2019; Schar et al., 2020; Schar et al., 2021). Antibiotic
residues reach different environments through excretions (stool and
urine of animals and human), improper disposal of unused drugs,
waste stream from the antibiotic production unit, antibiotics used
for plant production, etc. (Baquero et al., 2008; Ishikawa et al., 2018;
Karkman et al., 2018; Pepper et al., 2018; Dadgostar, 2019; Larsson
and Flach, 2021). Water bodies get contaminated by municipal
sewage discharges, animal husbandry, landfill leachates of antibiotic
disposal, manufacturing industries, and agricultural runoff
(Hernando-Amado et al., 2019; Serwecinska, 2020). The
increased frequency of ARGs in various ARBs of different
environments is one of the concerning consequences of
antimicrobial/antibiotic misuse and subsequent pollution
(Kraemer et al., 2019). Studies indicate that aquatic
environments act as a key reservoir and means of antibiotic
resistance spread (Zhang et al., 2013; Matongo et al., 2015; Binh
et al., 2018; Yang et al., 2018; Danner et al., 2019; Kraemer et al.,
2019; Amarasiri et al., 2020; Schar et al., 2020; Larsson and Flach,
2021; Liyanage et al., 2021). In an aquatic environment, wastewater
and WWTPs are considered one of the key potential hot spots for
the spread of AR and transfer of ARGs (Matongo et al., 2015;
Amarasiri et al., 2020; Ali et al., 2021; Buriánková et al., 2021; Guo
et al., 2021; Markkanen et al., 2021; Obayiuwana et al., 2021; Yoo
and Lee, 2021; Zhang et al., 2021). It was estimated that for the
production of aquaculture animals, the global consumption of
antimicrobials which was 10,259 tons in 2017 is projected to
register an increase of 33% to 13,600 tons by 2030 (Schar et al.,
2020). Different ARBs and ARGs had been frequently detected in
groundwater (Singh et al., 2020; Kunhikannan et al., 2021), surface
water (Deng et al., 2016; Binh et al., 2018), wastewater (Karkman
et al., 2018; Nguyen et al., 2021), sediments (Liang et al., 2013; Xu
et al., 2014; McInnes et al., 2021) and marine water (Buschmann
et al., 2012; Shimizu et al., 2013; Vilca and Angeles, 2018). A brief
systematic review of the literature aptly highlights the growing
menace of ARBs and ARGs in fresh and marine water
environments along with the contamination of different
antibiotics (Supplementary Table S3A).
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Both culture-dependent and culture-independent (metagenomics)
studies have contributed to our understanding of the AMR problem.
The combination of culture-dependent and culture-independent
metagenomic techniques is reported to provide better retrieval of
ARGs than either method alone (Korzeniewska and Harnisz, 2012;
Fenske et al., 2020). Metagenomic studies provide an avenue to study
the uncultivable total microorganisms (Forbes et al., 2017). A
metagenomics study of municipal wastewater and hospital
wastewater revealed the presence of tetracycline, beta-lactam,
macrolide–lincosamide–streptogramin resistance gene and
multidrug resistance genes ranging from 0.06–0.98 copy/cell, and
biocide/metal resistance gene ranging from 0.30–1.99 copies/cell
(Zhang et al., 2021). One of the studies reported the presence of
different ARGs in the seawater sample at 1.7 × 102 copies/giga base
(Zeng et al., 2019). The highest ARG levels of 1.57–700.58 × 102 copy/
ml for penicillin were reported from surface water, whereas
0.37–312.7 × 102 copy/ml was reported from the groundwater of
Sri Lanka. Among the penicillin resistance genes, the highest
percentage of blaTEM (700.58 × 102 copy/ml) followed by
ampicillin (0.37–371.7 × 102 copy/ml) and OPR D (1.57 × 102

copy/ml) resistance genes were reported from aquatic samples,
whereas tetM and tetA resistance genes at the levels of
1.35–439.88 × 102 copy/ml were reported from the surface water
samples. Only the tetM resistance gene was reported at 215.99 × 102

copy/ml from the groundwater sample of Sri Lanka (Liyanage et al.,
2021). Zhang et al., 2021 reported that the number ofARGs is strongly
correlated with the number of biocide/metal resistance genes in the
WWTPs with more chemicals (Zhang et al., 2021). The municipal
wastewaters had more abundant and diverse ARGs than hospital
wastewater. From the urban canals and lakes of Vietnam, different
levels of erythromycin, amoxicillin, sulfamethoxazole, ampicillin,
clindamycin, tylosin, vancomycin, tetracycline, chloramphenicol,
etc. were frequently detected (Tran et al., 2019). Metagenomics
study of rural and urban water and sediments of Bangladesh
reported a significant correlation between ARGs and human origin
bacteria (R2 = 0.73; P= < 0.01), suggesting that the release of untreated
sewage could act as a driver for the transmission of ARGs in the
environment (McInnes et al., 2021). A recent metagenomics study of
79 WWTPs situated in 60 countries reported the differences in
diversity and abundance of ARGs among Africa, Asia, North
America, South America, Oceania, and Europe (Strange et al.,
2021). The Oceanic cluster reported a limited number of ARGs
encodingmacrolides in high number, whereas Africa, Asia, and South
America clusters harbored ARGs representing sulfonamides and
chloramphenicol. A study has also reported Vietnam, India, and
Brazil to have the most divergent ARG distribution and suggested
them as possible hotspots for the emergence of new antibiotic
resistance mechanisms (Hendriksen et al., 2019). Several studies
reported the prevalence of antibiotics, ARBs, and ARGs in the
aquatic environment that was correlated with environmental
factors (Supplementary Table S3A) (Binh et al., 2018; Tran et al.,
2019; Hanna et al., 2020; Anh et al., 2021; Azanu et al., 2021; Duong
et al., 2021; Guo et al., 2021; Lai et al., 2021; McInnes et al., 2021;
Zhang et al., 2021; Zhuang et al., 2021). A metagenomics study of
wastewater in Benin and Burkina showed the prevalence of resistance
genes van, blaOXA, blaGES, blaIMP, blaKPC, blaNDM, blaOXA,
blaVIM, qnr, and mcr (Markkanen et al., 2021). Recently, a large

number of ARGs subtypes, viz., blaNDM-1, blaCTX-M-15, mecA,
blaTEM-1, sul1, vanA, blaKPC-2, sul2, blaCTX-M-14, and blaOXA-
48 had also been reported in decreasing order from Asia, Europe,
Africa, and North and South America (Zhuang et al., 2021).

The major problem to tackle the issue of AMR is existing
knowledge gaps comprising incomplete knowledge or
information and misperceptions about the use of antibiotics
and the relative contribution of the release of ARB or ARGs in
the environment from different sources (McCullough et al., 2016;
Singh, 2020). Health professionals can play a major role in the
prevention and spread of AMR by educating people about the
possible risks of inappropriate usage and disposal of antibiotics
and contaminated material containing ARBs with ARGs. The
effective control of AMR development and spread of ARGs and
ARBs can be facilitated by promoting the development of self-
contained local wastewater treatment modules, use of antibiotics/
antimicrobial degrading contraptions, and implementing
strategies to minimize the concentration of antibiotics required
for treatment, including the use of nanotechnology (Malakootian
et al., 2019; Singh, 2020; Kaur et al., 2021; Singh et al., 2022).

AMR/AR has the potential to threaten human health and inflict
huge blows to the economies of both developed and developing
countries (Ventola, 2015; World Health Organization, 2021).
Estimates for Europe, the United Kingdom, Thailand, and the
United States, the project substantial increase in health costs from
antibiotic-resistant bacterial infections (Da Silva et al., 2006; World
Health Organization, 2015; Osińska et al., 2016; Abdel-Rahman et al.,
2020; Obayiuwana and Ibekwe, 2020; Yoo and Lee, 2021). The
waterborne AMR is causing an economic impact of $340-
$680 billion annually on the health care system (World Economic
Forum, 2021). The waterborne AMR is contributing about $1 to
$5 billion per year in additional health care expenditure, and it is
expected to increase as resistance develops further. The waterborne
AMR could be responsible for about 3.5million additional sicknesses
annually at the cost of $300million (World Economic Forum, 2021).
The alarm of AMR crisis raised in recent times by various bodies such
asWHO, FAO, CDC,World Bank, etc. (World Health Organization,
2018;Mulani et al., 2019; Centers for Disease Control and Prevention,
2019; Centres for Disease Control and Prevention, 2021) also calls for
the strengthening of the synthesis and discovery pipeline of new
antibiotics with better activities or activity against various antibiotic-
resistant pathogens (Supplementary Table S5). Development of new
more potent antibiotics with different or multiple modes of action,
along with focused steps to curb AMR development and
dissemination to pathogens, is required (Mulani et al., 2019; Singh,
2020; Léger et al., 2021). AMR, being a multidimensional problem,
requires a proactive holistic, constructive, collaborative, and
synergistic strategy and action by different stakeholders to
comprehensively implement a One Health Approach to overcome
the unfolding AMR crises.

CONCLUSION

The continued antimicrobial overuse, misuse, and uncontrolled
contamination of the environment throughout the world are
turning the AMR issue into a global health crisis. The tackling of
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the AMR situation requires implementation of new policies that limit
the release of antimicrobial residues into the environment and support
appropriate monitoring to minimize their buildups and timely
removal. More research efforts are needed toward understanding
the extent and mechanistic underpinnings of AMR development and
ARG transfer to other pathogenic bacteria to develop better control
strategies. The involvement of the public to locally manage and
dispose of the antimicrobials and AMB remains a potential area of
collaboration and policy development to control the AMR crisis as it
could promote both a sense of responsibility and awareness.
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